	CHAPTER 3: CYCLIC CODES and CHANNEL CODES			
Part III Cyclic codes	 Cyclic codes are special linear codes of large interest and importance because They posses a rich algebraic structure that can be utilized in a variety of ways. They have extremely concise specifications. They can be efficiently implemented using simple shift registers. Most of the practically very important codes are cyclic. 			
	prof. Jozef Gruska IV/054 - 3. Cyclic codes 2/30			
IMPORTANT NOTE	BASIC DEFINITION AND EXAMPLES			
In order to specify a binary code with 2^k codewords of length <i>n</i> one may need to write down 2^k	 Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever a₀, a_{n-1} ∈ C, then also a_{n-1}a₀ a_{n-2} ∈ C. 			
In order to specify a binary code with 2^k codewords of length <i>n</i> one may need to write down 2^k codewords of length <i>n</i> .	 Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever a₀, a_{n-1} ∈ C, then also a_{n-1}a₀ a_{n-2} ∈ C. Example (i) Code C = {000, 101, 011, 110} is cyclic. (ii) Hamming code Ham(3, 2): with the generator matrix 			
In order to specify a binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k	$\begin{array}{l} \text{Definition A code C is cyclic if} \\ (i) C is a linear code; \\ (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever a_0, \ldots a_{n-1} \in C, then also a_{n-1}a_0 \ldots a_{n-2} \in C.Example(i) Code C = \{000, 101, 011, 110\} is cyclic.(ii) Hamming code Ham(3, 2): with the generator matrixG = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$			
In order to specify a binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k codewords of length n .	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code. (iii) The binary linear code $\{0000, 1001, 0110, 1111\}$ is not cyclic, but it is equivalent to a cyclic code.			
In order to specify a binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k codewords of length n . In order to specify a binary cyclic code with 2^k codewords of length n it is sufficient to write down	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code. (iii) The binary linear code $\{0000, 1001, 0110, 1111\}$ is not cyclic, but it is equivalent to a cyclic code. (iv) Is Hamming code $Ham(2, 3)$ with the generator matrix $\begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}$			
In order to specify a binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k codewords of length n . In order to specify a binary cyclic code with 2^k codewords of length n it is sufficient to write down 1 codeword of length n .	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code. (iii) The binary linear code $\{0000, 1001, 0110, 1111\}$ is not cyclic, but it is equivalent to a cyclic code. (iv) Is Hamming code $Ham(2, 3)$ with the generator matrix $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$ (a) cyclic? (b) equivalent to a cyclic code?			

FREQUENCY of CYCLIC CODES EXAMPLE of a CYCLIC CODE The code with the generator matrix

Comparing with linear codes, cyclic codes are quite scarce. For example, there are 11 811

Trivial cyclic codes. For any field F and any integer $n \ge 3$ there are always the following

For some cases, for example for n = 19 and F = GF(2), the above four trivial cyclic

No-information code - code consisting of just one all-zero codeword.
 Repetition code - code consisting of codewords (a, a, ...,a) for a ∈ F.
 Single-parity-check code - code consisting of all codewords with parity 0.

No-parity code - code consisting of all codewords of length n

linear [7,3] binary codes, but only two of them are cyclic.

cyclic codes of length *n* over *F*:

codes are the only cyclic codes.

	[1	0	1	1	1	0	0
G =	0	1	0	1	1	1	0
	lo	0	1	0	1	1	1

has codewords

	$c_2 = 0101110$	
$c_3 = 0010111$	c + c = 1001011	$c_1 = 1011100$
$c_{2} + c_{3} = 0.0000000000000000000000000000000000$	$c_1 + c_3 = 1001011$	$c_1 + c_2 = 1110010$
$c_2 + c_3 = 0111001$	$c_1 + c_2 + c_3 = 1100101$	

and it is cyclic because the right shifts have the following impacts

	$c_2 ightarrow c_3,$	
$c_1 ightarrow c_2,$	$c_1 + c_2 \rightarrow c_1 + c_2 + c_3$	$c_3 \rightarrow c_1 + c_3$
$c_1+c_2\rightarrow c_2+c_3,$	$c_1 + c_3 + c_1 + c_2 + c_3,$	$c_2 + c_3 \rightarrow c_1$
	$c_1 + c_2 + c_3 \rightarrow c_1 + c_2$	

8/39

prof. Jozef Gruska	IV054 3. Cyclic codes	5/39	prof. Jozef Gruska	IV054 3. Cyclic o	odes	6/39
POLYNOMIALS over	GF(q)		RING of POLY	NOMIALS		
A codeword of a cyclic co and to each such a codew will be associated. NOTATION: $F_q[x]$ denote deg(f(x)) = the la Multiplication of polynom da Division of polynomials Fe a unique pair of polynom a(x) Example Divide $x^3 + x +$ Definition Let $f(x)$ be a fe to be congruent modulo a	ode is usually denoted $a_0a_1a_{n-1}$ word the polynomial $a_0 + a_1x + a_2x^2 + + a_{n-1}x^{n-1}$ es the set of all polynomials over $GF(q)$. argest <i>m</i> such that x^m has a non-zero coefficient hials If $f(x)$, $g(x) \in Fq[x]$, then eg(f(x)g(x)) = deg(f(x)) + deg(g(x)). or every pair of polynomials $a(x)$, $b(x) \neq 0$ in ials $q(x)$, $r(x)$ in $F_q[x]$ such that = q(x)b(x) + r(x), $deg(r(x)) < deg(b(x))$. 1 by $x^2 + x + 1$ in $F_2[x]$. Fixed polynomial in $F_q[x]$. Two polynomials $g(x)$, notation	ient in $f(x)$. n $F_q[x]$ there exists f(x), $h(x)$ are said	The set of polyno multiplication models Example Calculated (How many element Result $ F_q[x]/f(x)$ Example Addition $\frac{+ 0}{0} \frac{0}{1}$ $\frac{+ 1}{1} \frac{0}{1}$ $\frac{+ x}{1+x} \frac{1}{1+x}$ Definition A polyno $a(x), b(x) \in F_q[x]$ deg(a(x))	mials in $F_q[x]$ of degree less that dulo $f(x)$, forms a ring denoted e $(x + 1)^2$ in $F_2[x]/(x^2 + x + 1)$ $(x + 1)^2 = x^2 + 2x + 1 \equiv x^2 + 1$ its has $F_q[x]/f(x)$? $ = q^{deg(f(x))}$. and multiplication in $F_2[x]/(x^2)$ $\frac{1}{x} + \frac{x}{1+x}$ $0 + \frac{1+x}{x} + \frac{x}{1+x}$ $0 + \frac{1+x}{x} + \frac{x}{1+x}$ $0 + \frac{1+x}{x} + \frac{x}{1+x}$ $1 + \frac{x}{x} + \frac{1+x}{1+x}$ $1 + \frac{x}{1+x} + \frac{1+x}{1+x} + \frac{1+x}{1+x}$ $1 + \frac{x}{1+x} + \frac{1+x}{1+x} + \frac{1+x}{1+x}$ $1 + \frac{x}{1+x} + \frac{1+x}{1+x} + \frac{1+x}{1+x}$ $\frac{x}{1+x} + \frac{x}{1+x} + \frac{1+x}{1+x} + \frac{1+x}{1+x}$	an $deg(f(x))$, with addition d $F_q[x]/f(x)$.). It holds $1 \equiv x \pmod{x^2 + x + 1}$. $\frac{\bullet 0 1 x}{0 0 0 0}$ $\frac{\bullet 0 1 x}{1 0 1 x}$ $x 0 x 1 + 1$ be reducible if $f(x) = a(x)$ deg(b(x)) < deg(x)	on and $\frac{1+x}{0}$ $\frac{1+x}{1}$ $x(b(x), \text{ where}$ $f(x)).$
if $g(x) - h(x)$ is divisible	$g(x) \equiv h(x) \pmod{f(x)},$ by $f(x)$.		If $f(x)$ is not reduce Theorem The ring	cible, then it is said to be irreduced by $F_q[x]/f(x)$ is a field if $f(x)$ is	ucible in $F_q[x]$. irreducible in $F_q[x]$.	

prof. Jozef Gruska	IV054 3. Cyclic codes	7/39	prof. Jozef Gruska	IV054 3. Cyclic codes