IV054 Coding, Cryptography and Cryptographic Protocols **2011 - Exercises III.**

- 1. Consider a binary cyclic code C of length 6 with a generator polynomial $x^4 + x^3 + x + 1$.
 - (a) Find a parity check polynomial of C.
 - (b) Use the polynomial found to check whether the words 111000 and 111010 belong to C.
- 2. Which of the following binary codes are cyclic? Which of them are equivalent to a cyclic code?
 - (a) $C_1 = \{0000, 1110, 1011, 0111, 1101\};$
 - (b) $C_2 = \{111, 100, 010, 001\};$
 - (c) C_3 with generator matrix G_1 :

(d) C_4 with generator matrix G_2 :

- 3. Let C be a binary cyclic code of length 15 and dimension 11 such that each word from C^{\perp} has even weight and 01111111110000 $\in C$. Find a generator polynomial and a minimum distance of C.
- 4. Which $\operatorname{Ham}(r, 2)$ codes are maximum distance separable?
- 5. Consider a binary cyclic code C of length 7 with generator polynomial $g(x) = x^3 + x + 1$. Find a parity check matrix and a generator polynomial of C^{\perp} .
- 6. How many quinary cyclic codes of length 6 are there? Give a generator polynomial for each such code and one generator matrix for each dimension.
- 7. A cyclic code C is trivial if and only if its generator polynomial is zero. Consider different non-trivial cyclic codes C_1 and C_2 and give an example of a cyclic code C_3 or prove that such does not exist for the following cases:
 - (a) $C_3 = \neg C_1 \cap C_2$, where \neg is bitwise negation operator;
 - (b) $C_3 = C_1 \circ 0$, where \circ is concatenation operator;
 - (c) $C_3 \supseteq C_1 \cup C_2$.