
Part X

Protocols to do seemingly impossible and zero-knowledge protocols

Protocols to do seemingly impossible

A protocol is an algorithm two (or more) parties have to follow to perform
a communication/cooperation.

A cryptographical protocol is a protocol to achieve secure communication
during some goal oriented cooperation.

In this chapter we deal with a variety of cryptographical protocols that
allow to solve seemingly unsolvable problems.

We present several cryptographic protocols for such basic cryptographic
primitives as bit commitment and oblivious transfer.

Of special importance are zero-knowledge protocols we discuss in second
half of this chapter.
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COIN-FLIPPING BY PHONE PROTOCOLS-EXAMPLE

Coin-flipping by telephone:

Alice and Bob got divorced and they do not trust each other any longer. They want to
decide, communicating by phone only, who gets the car.

Protocol 1 Alice sends Bob messages head and tail encrypted by a one-way function f.
Bob guesses which one of them is encryption of head. Alice tells Bob whether his guess
was correct. If Bob does not believe her, Alice sends f to Bob.

Protocol 2 Alice chooses two large primes p,q, sends Bob n = pq and keeps p, q secret.

Bob chooses a random number y ∈ {1, . . . , n
2
}, sends Alice x = y 2 mod n and tells

Alice: if you will guess y correctly, car is yours.

Alice computes four square roots (x1, n − x1) and (x2, n − x2) of x.

Let

x ′1 = min(x1, n − x1), x ′2 = min(x2, n − x2).

Since y ∈ {1, . . . , n
2
}, either y = x ′1 or y = x ′2.

Alice then guesses whether y = x ′1 or y = x ′2 and tells Bob her choice (for example by
reporting the position and value of the leftmost bit in which x ′1 and x ′2 differ).

Bob tells Alice whether her guess was correct.

(Later, if necessary, Alice reveals p and q, and Bob reveals y.)
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COIN TOSSING

In any coin tossing protocol both parties should influence outcome and
should accept the outcome. Both outcomes should have the same
probability.
Requirements for a coin tossing protocol are sometimes generalized as
follows:

The outcome of the protocol is an element from the set {0, 1,
reject}
If both parties behave correctly, the outcome should be from the
set {0, 1}
If it is not the case that both parties behave correctly, the outcome
should be reject

Problem: In some coin tossing protocols one party can find out the
outcome sooner than second party and in such a case can disrupt the
protocol – to produce reject. A way out is to require that in case of correct
behavior no outcome should have probability > 1

2 .
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COIN TOSSING USING ONE-WAY FUNCTION f

Protocol:

Alice chooses a one-way function f and informs Bob about the
definition domain of f.

Bob chooses randomly r1, r2 from dom(f) and sends them to Alice

Alice sends to Bob one of the values f (r1) or f (r2)

Bob announces Alice his guess which of the two values he received

Alice announces Bob whether his guess was correct (0) or not (1)

If one needs to verify correctness, Alice should send to Bob
specification of f

The protocol is computationally secure. Indeed, to cheat, Alice should be
able to find, for randomly chosen r1, r2 such a one-way function f that
f (r1) = f (r2).
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BIT COMMITMENT PROTOCOLS (BCP)

Basic ideas and solutions I

In a bit commitment protocol Alice chooses a bit b and gets committed to b, in the
following sense:

Bob has no way of knowing which commitment Alice has made, and Alice has no way of
changing her commitment once she has made it; say after Bob announces his guess as to
what Alice has chosen.

An example of a ”pre-computer era” bit commitment protocol is that Alice writes her
commitment on a paper, locks it in a box, sends the box to Bob and, later, in the
opening phase, she sends also the key to Bob.

Complexity era solution I. Alice chooses a one-way function f and an even (odd) x if she
wants to commit herself to 0 (1) and sends to Bob f(x) and f.

Problem: Alice may know an even x1 and an odd x2 such that f (x1) = f (x2).

Complexity era solution II. Alice chooses a one-way function f, two random x1, x2 and a
bit b she wishes to commit to, and sends to Bob (f (x1, x2, b), x1) - a commitment.

When times comes for Alice to reveal her bit she sends to Bob f and the triple (x1, x2, b).
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BIT COMMITMENT SCHEMES I

The basis of bit commitment protocols are bit commitment schemes:

A bit commitment scheme is a mapping f : {0, 1} × X → Y , where X and
Y are finite sets.

A commitment to a b ∈ {0, 1}, or an encryption of b, is any value (called a
blow) f(b, x), x ∈ X.

Each bit commitment protocol has two phases:

Commitment phase: The sender sends a bit b he wants to commit to, in an
encrypted form, to the receiver.

Opening phase: If required, the sender sends to the receiver additional
information that enables the receiver to get b.
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BIT COMMITMENT SCHEMES II

Each bit commitment scheme should have three properties:

Hiding (privacy): For no b ∈ {0, 1} and no x ∈ X , it is feasible for Bob to
determine b from B = f(b, x).

Binding: Alice can ”open” her commitment b, by revealing (opening) x and
b such that B = f(b, x), but she should not be able to open a commitment
(blow) B as both 0 and 1.

Correctness: If both, the sender and the receiver, follow the protocol, then
the receiver will always learn (recover) the committed value b.
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Bit Commitment with One-Way Function

Commitment phase:

Alice and Bob choose a one-way function f

Bob sends a randomly chosen r1 to Alice

Alice chooses random r2 and her committed bit b and sends to Bob
f (r1, r2, b).

Opening phase:

Alice sends to Bob r2 and b

Bob computes f (r1, r2, b) and compares with the value he has already
received.
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Hash functions and commitments

A commitment to a data w, without revealing w, using a hash function h,
can be done as follows:

Commitment phase: To commit to a w choose a random r and make public
h(wr).

Opening phase: reveal r and w.

For this application the hash function h has to be one-way: from h(wr) it
should be unfeasible to determine wr
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TWO SPECIAL BIT COMMITMENT SCHEMES

Bit commitment scheme I. Let p, q be large primes, n = pq, m ∈ QNR(n), X = Y =
Z∗n . Let n,m be public.

Commitment: f(b, x) = mbx2 mod n for a random x from X.

Since computation of quadratic residues is in general infeasible, this bit commitment
scheme is hiding.

Since m ∈ QNR(n), there are no x1, x2 such that mx2
1 = x2

2 mod n and therefore the
scheme is binding.

Bit commitment scheme II. p is a large Blum prime, X = {0, 1, . . . , p − 1} = Y, α is a
primitive element of Z∗p .

f (b, x) = αx mod p, if SLB(x) = b;
= αp−x mod p, if SLB(x) 6= b.

where

SLB(x) = 0 if x ≡ 0, 1 (mod 4);
= 1 if x ≡ 2, 3 (mod 4).

Binding property of this bit commitment scheme follows from the fact that in the case of
discrete logarithms modulo Blum primes there is no effective way to determine second
least significant bit (SLB) of the discrete logarithm.
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MAKING COIN TOSSING FROM BIT COMMITMENT

Each bit commitment scheme can be used to solve coin tossing problem as follows:

1 Alice tosses a coin, and commits itself to its outcome bA (say heads = 0, tails = 1)
and sends the commitment to Bob.

2 Bob also tosses a coin and sends the outcome bB to Alice.

3 Alice opens her commitment.

4 Both Alice and Bob compute b = bA ⊕ bB .

Observe that if at least one of the parties follows the protocol, that is it tosses a random
coin, the outcome is indeed a random bit.

Note: Observe that after step 2 Alice knows what will be the outcome, but
Bob not. So Alice can disrupt the protocol if the outcome is to be not
good for her. This is a weak point of this protocol.
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BASIC TYPES of HIDING and BINDING

If the hiding or the binding property of a commitment protocol depends on
the complexity of a computational problem, we speak about computational
hiding and computational binding.

In case, the binding or the hiding property does not depend on the
complexity of a computational problem, we speak about unconditional
hiding or unconditional binding.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 13/45

A commitment scheme based on discret logarithm

Alice wants to commit herself to an m ∈ {0, . . . , q − 1}.
Scheme setting:

Bob randomly chooses primes p and q such that

q|(p − 1).

Bob chooses random generators g 6= 1 6= v of the subgroup G of order q ∈ Z∗n . Bob
sends p, q, g and v to Alice.

Commitment phase:

To commit to an m ∈ {0, . . . , q − 1}, Alice chooses a random r ∈ {0, . . . , q − 1}, and
sends c = g rvm to Bob.

Opening phase:

Alice sends r and m to Bob who then verifies whether c= g rvm.
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COMMENTS

If Alice, committed to an m, could open her commitment as m̄ 6= m,
then g rvm = g r̄v m̄ and therefore

lgg v = (r − r̄)(m̄ −m)−1.

Hence, Alice could compute lggv of a randomly chosen element v ∈ G ,
what contradicts the assumption that computation of discrete
logarithms in G is infeasible.

Since g and v are generators of G, then g r is a uniformly chosen
random element in G, perfectly hiding vm and m in g rvm, as in the
encryption with ONE-TIME PAD cryptosystem.
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BIT COMMITMENT using ENCRYPTIONS

Commit phase:

1 Bob generates a random string r and sends it to Alice

2 Alice commit herself to a bit b using a key k through an encryption

Ek(rb)

and sends it to Bob.

Opening phase:

1 Alice sends the key k to Bob.

2 Bob decrypts the message to learn b and to verify r.

Comment: without Bob’s random string r Alice could find a different key l
such that ek(b) = el(¬b).
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COMMITMENTS and ELECTRONIC VOTING

Let com(r, m) = g rvm denote commitment to m in the commitment scheme based on discrete
logarithm. If r1, r2, m1, m2 ∈ {0, . . . , q − 1}, then
com(r1, m1)× com(r2, m2) = com(r1 + r2, m1 + m2). Commitment schemes with such a property
are called homomorphic commitment schemes.
Homomorphic schemes can be use to cast yes-no votes of n voters V1, . . . , Vn, by the trusted
authority TA for whom eT and dT are ElGamal encryption and decryption algorithms.
Each voter Vi chooses his vote mi ∈ {0, 1}, a random rI ∈ {0, . . . , q − 1} and computes his
voting commitment cI = com(ri , mi ). Then Vi makes ci public and sends eT (g ri ) to TA and TA
computes

dT

 
nY

i=1

eT (g ri )

!
=

nY
i=1

g ri = g r ,

where r =
nX

i=1

ri and makes public g r .

Now, anybody can compute the result s of voting from publicly known ci and g r since

v s =

nY
i=1

ci

g r
,

with s =
nX

i=1

mi .

s can now be derived from v s by computing v1, v2, v3, . . . and comparing with v s if the number

of voters is not too large.
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Trust in cryptographic protocols

In any interaction between people, there is a certain level of risk, trust, and
expected behaviour, that is implicit in the interchanges.

People may behave properly for a variety of reasons: fear from prosecution,
desire to act in unethical manner due to social influences, and so on.

However, in cryptographic protocols trust has to be kept to the lowest
possible level.

In any cryptographic protocol, if there is an absence of a mechanism for
verifying, say autencity, one must assume, as default, that other
participants can be dishonest (if for no other reason than for self-
preservation).
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OBLIVIOUS TRANSFER (OT) PROBLEM

Story: Alice knows a secret and wants to send secret to Bob in such a way that he gets
secret with probability 1

2
, and he knows whether he got secret, but Alice has no idea

whether he received secret. (Or Alice has several secrets and Bob wants to buy one of
them but he does not want that Alice knows which one he bought.)

Oblivious transfer problem: Design a protocol for sending a message from Alice to Bob in
such a way that Bob receives the message with probability 1

2
and ”garbage” with the

probability 1
2
. Moreover, Bob knows whether he got the message or garbage, but Alice

has no idea which one he got.

An Oblivious transfer protocol:

1 Alice chooses two large primes p and q and sends n = pq to Bob.

2 Bob chooses a random number x and sends y = x2 mod n to Alice.

3 Alice computes four square roots ±x1,±x2 of y (mod n) and sends one of them to
Bob. (She can do it, but has no idea which of them is x.)

4 Bob checks whether the number he got is congruent to x. If yes, he has received no
new information. Otherwise, Bob has two different square roots modulo n and can
factor n. Alice has no way of knowing whether this is the case.
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1-OUT-OF-2 oblivious transfer problem

The 1-out-of-2 oblivious transfer problem: Alice sends two messages to
Bob in such a way that Bob can choose which of the messages he receives
(but he cannot choose both), but Alice cannot learn Bob’s decision.

A generalization of 1-out-of-2 oblivious transfer problem is two-party
oblivious circuit evaluation problem:

Alice has a secret i and Bob has a secret j and they both know some
function f.

At the end of protocol the following conditions should hold:

1 Bob knows the value f(i,j), but he does not learn anything about i.

2 Alice learns nothing about j and nothing about f(i,j).

Note: The 1-out-of-2 oblivious transfer problem is the instance of the
oblivious circuit evaluation problem for i = (b0, b1), f (i , j) = bj .
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1-out-2 oblivious transfer box

1-out-of-two oblivious transfer can be imagined as a box with three inputs
and one output.

INPUTS: Alice inputs: x0 and x1;

. . . . . . . . . Bob inputs a bit c

OUTPUT: Bob gets as the output: xc
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Implementation of oblivious transfer

Alice generates two key pairs for a PKC P and sends her public keys to
Bob.

Bob chooses a to-be random secret key k for a SKC S, encrypts it by
one of Alice’s public keys and sends it to Alice.

Alice uses her two secret keys to decrypt the message she received.
One of outcome is garbage g, another one is k, but she does not know
which one.

Alice encrypts her two secret messages, one with k, another with g and
sends them to Bob.

Bob uses S with k to decrypt both messages he got and one of the
attempts is successful. Alice has no idea which one.
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Power of Oblivious Transfers

C. Crépeau (1988) showed that both versions of oblivious transfer are
equivalent – a protocol for each version can be realized using any
protocol for the other version, using a cryptographic reduction

Original definition of the oblivious transfer is due to J. Halpern and M.
O. Rabin (1983); 1-out-of-2 olivious transfer suggested S. Even, O.
Goldreich and A. Lempel in 1985.

J. Kilian (1988) showed that oblivious transfers are very powerful
protocols that allow secure computation of the value f(x, y) of any
binary function f , where x is a secret value known only by Alice, and y
is a secret value known only by Bob, in such a way that it holds:

Both, Alice and Bob, learn f(x, y)
Alice learns about y only so much she can learn from x and f(x, y)
Bob learns about x only so much he can learn from y and f(x, y)
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BIT COMMITMENT from 1-out-2 oblivious transfer

Using 1-out-of-2 oblivious transfer box (OT-box) one can design bit commitment:

COMMITMENT PHASE:

1 Alice selects a random bit r and her commitment bit b;

2 Alice inputs x0 = r and x1 = r xor b into the OT-box.

3 Alice sends a message to Bob telling him it is his turn.

4 Bob selects a random bit c, inputs c into the OT-box and records the output xc .

OPENING PHASE:

1 Alice sends r and b to Bob.

2 Bob checks to see if xc = r xor bc
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Mental poker playing by phone – two players

Basic requirements:

All hands (sets of 5 cards) are equally likely.

The hands of Alice and Bob are disjoint.

Both players know their own hand but not that of the opponent.

Each player can detect eventual cheating of the other player.

A commutative cryptosystem is used with all functions kept secret.

Players agree on numbers w1, . . . ,w52 as the names of 52 cards.

Protocol:

1 Bob shuffles cards, encrypts them with eB , and tells eB(w1), . . . , eB(w52), in a
randomly chosen order, to Alice.

2 Alice chooses five of the items eB(wi ) as Bob’s hands and tells them Bob.

3 Alice chooses another five of eB(wi ), encrypt them with e A and sends to Bob.

4 Bob applies dB to five values eA(eB(wi )) he got from Alice and sends eA(wi ) to Alice
as Alice’s hands.

Remark: The cryptosystem that is used cannot be public-key in the normal sense.
Otherwise Alice could compute eB(wi ) and deal with the cards accordingly – a good hand
for B but slightly better for herself.
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Mental poker with three players

1 Alice encrypts 52 cards w1, . . . ,w52 with eA and sends them in a random order to
Bob.

2 Bob, who cannot read the cards, chooses 5 of them, randomly. He encrypts them
with eB , and sends eB(eA(wi )) to Alice and the remaining 47 encrypted cards eA(wi )
to Carol.

3 Carol, who cannot read any of the messages, chooses five at random, encrypts them
with her key and sends Alice eC (eA(wi )).

4 Alice, who cannot read encrypted messages from Bob and Carol, decrypt them with
her key and sends back to the senders,

five dA(eB(eA(wi ))) = eB(wi ) to Bob,

five dA(eC (eA(wi ))) = eC (wi ) to Carol.

5 Bob and Carol decrypt the messages to learn their hands.

6 Carol chooses randomly 5 other messages eA(wi ) from the remaining 42 and sends
them to Alice.

7 Alice decrypt messages to learn her hands.

Additional cards can be dealt with in a similar manner. If either Bob or Carol wants a
card, they take an encrypted message eA(wi ) and go through the protocol with Alice. If
Alice wants a card, whoever currently has the deck sends her a card.
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Zero-knowledge proof protocols

To the most important primitives for cryptographic protocols, and at the
same time very counterintuitive primitives, belong so-called zero-knowledge
proof protocols (of knowledge).

Very informally, a zero-knowledge proof protocol allows one party, usually
called PROVER, to convince another party, called VERIFIER, that
PROVER knows some fact (a secret, a proof of a theorem,...) without
revealing to the VERIFIER ANY information about his knowledge (secret,
proof,...).

In the rest of this chapter we present and illustrate very basic ideas of
zero-knowledge proof protocols and their importance for cryptography.

Zero-knowledge proof protocols are a special type of so-called interactive
proof systems.

By a theorem we understand in the following a claim that a specific object
has a specific property. For example, that a specific graph is 3-colourable.
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Illustrative example

(A cave with a door opening on a secret word)

Alice knows a secret word opening the door in cave. How can she convince Bob about it
without revealing this secret word?
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ZERO-KNOWLEDGE PROOFS

Informally speaking, an interactive proof systems has the property of being
zero-knowledge if the Verifier, that interacts with the honest Prover of the
system, learns nothing from the interaction beyond the validity of the
statement being proved.

There are several variants of zero-knowledge protocols that differ in the
specific way the notion of learning nothing is formalized.

In each variant it is viewed that a particular Verifier learns nothing if there
exists a polynomial time simulator whose output is indistinguishable from
the output of the Verifier after interacting with the Prover on any possible
instant of the problem.

The different variants of zero-knowledge proof systems concern the
strength of this distinguishability. In particular, perfect or statistical
zero-knowledge refer to the situation where the simulator’s output and the
Verifier’s output are indistinguishable in an information theoretic sense.

Computational zero-knowledge refer to the case there is no polynomial time
distinguishability.
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INTERACTIVE PROOF PROTOCOLS

In an interactive proof system there are two parties

An (all powerful) Prover, often called Peggy (a randomized algorithm that uses a
private random number generator);

A (little (polynomially) powerful) Verifier, often called Vic (a polynomial time
randomized algorithm that uses a private random number generator).

Prover knows some secret, or a knowledge, or a fact about a specific object, and wishes
to convince Vic, through a communication with him, that he has the above knowledge.

For example, both Prover and Verifier posses an input x and Prover wants to convince
Verifier that x has a certain Property and that Prover knows how to prove that.

The interactive proof system consists of several rounds. In each round Prover and Verifier
alternatively do the following.

1 Receive a message from the other party.

2 Perform a (private) computation.

3 Send a message to the other party.

Communication starts usually by a challenge of Verifier and a response of Prover.

At the end, Verifier either accepts or rejects Prover’s attempts to convince Verifier.
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Example – GRAPH NON-ISOMORPHISM

A simple interactive proof protocol exists for a computationally very hard graph
non-isomorphism problem.

Input: Two graphs G1 and G2, with the set of nodes {1, . . . , n}
Protocol: Repeat n times the following steps:

1 Vic chooses randomly an integer i ∈ {1, 2} and a permutation π of {1, . . . , n}. Vic
then computes the image H of Gi under permutation π and sends H to Peggy.

2 Peggy determines the value j such that GJ is isomorphic to H, and sends j to Vic.

3 Vic checks to see if i = j.

Vic accepts Peggy’s proof if i = j in each of n rounds.

Completeness: If G1 is not isomorphic to G2, then probability that Vic accepts is clearly
1.

Soundness: If G1 is isomorphic to G2, then Peggy can deceive Vic if and only if she
correctly guesses n times the i Vic choosed randomly. Probability that this happens is
2−n.

Observe that Vic’s computations can be performed in polynomial time (with respect to
the size of graphs).
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INTERACTIVE PROOF SYSTEMS

An interactive proof protocol is said to be an interactive proof system for a
secret/knowledge or a decision problem Π if the following properties are satisfied.

Assume that Prover and Verifier posses an input x (or Prover has secret knowledge) and
Prover wants to convince Verifier that x has certain properties and that Prover knows
how to prove that (or that Prover knows the secret).

(Knowledge) Completeness: If x is a yes-instance of P, or Peggy knows the secret, then
Vic always accepts Peggy’s ”proof” for sure.

(Knowledge) Soundness: If x is a no-instance of P, or Peggy does not know the secret,
then Vic accepts Peggy’s ”proof” only with very small probability.

CHEATING

If the Prover and the Verifier of an interactive proof system fully follow the protocol
they are called honest Prover and honest Verifier.

A Prover who does not know secret or proof and tries to convince the Verifier is
called cheating Prover.

A Verifier who does not follow the behaviour specified in the protocol is called a
cheating verifier.
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Zero-knowledge proof protocols informally

Very informally

An interactive ”proof protocol” at which a Prover tries to convince a Verifier about the
truth of a statement, or about possession of a knowledge, is called ”zero-knowledge”
protocol if the Verifier does not learn from communication anything more except that the
statement is true or that Prover has knowledge (secret) she claims to have.

Example The proof n = 670592745 = 12345 × 54321 is not a zero-knowledge proof that
n is not a prime.
Informally A zero-knowledge proof is an interactive proof protocol that provides highly
convincing evidence that a statement is true or that Prover has certain knowledge (of a
secret) and that Prover knows a (standard) proof of it while providing not a single bit of
information about the proof (knowledge or secret). (In particular, Verifier who got

convinced about the correctnes of a statement cannot convince the third person about that.)

More formally A zero-knowledge proof of a theorem T is an interactive two party
protocol, in which Prover is able to convince Verifier who follows the same protocol, by
the overhelming statistical evidence, that T is true, if T is indeed true, but no Prover is
able to convince Verifier that T is true, if this is not so. In addition, during interactions,
Prover does not reveal to Verifier any other information, except whether T is true or not.
Consequently, whatever Verifier can do after he gets convinced, he can do just believing
that T is true.
Similar arguments hold for the case Prover posseses a secret.
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AGE DIFFERENCE FINDING PROTOCOLS

Alice and Bob wants to find out who is older without disclosing any other information
about their age.

The following protocol is based on a public-key cryptosystem, in which it is assumed that
neither Bob nor Alice are older than 100 years.

Protocol Age of Bob: j, age of Alice: i.

1 Bob choose a random x, computes k = eA(x) and sends Alice s = k - j.

2 Alice first computes the numbers yu = dA(s + u); 1 ≤ u ≤ 100, then chooses a large
random prime p and computes numbers

zu = yu mod p, 1 ≤ u ≤ 100 (*)

and verifies that for all u 6= v

|zu − zv | ≥ 2 and zu 6= 0 (**)

(If this it not the case, Alice choose a new p, repeats computations in (*) and
checks (**) again.)

Finally, Alice sends Bob the following sequence (order is important).

z1, . . . , zi , zi+1 + 1, . . . , z100 + 1, p
z ′1, . . . , z

′
i , z
′
i+1, . . . , z

′
100

3 Bob checks whether j-th number in the above sequence is congruent to x modulo p.
If yes, Bob knows that i ≥ j , otherwise i < j .

i ≥ j ⇒ z ′J = zJ ≡ yJ = dA(k) ≡ x (mod p)
i < j ⇒ z ′J = zJ + 1 6= yJ = dA(k) ≡ x (mod p)
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3-COLORABILITY of GRAPHS

With the following protocol Peggy can convince Vic that a particular graph G, known to
both of them, is 3-colorable and that Peggy knows such a coloring, without revealing to
Vic any information how such coloring looks.

(a)

1 red e1 e1(red) = y1

2 green e2 e2(green) = y2

3 blue e3 e3(blue) = y3

4 red e4 e4(red) = y4

5 blue e5 e5(blue) = y5

6 green e6 e6(green) = y6

(b)

Protocol: Peggy colors the graph G = (V, E) with colors (red, blue, green) and she
performs with Vic |E |2- times the following interactions, where v1, . . . , vn are nodes of V.

1 Peggy chooses a random permutation of colors, recolors G, and encrypts, for i =
1,2,. . . ,n, the color ci of node vi by an encryption procedure ei – for each i different.
Peggy then removes colors from nodes, labels the i-th node of G with cryptotext
yi = ei (ci ), and designs Table (b).
Peggy finally shows Vic the graph with nodes labeled by cryptotexts.

2 Vic chooses an edge and asks Peggy to show him coloring of the corresponding
nodes.

3 Peggy shows Vic entries of the table corresponding to the nodes of the chosen edge.
4 Vic performs encryptions to verify that nodes really have colors as shown.
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Zero-knowledge proofs and cryptographic protocols

The fact that for a big class of statements there are zero-knowledge proofs can be used to
design secure cryptographic protocols. (All languages in NP have zero-knowledge proofs.)

A cryptographic protocol can be seen as a set of interactive programs to be executed by
non-trusting parties.

Each party keeps secret a local input.

The protocol specifies the actions parties should take, depending on their local secrets
and previous messages exchanged.

The main problem in this setting is how can a party verify that the other parties have
really followed the protocol?

The way out: a party A can convince a party B that the transmitted message was
completed according to the protocol without revealing its secrets.

An idea how to design a reliable protocol

1 Design a protocol under the assumption that all parties follow the protocol.

2 Transform protocol, using known methods how to make zero-knowledge proofs out
of normal ones, into a protocol in which communication is based on zero-knowledge
proofs, and which preserves both correctness and privacy and works even if some
parties display an adversary behavior.
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Zero-knowledge proof for quadratic residua

Input: An integer n = pq, where p, q are primes and x ∈ QR(n).

Protocol: Repeat lg n times the following steps:

1 Peggy chooses a random v ∈ Z∗n and sends to Vic

y = v 2 mod n.

2 Vic sends to Peggy a random i ∈ {0, 1}.
3 Peggy computes a square root u of x and sends to Vic

z = uiv mod n.

4 Vic checks whether

z2 ≡ x iy mod n.

Vic accepts Peggy’s proof that x is QR if he succeeds in point 4 in each of lg n rounds.

Completeness is straightforward:

Soundness If x is not a quadratic residue, then Peggy can answer only one of two possible
challenges (only if i = 0), because in such a case y is a quadratic residue if and only if xy
is not a quadratic residue.This means that Peggy will be caught in any given round of the
protocol with probability 1

2
.

The overall probability that prover deceives Vic is therefore 2− lg n = 1
n

.
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Zero-knowledge proof for graph isomorphism

Input: Two graphs G1 and G2 with the set of nodes {1, . . . , n}.
Repeat the following steps n times:

1 Peggy chooses a random permutation π of {1, . . . , n} and computes H to be the
image of G1 under the permutation π, and sends H to Vic.

2 Vic chooses randomly i ∈ {1, 2} and sends it to Peggy. {This way Vic asks for
isomorphism between H and Gi .}

3 Peggy creates a permutation ρ of {1, . . . , n} such that ρ specifies isomorphism
between H and Gi and Peggy sends ρ to Vic.

{If i = 1 Peggy takes ρ = π; if i = 2 Peggy takes ρ = σoπ, where σ is a fixed
isomorphic mapping of nodes of G2 to G1.}

4 Vic checks whether H provides the isomorphism between Gi and H.

Vic accepts Peggy’s ”proof” if H is the image of Gi in each of the n rounds.

Completeness. It is obvious that if G1 and G2 are isomorphic then Vic accepts with
probability 1.

Soundness: If graphs G1 and G2 are not isomorphic, then Peggy can deceive Vic only if
she is able to guess in each round the i Vic chooses and then sends as H the graph Gi .
However, the probability that this happens is 2−n.

Observe that Vic can perform all computations in polynomial time. However, why is this
proof a zero-knowledge proof?

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 38/45

Why is the last ”proof” a ”zero-knowledge proof”?

Because Vic gets convinced, by the overwhelming statistical evidence, that graphs G1 and
G2 are isomorphic, but he does not get any information (“knowledge”) that would help
him to create isomorphism between G1 and G2.

In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
G1) and G1 or G2, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and therefore it
seems very unlikely that this can help Vic to find an isomorphism between G1 and G2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G1 and G2.

All messages i transmitted during communications by Peggy and Vic.

Random numbers r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G1,G2); (H1, i1, r1), . . . , (Hn, in, rn)).

The essential point, which is the basis for the formal definition of zero-knowledge proof,
is that Vic can forge transcript, without participating in the interactive proof, that look
like “real transcripts”, if graphs are isomorphic, by means of the following forging
algorithm called simulator.
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SIMULATOR

A simulator for the previous graph isomorphism protocol.

T = (G1,G2),

for j = 1 to n do

Chose randomly ij ∈ {1, 2}.
Chose ρj to be a random permutation of {1, . . . , n}.
Compute Hj to be the image of Gij under ρj ;
Concatenate (Hj , ij , ρj) at the end of T.
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CONSEQUENCES and FORMAL DEFINITION

The fact that a simulator can forge transcripts has several important consequences.

Anything Vic can compute using the information obtained from the transcript can
be computed using only a forged transcript and therefore participation in such a
communication does not increase Vic capability to perform any computation.

Participation in such a proof does not allow Vic to prove isomorphism of G1 and G2.

Vic cannot convince someone else that G1 and G2 are isomorphic by showing the
transcript because it is indistinguishable from a forged one.

Formal definition what does it mean that a forged transcript ”looks like” a real one:

Definition Suppose that we have an interactive proof system for a decision problem Π
and a polynomial time simulator S.

Denote by Γ(x) the set of all possible transcripts that could be produced during the
interactive proof communication for a yes-instance x.

Denote F(x) the set of all possible forged transcripts produced by the simulator S.

For any transcript T ∈ Γ(x), let pΓ(T ) denote the probability that T is the transcript
produced during the interactive proof. Similarly, for T ∈ F (x), let pF (T ) denote the
probability that T is the transcript produced by S.

If Γ(x) = F (x) and, for any T ∈ Γ(x), pΓ(T ) = pF (T ) , then we say that the interactive
proof system is a zero-knowledge proof system.
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Proof for graph isomorphism protocol

Theorem The interactive proof system for Graph isomorphism is a perfect zero-knowledge
proof if Vic follows protocol.

Proof Let G1 and G2 be isomorphic. A transcript (real or forged) contains triplets
(Hj , ij , ρj).

The set R of such triplets contains 2n! elements (because each pair i, ρ uniquely
determines H and there are n! permutations ρ.

In each round of the simulator each triplet occurs with the same probability, that is all

triplets have probability
1

(2n!)n
.

Let us now try to determine probability that a triplet (H, i, ρ) occurs at a j-th round of
the interactive proof.

i is clearly chosen with the same probability. Concerning ρ this is either randomly chosen
permutation π or a composition π with a fixed permutation. Hence all triplets (H, i, ρ)

have the same probability
1

(2n!)n
.

The next question is whether the above graph isomorphism protocol is zero-knowledge
also if Vic does not follow fully the protocol.
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The case Vic does not follow protocol

It is usually much more difficult to show that an interactive proof system is
zero-knowledge even if Vic does not follow the protocol.

In the case of graph isomorphism protocol the only way Vic can deviate from the protocol
is that he does not choose i in a completely random way.

The way around this difficulty is to prove that, no matter how a “cheating” Vic deviates
from the protocol, there exists a polynomial-time simulator that will produce forged
transcripts that “look like” the transcript T of the communication produced by Peggy
and (the cheating) Vic during the interactive proof.

As before, the term “looks like” is formalized by requiring that two probability
distributions are the same.

Definition Suppose that we have an interactive proof system for a decision problem Π.

Let V* be any polynomial time probabilistic algorithm that a (possibly cheating) Verifier
uses to generate his challenges.
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The case Vic does not follow protocol

Denote by Γ(V ∗, x) the set of all possible transcripts that could be produced as a result
of Peggy and V* carrying out the interactive proof with a yes-instance x of Π.

Suppose that for every such V* there exists an expected polynomial time probabilistic
algorithm S* = S*(V*) (the simulator) which will produce a forged transcript.

Denote by F(V*, x) the set of possible forged transcripts.

For any transcript T ∈ Γ(V ∗, x), let pΓ,V∗(T ) denote the probability that T is the
transcript produced by V* taking part in the interactive proof.

Similarly, for T ∈ F (V ∗, x), let pF ,V∗(T ) denote the probability that T is the (forged)
transcript produced by S*.

If Γ(V ∗, x) = F (V ∗, x) and for any T ∈ Γ(V ∗, x), pF ,V∗(T ) = pΓ,V∗(T ), then the
interactive proof system is said to be a perfect zero-knowledge protocol.
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ADDITIONS

It can be proved that the graph isomorphism protocol is
zero-knowledge even in the case Vic cheats.

If, in an interactive proof system, the probability distributions specified
by the protocols with Vic and with simulator are the same, then we
speak about perfect zero-knowledge proof system.

If, in an interactive proof system, the probability distributions specified
by the protocols with Vic and with simulator are computationally
indistinguishable in polynomial time , then we speak about
computationally zero-knowledge proof system.

prof. Jozef Gruska IV054 10. Protocols to do seemingly impossible and zero-knowledge protocols 45/45


