
Part VIII

Elliptic curves cryptography and factorization



ELLIPTIC CURVE CRYPTOGRAPHY and FACTORIZATION

Cryptography based on manipulation of points of so called elliptic curves is currently
getting momentum and has a tendency to replace public key cryptography based on the
unfeasibility of factorization of integers, or on unfeasibility of the computation of discrete
logarithms.

For example, the US-government has recommended to its governmental institutions to
use mainly elliptic curve cryptography.

The main advantage of elliptic curves cryptography is that to achieve a certain level of
security shorter keys are sufficient than in case of “usual cryptography”. Using shorter
keys can result in a considerable savings in hardware implementations.

The second advantage of the elliptic curves cryptography is that quite a few of attacks
developed for cryptography based on factorization and discrete logarithm do not work for
the elliptic curves cryptography.

It is amazing how practical is the elliptic curve cryptography that is based on very
strangely looking theoretical concepts.
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ELLIPTIC CURVES

An elliptic curve E is the graph of the relation defined by the equation

E : y 2 = x3 + ax + b

(where a, b are either rational numbers or integers (and computation is done modulo
some integer n)) extended by a “point at infinity”, denoted usually as ∞ (or 0) that can
be regarded as being, at the same time, at the very top and very bottom of the y -axis.

We will consider mainly only those elliptic curves that have no multiple roots - what is
equivalent to the condition 4a3 + 27b2 6= 0.

In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has
one of the forms shown in the following figure. The graph depends on whether the
polynomial x3 + ax + b has three or only one real root.

y 2 = x(x + 1)(x − 1) y 2 = x3 + 73
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HISTORICAL REMARKS on ELLIPTIC CURVES

Elliptic curves are not ellipses and therefore it seems strange that they have such a name.

Elliptic curves actually received their names from their relation to so called elliptic
integrals Z x2

x1

dx√
x3 + ax + b

Z x2

x1

xdx√
x3 + ax + b

that arise in the computation of the arc-length of ellipses.

It may also seem puzzling why not to consider curves given by more general equations

y 2 + cxy + dy = x3 + ex2 + ax + b

The reason is that if we are working with rational coefficients or mod p, where p > 3 is a
prime, then such a general equation can be transformed to our special case of equation.
In other cases, it may be necessary to consider the most general form of equation.
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ADDITION of POINTS on ELLIPTIC CURVES - GEOMETRY (1)

Geometry

On any elliptic curve we can define addition of points in such a way that points of the
corresponding curve with such an operation of addition form an Abelian group. in which
∞ point is the identity element

If the line through two different points P1 and P2 of an elliptic curve E intersects E in a
point Q = (x , y), then we define P1 + P2 = P3 = (x ,−y). (This also implies that for any
point P on E it holds P +∞ = P.)

If the line through two different points P1 and P2 is parallel with y-axis, then we define
P1 + P2 =∞.

In case P1 = P2, and the tangent to E in P1 intersects E in a point Q = (x , y), then we
define P1 + P1 = (x ,−y).

It should now be obvious how to define subtraction of two points of an elliptic curve.

It is now easy to verify that the above addition of points forms Abelian group with ∞ as
the identity (null) element.
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ELLIPTIC CURVES - GENERALITY

A general elliptic curve over Zpm where p is a prime is the set of points (x , y) satisfying
so-called Weierstrass equation

y 2 + uxy + vy = x3 + ax2 + bx + c

for some constants u, v , a, b, c together with a single element 0, called the point of
infinity.

If p 6= 2 Weierstrass equation can be simplified by transformation

y → y − (ux + v)

2

to get the equation

y 2 = x3 + dx2 + ex + f

for some constants d , e, f and if p 6= 3 by transformation

x → x − d

3

to get equation

y 2 = x3 + fx + g
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ADDITION of POINTS on ELLIPTIC CURVES (2)

Formulas

Addition of points P1 = (x1, y1) and P2 = (x2, y2) of an elliptic curve
E : y 2 = x3 + ax + b can be easily computed using the following formulas:

P1 + P2 = P3 = (x3, y3)

where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =

8>><>>:
(y2 − y1)

(x2 − x1)
if P1 6= P2,

(3x2
1 + a)

(2y1)
if P1 = P2.

All that holds for the case that λ is finite; otherwise P3 =∞.

Example For curve y 2 = x3 + 73 and P1 = (2, 9), P2 = (3, 10) we have
P1 + P2 = P3 = (−4,−3) and P3 + P3 = (72, 611).
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ELLIPTIC CURVES mod n

The points on an elliptic curve

E : y 2 = x3 + ax + b (mod n)

are such pairs (x,y) mod n that satisfy the above equation, along with the point ∞ at
infinity.

Example Elliptic curve E : y 2 = x3 + 2x + 3 (mod 5) has points

(1, 1), (1, 4), (2, 0), (3, 1), (3, 4), (4, 0),∞.

Example For elliptic curve E : y 2 = x3 + x + 6( mod 11) and its point P = (2, 7) holds
2P = (5, 2); 3P = (8, 3). Number of points on an elliptic curve (mod p) can be easily
estimated.

Hasse’s theorem If an elliptic curve E(modp) has N points then |N − p − 1| < 2
√

p

The addition of points on an elliptic curve mod n is done by the same formulas as given
previously, except that instead of rational numbers c/d we deal with cd−1

Example For the curve E : y 2 = x3 + 2x + 3 it holds
(1, 4) + (3, 1) = (2, 0); (1, 4) + (2, 0) = (?, ?).
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ELLIPTIC CURVES DISCRETE LOGARITHM

Let E be an elliptic curve and A,B be its points such that B = kA = (A + A + . . .A + A)
– k times – for some k. The task to find such a k is called the discrete logarithm
problem for elliptic curves.

No efficient algorithm to compute discrete logarithm problem for elliptic curves is known
and also no good general attacks. Elliptic curves based cryptography is based on these
facts.

There is the following general procedure for changing a discrete logarithm based
cryptographic protocols to a cryptographic protocols based on elliptic curves:

Assign to the message (plaintext) a point on an elliptic curve.

Change, in the cryptographic protocol, modular multiplication to addition of points
on an elliptic curve.

Change, in the cryptographic protocol, exponentiation to multiplication of a point
on the elliptic curve by an integer.

To the point of an elliptic curve that results from such a protocol one assigns a
message (cryptotext).
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MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (I)

Problem and basic idea

The problem of assigning messages to points on elliptic curves is difficult because there
are no polynomial-time algorithms to write down points of an arbitrary elliptic curve.

Fortunately, there is a fast randomized algorithm, to assign points of any elliptic curve to
messages, that can fail with probability that can be made arbitrarily small.

Basic idea: Given an elliptic curve E(modp), the problem is that not to every x there is
an y such that (x , y) is a point of E .

Given a message (number) m we therefore adjoin to m few bits at the end of m and
adjust them until we get a number x such that x3 + ax + b is a square modp.
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MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (II)

Technicalities

Let K be a large integer such that a failure rate of
1

2K
is acceptable when trying to

encode a message by a point.

For j ∈ {0, . . . ,K} verify whether for x = mK + j , x3 + ax + b (mod p) is a square (mod
p) of an integer y.

If such an j is found, encoding is done; if not the algorithm fails (with probability
1

2K

because x3 + ax + b is a square approximately half of the time).

In order to recover the message m from the point (x , y), we compute:&
x

K

’
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ELLIPTIC CURVES KEY EXCHANGE

Elliptic curve version of the Diffie-Hellman key generation protocol goes as follows:

Let Alice and Bob agree on a prime p, on an elliptic curve E (mod p) and on a point P
on E.

Alice chooses an integer na, computes naP and sends it to Bob.

Bob chooses an integer nb, computes nbP and sends it to Alice.

Alice computes na(nbP) and Bob computes nb(naP). This way they have the same
key.
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ELLIPTIC CURVES VERSION of ElGamal CRYPTOSYSTEM

Standard version of ElGamal: Bob chooses a prime p, a generator q < p, an integer x,
computes y = qx (mod p), makes public p, q, y and keeps x secret.

To send a message m Alice chooses a random r, computes:

a = qr ; b = my r

and sends it to Bob who decrypts by calculating m = bx−x (bmod p)

Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve E (mod p), a
point P on E, an integer x, computes Q = xP, makes E, p, and Q public and keeps x
secret.

To send a message m Alices expresses m as a point X on E, chooses random r, computes

a = rP ; b = X + rQ

And sends the pair (a, b) to Bob who decrypts by calculating X = b − xa.
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ELLIPTIC CURVES DIGITAL SIGNATURES

Elliptic curves version of ElGamal digital signatures has the following form for signing (a
message) m, an integer, by Alice and to have the signature verified by Bob:

Alice chooses p and an elliptic curve E (mod p), a point P on E and calculates the
number of points n on E (mod p) – what can be done, and we assume that 0 < m < n.

Alice then chooses a random integer a and computes Q = aP. She makes public p, E, P,
Q and keeps secret a.

To sign m Alice does the following:

Alice chooses a random integer r , 1 ≤ r < n such that gcd(r,n) = 1 and computes R
= rP = (x,y).

Alice computes s = r−1(m − ax) (mod n)

Alice sends the signed message (m,R,s) to Bob.

Bob verifies the signature as follows:

Bob declares the signature as valid if xQ + sR = mP

The verification procedure works because

xQ + sR = xaP + r−1(m − ax)(rP) = xaP + (m − ax)P = mP

Warning Observe that actually rr−1 = 1 + tn for some t. For the above verification
procedure to work we then have to use the fact that nP =∞ and therefore P + t∞ = P
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COMMENT

Federal (USA) elliptic curve digital signature standard (ECDSA) was introduced in 20??.
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DOMAIN PARAMETERS for ELLIPTIC CURVES

To use ECC all parties involved have to agree on all basic elements concerning the elliptic
curve E being used:

A prime p.

Constans a and b in the equation y 2 = x3 + ax + b.

Generator G of the underlying cyclic subgroup such that its order is prime.

The order n of G , that is such an n that nG = 0

Cofactor h = |E |
n

that should be small (h ≤ 4) and, preferably h = 1.

To determine domain parameters (especially n and h) may be much time consuming task.
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FACTORING with ELLIPTIC CURVES

Basis idea: To factorize an integer n choose an elliptic curve E, a point P on E and
compute (modulo n) either iP for i = 2, 3, 4, . . . or 2jP for j = 1, 2, . . . . The point is
that in doing that one needs to compute gcd(k,n) for various k. If one of these values is
between 1 and n we have a factor of n.

Factoring of large integers: The above idea can be easily parallelised and converted to
using an enormous number of computers to factor a single very large n. Each computer
gets some number of elliptic curves and some points on them and multiplies these points
by some integers according to the rule for addition of points. If one of computers
encounters, during such a computation, a need to compute 1 < gcd(k, n) < n,
factorization is finished.

Example: If curve E : y 2 = x3 + 4x + 4 (mod 2773) and its point P = (1, 3) are used,
then 2P = (1771, 705) and in order to compute 3P one has to compute
gcd(1770, 2773) = 59 – factorization is done.

Example: For elliptic curve E : y 2 = x3 + x − 1 (mod 35) and its point P = (1, 1) we
have 2P = (2, 2); 4P = (0, 22); 8P = (16, 19) and at the attempt to compute 9P one
needs to compute gcd(15, 35) = 5 and factorization is done.

The only things that remain to be explored is how efficient is this method and when it is
more efficient than other methods.
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IMPORTANT OBSERVATIONS (1)

If n = pq for primes p, q, then an elliptic curve E (mod n) can be seen as a pair of
elliptic curves E (mod p) and E (mod q).

It follows from the Lagrange theorem that for any elliptic curve E (mod n) and its
point P there is an k < n such that kP =∞.

In case of an elliptic curve E (mod p) for some prime p, the smallest positive integer
m such that mP =∞ for some point P divides the number N of points on the curve
E (mod p). Hence NP =∞.

If N is a product of small primes, then b! will be a multiple of N for a reasonable
small b. Therefore, b!P =∞.

The number with only small factors is called smooth and if all factors are smaller
than an b, then it is called b-smooth.

It can be shown that the density of smooth integers is so large that if we choose a
random elliptic curve E (mod n) then it is a reasonable chance that n is smooth.
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PRACTICALITY of FACTORING USING ECC (1)

Let us continue to discuss the following key problem for factorization using elliptic curves:

Problem: How to choose k such that for a given point P we should try to compute points
iP or 2iP for all multiples of P smaller than kP?

Idea: If one searches for m-digits factors, one chooses k in such a way that k is a multiple
of as many as possible of those m-digit numbers which do not have too large prime
factors. In such a case one has a good chance that k is a multiple of the number of
elements of the group of points of the elliptic curve modulo n.

Method 1: One chooses an integer B and takes as k the product of all maximal powers of
primes smaller than B.

Example: In order to find a 6-digit factor one chooses B=147 and
k = 27 · 34 · 53 · 72 · 112 · 13 · . . . · 139. The following table shows B and the number of
elliptic curves one has to test:
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PRACTICALITY of FACTORING USING ECC (2)

Digits of to-be-factors 6 9 12 18 24 30
B 147 682 2462 23462 162730 945922

Number of curves 10 24 55 231 833 2594

Computation time by the elliptic curves method depends on the size of factors.
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ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be expected to be
smaller than an F. One should then proceed as follows:

Choose an integer parameter r and:

1 Select, randomly, an elliptic curve

E : y 2 = x3 + ax + b

such that gcd(n, 4a2 + 27b2) = 1 and a random point P on E.

2 Choose integer bounds A,B,M such that

M =
lY

j=1

p
apj

j

for some primes p1 < p2 < . . . < pl ≤ B and apj , being the largest exponent such

that p
aj

j ≤ A.

Set j = k = 1

3 Calculate pjP.

4 Computing gcd.
If pjP 6= O (mod n), then set P = pjP and reset k ← k + 1

1 If k ≤ apj
, then go to step (3).
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ELLIPTIC CURVES FACTORIZATION - DETAILS II

2 If k > apj , then reset j ← j + 1, k ← 1.

If j ≤ l , then go to step (3); otherwise go to step (5)

If pjP ≡ O( mod n) and no factor of n was found at the computation of inverse
elements, then go to step (5)

5 Reset r ← r − 1. If r > 0 go to step (1); otherwise terminate with ”failure”.

The ”smoothness bound” B is recommended to be chosen as

B = e

vuut lnF (lnlnF )

2

and in such a case running time is

O(e

p
2 + o(1lnF (lnlnF ))ln2n)
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ELLIPTIC CURVES: FAQ

How to choose (randomly) an elliptic curve E and point P on E? An easy way is
first choose a point P(x , y) and an a and then compute b = y 2 − x3 − ax to get the
curve E : y 2 = x3 + ax + b.

What happens at the factorization using elliptic curve method, if for a chosen curve
E (mod n) the corresponding cubic polynomial x3 + ax + b has multiple roots (that
is if 4a3 + 27b2 = 0) ? No problem, method still works.

What kind of elliptic curves are really used in cryptography? Elliptic curves over
fields GF (2n) for n > 150. Dealing with such elliptic curves requires, however,
slightly different rules.
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FACTORIZATION

Factorization of integers is a very important problem.

A variety of techniques has been developed to deal with this problem.

So far the fastest classical factorization algorithms work in time

eO((log n)
1
3 (log log n)

2
3 )

The fastest quantum algorithm for factorization works in (both quantum and classical)
polynomial time.

In the rest of chapter several factorization methods will be presented and discussed.

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 24/40



FACTORIZATION on QUANTUM COMPUTERS

In the following we present the basic idea behind a
polynomial time algorithm for quantum computers to
factorize integers.

Quantum computers works with special quantum states on
which are applied special unitary operation and very
special quantum features are used.

Quantum computers work not with bits, that can take on
any of two values 0 and 1, but with qubits (quantum bits)
that can take on any of infnitely many states α|0〉 + β|1〉,
where α and β are complex numbers such that
|α|2 + |β|2 = 1.
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REDUCTIONS

Shor’s polynomial time quantum factorization algorithm is
based on an understanding that factorization problem can
be reduced

1 first on the problem of solving a simple modular
quadratic equation;

2 second on the problem of finding period of functions
f (x) = ax mod n.
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FIRST REDUCTION

Lemma If there is a polynomial time deterministic (randomized) [quantum] algorithm to
find a nontrivial solution of the modular quadratic equations

a2 ≡ 1 (mod n),

then there is a polynomial time deterministic (randomized) [quantum] algorithm to
factorize integers.

Proof. Let a 6= ±1 be such that a2 ≡ 1 (mod n). Since

a2 − 1 = (a + 1)(a− 1),

if n is not prime, then a prime factor of n has to be a prime factor of either a + 1 or
a− 1. By using Euclid’s algorithm to compute

gcd(a + 1, n) and gcd(a− 1, n)

we can find, in O(lg n) steps, a prime factor of n.
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SECOND REDUCTION

The second key concept is that of the period of functions

fn,x(k) = xk mod n.

Period is the smallest integer r such that

fn,x(k + r) = fn,x(k)

for any k, i.e. the smallest r such that

x r ≡ 1 (mod n).

AN ALGORITHM TO SOLVE EQUATION x2 ≡ 1 (mod n).

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

If this algorithm stops, then ar/2 is a non-trivial solution of the equation

x2 ≡ 1 (mod n).
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EXAMPLE

Let n = 15. Select a < 15 such that gcd(a, 15) = 1.
{The set of such a is {2, 4, 7, 8, 11, 13, 14}}

Choose a = 11. Values of 11x mod 15 are then

11, 1, 11, 1, 11, 1

what gives r = 2.

Hence ar/2 = 11 (mod 15). Therefore

gcd(15, 12) = 3, gcd(15, 10) = 5

For a = 14 we get again r = 2, but in this case

142/2 ≡ −1 (mod 15)

and the following algorithm fails.

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.
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EFFICIENCY of REDUCTION

Lemma If 1 < a < n satisfying gcd(n, a) = 1 is selected in the above algorithm randomly
and n is not a power of prime, then

Pr{r is even and ar/2 6≡ ±1} ≥ 9

16
.

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

Corollary If there is a polynomial time randomized [quantum] algorithm to compute the
period of the function

fn,a(k) = ak mod n,

then there is a polynomial time randomized [quantum] algorithm to find non-trivial
solution of the equation a2 ≡ 1 (mod n) (and therefore also to factorize integers).
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A GENERAL SCHEME for Shor’s ALGORITHM

The following flow diagram shows the general scheme of Shor’s quantum factorization
algorithm

quantum
x

find period r
subroutine

r  is
even?

r/2 r/2

z=1 ?

output  z

no

yes

no

compute
z = gcd(a, n)

z = 1?

yes

no

z = max{gcd(n, a   -1), gcd(n, a    +1)}

yes

of function   a   mod n

choose randomly
a {2, ... ,n-1}

The algorithm works in polynomial time in case period finding is done in polynomial time
what can be done on quantum computer as Peter Shor showed in 1994.
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Fermat FACTORIZATION METHOD

Factorization of so-called Fermat numbers 22i

+ 1 is a good example to illustrate progress
that has been made in the area of factorization.

Pierre de Fermat (1601-65) expected that all numbers

Fi = 22i

+ 1 i ≥ 1

are primes.

This is true for i = 1, . . . , 4. F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

1732 L. Euler found that F5 = 4294967297 = 641 · 6700417

1880 Landry+LeLasser found that

F6 = 18446744073709551617 = 274177 · 67280421310721

1970 Morrison+Brillhart found factorization for F7 = (39digits)

F7 = 340282366920938463463374607431768211457 =

= 5704689200685129054721 · 59649589127497217

1980 Brent+Pollard found factorization for F8

1990 A. K. Lenstra+ . . . found factorization for F9 (155 digits)
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Fermat TEST

It follows from the Little Fermat Theorem that if p is a prime, then for all 0 < b < p, we
have

bp−1 ≡ l (mod p)

Can we say that n is prime if and only if for all 0 < b < n, we have

bn−1 ≡ l (mod n)?

No, there are composed numbers n, so-called Carmichael numbers, such that for all
0 < b < n that are co-prime with n it holds

bn−1 ≡ l (mod n)

Such number is, for example, n=561.
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POLLARD ρ-METHOD

A variety of factorization algorithms, of complexity around O(p
1
2 ) where p is the smallest

prime factor of n, is based on the following idea:

A function f is taken that ”behaves like a randomizing function” and
f (x) ≡ f (x mod p) (mod p) for any factor p of n – usually f (x) = x2 + 1

A random x0 is taken and iteration

xi+1 = f (xi ) mod n

is performed (this modulo n computation actually ”hides” modulo p computation in
the following sense: if x ′0 = x0, x ′i+1 = f (x ′i ) mod n, then x ′i = xi mod p)

Since Zp is finite, the shape of the sequence x ′i will remind the letter ρ, with a tail
and a loop. Since f is ”random”, the loop modulo n rarely synchronizes with the
loop modulo p

The loop is easy to detect by GCD-computations and it can be shown that the total

length of tail and loop is O(p
1
2 ).
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LOOP DETECTION

In order to detect the loop it is enough to perform the following computation:

a← x0; b ← x0;

repeat

a← f (a);

b ← f (f (b));

until a = b

Iteration ends if at = b2t for some t greater than the tail length and a multiple of the
loop length.
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FIRST Pollard ρ-ALGORITHM

Input: an integer n with a factor smaller than B

Complexity: O(B
1
2 ) of arithmetic operations

x0 ← random; a← x0; b ← x0;

do

a← f (a) mod n;

b ← f (f (b) mod n) mod n;

until gcd(a - b, n) 6= 1

output gcd(a - b, n)

The proof that complexity of the first Pollard factorization ρ-algorithm is given by

O(N
1
4 ) arithmetic operations is based on the following result:

Lemma Let x0 be random and f be “random” in Zp, xi+1 = f (xi ). The probability that
all elements of the sequence

x0, x1, . . . , xt

are pairwise different when t = 1 + b(2λp)
1
2 c is less than e−λ.
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SECOND Pollard ρ-ALGORITHM

Basic idea

1 Choose an easy to compute f : Zn → Zn and x0 ∈ Zn.

Example f (x) = x2 + 1

2 Keep computing xi+1 = f (xj), j = 0, 1, 2, . . . and gcd(xj − xk , n), k ≤ j . (Observe
that if xj ≡ xk mod p for a prime factor p of n, then gcd(xj − xk , n) ≤ p.)

Example n = 91, f (x) = x2 + 1, x0 = 1, x1 = 2, x2 = 5, x3 = 26

gcd(x3 − x2, n) = gcd(26− 5, 91) = 7

Remark: In the ρ-method, it is important to choose a function f in such a way that f
maps Zn into Zn in a ”random” way.

Basic question: How good is the ρ-method?

(How long we expect to have to wait before we get two values xj , xk such that
gcd(xj − xk , n) 6= 1, if n is not a prime?)
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ρ-ALGORITHM

A simplification of the basic idea: For each k compute gcd(xk − xj , n) for just one j < k.

Choose f : Zn → Zn, x0, compute xk = f (xk−1), k > 0.

If k is an (h +1)-bit integer, i.e. 2h ≤ k ≤ 2h+1, then compute gcd(xk , x2h−1 ).

Example n = 4087, f (x) = x2 + x + 1, x0 = 2

x1 = f(2) = 7,
x2 = f(7) = 57,
x3 = f(57) = 3307,
x4 = f(3307) = 2745,
x5 = f(2746) = 1343,
x6 = f(1343) = 2626,
x7 = f(2626) = 3734,

gcd(x1 − x0, n) = 1
gcd(x2 − x1, n) = gcd(57 – 7, n) = 1
gcd(x3 − x1, n) = gcd(3307 - 7, n) = 1
gcd(x4 − x3, n) = gcd(2745 - 3307, n) = 1
gcd(x5 − x3, n) = gcd(1343 - 3307, n) = 1
gcd(x6 − x3, n) = gcd(2626 - 3307, n) = 1
gcd(x7 − x3, n) = gcd(3734 - 3307, n) = 61

Disadvantage We likely will not detect the first case such that for some k0 there is a
j0 < k0 such that gcd(xk0 − xj0, n) > 1.

This is no real problem! Let k0 has h + 1 bits. Set j = 2h+1 − 1, k = j + k0 − j0. k has
(h+2) bits, gcd(xk − xj , n) > 1

k < 2h+2 = 4 · 2h ≤ 4k0.
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ρ-ALGORITHM

Theorem Let n be odd and composite and 1 < r <
√

n its factor. If f , x0 are chosen
randomly, then ρ algorithm reveals r in O( 4

√
nlog 3n) bit operations with high probability.

More precisely, there is a constant C > 0 such that for any λ > 0, the probability that
the ρ algorithm fails to find a nontrivial factor of n in C

√
λ 4
√

nlog 3n bit operations is less
than e−λ.

Proof Let C1 be a constant such that gcd(y - z, n) can be computed in C1log 3n bit
operations whenever y , z < n.

Let C2 be a constant such that f(x) mod n can be computed in C2log 2n bit operations if
x < n.

If k0 is the first index for which there exists j0 < k0 with xk0 ≡ xj0 mod r , then the
ρ-algorithm finds r in k ≤ 4k0 steps.

The total number of bit operations is bounded by → 4k0(C1log 3n + C2log 2n)

By Lemma the probability that k0 is greater than 1 +
√

2λr is less than e−λ.

If k0 ≤ 1 +
√

2λr , then the number of bit operations needed to find r is bounded by

4(1 +
√

2λr)(C1log 3n − C2log 2n) < 4(1 +
√

2λ 4
√

n)(C1log 3n + C2log 2n)

If we choose C > 4
√

2(C1 + C2), then we have that r will be found in C
√
λ 4
√

nlog 3n bit
operations – unless we made uniform choice of (f , x0) the probability of what is at most
e−λ.
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COMMENTS

Pollard ρ-method works fine for integers n with a small factor.

Next method, so called Pollard (p-1)-method, works fine for n having a prime factor p
such that all prime factors of p-1 are small.

When all prime factors of p-1 are smaller than a B, we say that p-1 is B-smooth.
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POLLARD’s p-1 algorithm

Pollard’s algorithm (to factor n given a bound b on factors).

a := 2;

for j=2 to b do a := aj mod n;

f := gcd(a− 1, n); f = gcd(2b! − 1, n)

if 1 < f < n then f is a factor of n otherwise failure

Indeed, let p be a prime divisor of n and q < b for every prime q|(p − 1).

(Hence (p − 1)|b!).

At the end of the for-loop we have

a ≡ 2b! (mod n)

and therefore

a ≡ 2b! (mod p)

By Fermat theorem 2p−1 ≡ 1 (mod p) and since (p − 1)|b! we get a ≡ 2b! ≡ 1 (mod p).
and therefore we have p|(a− 1)

Hence

p|gcd(a− 1, n)
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IMPORTANT OBSERVATIONS II

Pollard ρ-method works fine for numbers with a small factor.

The p-1 method requires that p-1 is smooth. The elliptic curve method requires only that
there are enough smooth integers near p and so at least one of randomly chosen integers
near p is smooth.

This means that the elliptic curves factorization method succeeds much more often than
p-1 method.

Fermat factorization and Quadratic Sieve method discussed later works fine if integer has
two factors of almost the same size.
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Fermat FACTORIZATION I

If n = pq, p <
√

n , then

n =

„
q + p

2

«2

−
„

q − p

2

«2

= a2 − b2

Therefore, in order to find a factor of n, we need only to investigate the values

x = a2 − n

for a =
l√

n
m

+ 1,
l√

n
m

+ 2, . . . ,
(n − 1)

2

until a perfect square is found.
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Fermat FACTORIZATION

Basic idea: Factorization is easy if one finds x, y such that n|(x2 − y 2)

Proof: If n divides (x + y)(x - y) and n does not divide neither x+y nor x-y, then one
factor of n has to divide x+y and another one x-y.

Example n = 7429 = 2272 − 2102,
x – y = 17
gcd(17, 7429) = 17

x = 227, y = 210
x + y = 437
gcd(437, 7429) = 437.

How to find such x and y?

First idea: one tries all t starting with
√

n until t2 − n is a square S2.

Second idea: One forms a system of (modular) linear equations and determines x and y
from the solutions of such a system.

number

of digits of n 50 60 70 80 90 100 110 120
number

of equations 3000 4000 7400 15000 30000 51000 120000 245000
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METHOD of QUADRATIC SIEVE to FACTORIZE an INTEGER n

Step 1 One finds numbers x such that x2 − n is small and has small factors.
Example 832−7429 = −540 = (−1)·22 ·33 ·5

872 − 7429 = 140 = 22 · 5 · 7
882 − 7429 = 315 = 32 · 5 · 7

)
relations

Step 2 One multiplies some of the relations if their product is a square.
For example

(872 − 7429)(882 − 7429) = 22 · 32 · 52 · 72 = 2102

Now

(87 · 88)2 ≡ (872 − 7429)(882 − 7429) mod 7429
2272 ≡ 2102 mod 7429

Hence 7429 divides 2272 − 2102.
Formation of equations: For the i-th relation one takes a variable λi and forms the
expression
((−1) ·22 ·33 ·5)λ1 ·(22 ·5 ·7)λ2 ·(32 ·5 ·7)λ3 = (−1)λ1 ·22λ1+2λ2 ·32λ1+2λ2 ·5λ1+λ2+λ3 ·7λ2+λ3

If this is to form a quadrat the λ1 ≡ 0 mod 2
following equations have to hold λ1 + λ2 + λ3 ≡ 0 mod 2

λ2 + λ3 ≡ 0 mod 2
λ1 = 0, λ2 = λ3 = 1
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METHOD of QUADRATIC SIEVE to FACTORIZE n

Problem How to find relations?

Using the algorithm called Quadratic sieve method.

Step 1 One chooses a set of primes that can be factors – a so-called factor basis.

One chooses an m such that m2 − n is small and considers numbers (m + u)2 − n for
−k ≤ u ≤ k for small k.

One then tries to factor all (m + u)2 − n with primes from the factor basis, from the
smallest to the largest.

u -3 -2 -1 0 1 2 3
(m + u)2 − n -540 -373 -204 -33 140 315 492
Sieve with 2 -135 -51 35 123
Sieve with 3 -5 -17 -11 35 41
Sieve with 5 -1 7 7
Sieve with 7 1 1

In order to factor a 129-digit number from the RSA challenge they used

8 424 486 relations

569 466 equations

544 939 elements in the factor base
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APPENDIX to CHAPTER 8
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HISTORY of ELLIPTIC CURVES CRYPTOGRAPHY

The use of elliptic curves in cryptography was suggested independently by Neal
Koblitz and Victor S. Miller in 1985.

Behind is a believe that the discrete logarithm of a random elliptic curve element
with respect to publically known base point is infeasible.

At first Elliptic curves over a prime finite field were used for ECC. Later also elliptic
curves ovf the fiels GF (2m) started to be used.

In 2005 the US NSA endorsed to use ECC (Elliptic curves cryptography) with
384-bit key to protect information classified as ”top secret”.

There are patents in force covering certain aspects of ECC technology.

Elliptic curves have been first used for factorization by Lenstra.

Eliptic curves played an important role in perhaps most celebrated mathematical
proof of the last hundred years - in the proof of Fermat’s last Twwwwi - due to A.
Wiles and R. Taylor.
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SECURITY of ELLIPTIC CURVE CRYPTOGRAPHY

Security of ECC depends on the difficulty of solving the discrete logarithm problem
over elliptic curves.

Two general methods of solving such a discrete logarithm problem are known.

The square root method and Silver-Pohling-Hellman (SPH) method.

SPH method factors the order of a curve into small primes and solves the discrete
logarithm problem as a combination of discrete logarithms for small numbers.

Computation time of the square root method is proportional to O(
√

en) where n is
the order of the based element of the curve.
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FACTORIZATION of a 512-BIT NUMBER

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and ”represented” 95 % of 512-bit numbers used as the key to protect electronic
commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, he
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.
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LARGE NUMBERS

Hindus named many large numbers – one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand grains
needed to fill the universe.

Large numbers with special names:

googol - 10100 googolplex - 1010100

FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits.

J. Harley factorized: 10101000

+ 1.

One factor: 316,912,650,057,350,374,175,801,344,000,001

1992 E. Crandal, Doenias proved, using a computer that F22, which has more than
million of digits, is composite (but no factor of F22 is known).

Number 10101034

was used to develop a theory of the distribution of prime numbers.
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