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Abstract. In this paper we propose a distributed algorithm for model-checking
LTL formulas that works on a network of workstations and effectively uses the
decomposition of the formula automaton to strongly connected components to
achieve more efficient distribution of the verification problem. In particular,
we explore the possibility of performing a distributed nested depth-first search
algorithm.

1 Introduction

Many of the logic programming systems (e.g. concurrent constraint, multi-
agent) can be semantically modeled as labeled transition systems. On top to the
logic programming inherent approach to the correctness, this opens a possibil-
ity to provide additional validity arguments by using techniques developed for
verification of transition systems, like equivalence checking or model checking.
Moreover, for systems that involve synchronization, e.g. [8,4], is model checking
an appropriate and well developed technique.

In computational logic approach the system description in some logic for-
malism is at the heart of the paradigm. Therefore, it is at the hand to employ
the information gained from the formulas to model check the system. The main
purpose of the paper is to propose a particular technique that uses informa-
tion gained from the model of a formula to make the verification more efficient.
In some cases it is even possible to extract the information directly from the
formula itself.

As with all complex concurrent systems (either hardware or software), tech-
niques to avoid the state-explosion problem are required [7]. Many different
methods for alleviating the state-explosion problem have been proposed and
incorporated into verification tools. Recently, several attempts to use multipro-
cessors and networks of workstations have been undertaken.

One of the main issues in distributed explicit state model checking algo-
rithms is how to partition the state space [1,6,11] among the individual com-
puters called here network nodes. Some of the state space generation and par-
tition techniques exploit certain characteristics of the system, and hence work
well for systems possessing these characteristics, but fail to work well for sys-
tems which do not have them. In some cases it is possible to decide in advance
whether the system under consideration has the required characteristic. How-
ever, in most situations this is not the case.

Recently, there have been proposed two approaches that use additional in-
formation about the state space to make the verification process more efficient.
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proc DFS(state)
if (state,0) & visited
then visited := visited U {(state,0)}
in_stack := in_stack U {state}
foreach s € Succ(state) do

proc NDFS(state)
if (state, 1) & visited
then visited := visited U {(state, 1)}
foreach s € Succ(state) do
if s € in_stack

OdPFS(S) then Report(” Cycle”)
od; Ise
if Accepting(state) €
then NDFS(state) fi NDFS(s)
fi 1.
in_stack := in_stack \ {state} a8 od;
a fi
end end

Fig. 1. Nested DFS Algorithm

In [9] and in [3] the authors have exploited the particular structure of the veri-
fied property.

In this paper we propose a technique that uses the verified property to parti-
tion the state space in a distributed on-the-fly automata-based model checking
of LTL properties. In automata-based LTL model checking [13] the verification
problem is represented as the emptiness problem of a Biichi automaton which
turns out to be equivalent to finding a reachable accepting cycle in the under-
lying graph. The Biichi automaton is obtained as a synchronous product of two
automata: the one modeling the given system and the other one representing
the negation of the verified property (negative claim automaton). The nested
depth-first search algorithm is used to discover an accepting cycle in the product
graph. The pseudo-code of the algorithm is given in Figure 1.

We use the decomposition of the negative claim automaton into maximal
strongly connected components as a heuristic to partition the state space. The
main idea is that the partition function checks to which strongly connected
component the formula member of a state in the product automaton belongs
to and the state is placed on the same network node as the other states of the
component. The partition function is static and can be pre-computed effeciently.

2 Distributed Nested DFS Algorithm

Our aim is to distribute the standard (sequential) nested DFS algorithm on a
network of workstations that communicate via message-passing. The algorithm
was chosen not only because of its efficiency, but also because a distribution of
this algorithm seems to be a natural extension of commonly used verification
tools such as SPIN. The other reason was that we would like to improve our
two distributed algorithms for LTL model checking ([2, 5]). Both of them have
used partition functions that randomly distribute the state space among the
network nodes. The new technique presented in this paper is independent of
them, hence, it provides their natural supplementary improvement.

A “naive” approach to the distribution is obvious. The graph can be parti-
tioned into several parts among the network nodes, each network node owns a
subset of the graph (state-space), and the algorithm uses some kind of baton to
transfer the computation among the network nodes. Only one network node is
active at a time and thus no parallelism occurs. If a state belonging to another



network node is reached then the algorithm passes the baton to the owner of the
state, i.e., the computation is interrupted and the execution is transferred over
the network to another network node which continues the search and returns
the execution back after exploring the whole appropriate subgraph. The edge in
the graph which causes such transfer over network is called cross edge or cross
transition. This method merely extends the amount of available random access
memory, but no speed up can be achieved.

The other straightforward approach to the distribution of the nested DFS
algorithm is to allow simultaneous (parallel) execution of the nested DFS algo-
rithm on each network node with a randomly partitioned state-space. However,
such an approach to the model checking could lead to an incorrect result since
the depth-first order of visits of states is not preserved. The only situation in
which the order of visits does not matter is verification of safety properties (the
problem can be reduced to the reachability problem).

Our aim is to partition the graph in such a way that no accepting cycle
(passing through an accepting state) is splitted among more network nodes,
i.e., all states in the cycle belong to the same network node. Therefore, there is
no state that could be visited by two different nested searches originating from
different network nodes. The question is whether it is possible to find such a
partition of the graph effectively and whether the partition fulfills the two basic
aspects of distributed algorithm which are the locality and balance.

A standard solution is to decompose the graph into maximal strongly con-
nected components first and then to partition the graph according to this
decomposition. In addition, the decomposition can make the nested (second)
search more efficient by searching only those paths that can really form a cycle
in the graph (i.e., the paths that belong to one strongly connected component).
However, decomposing the system in advance would actually solve the verifica-
tion problem.

In the case of automata-based LTL model checking the underlying graph
(which is supposed to be searched for cycles) is a graph of a product automaton.
This product automaton is a result of a synchronization of the small negative
claim automaton with a huge system automaton (with all states considered as
accepting). The system automaton models the behaviour of the given system
and the negative claim automaton describes the behaviour which contradicts
the verified property. We can utilize the information gained from the nega-
tive claim automaton to decompose the product graph into sets of maximal
strongly connected components. This is an approximation to the solution men-
tioned above, but it still results in an effective nested search and can lead to a
reasonable distribution of the problem.

In contrast to the product automaton it is possible to find effectively all
maximal strongly connected components of the negative claim automaton and
to use them to decompose the product automaton into sets of maximal strongly
connected components. As the nested search “remains” on one network node
the level of asynchronous behaviour of the algorithm can be increased by al-
lowing execution of other nested DFS procedures on different network nodes
simultaneously.

Definition 1. Let A = (X,54,94,04,F4) and B = (X,Sp,qB,0B,FB) be
Biichi automata. The synchronous product A @ B of A and B is the au-
tomaton (X,S,q,0,F), where S = Sx x Sp,q = (qa,98),F = Fs x Fg and



(u',v") € 6((u,v),a) if and only if u' € da(u,a) and v' € ép(v,a). The au-
tomata A and B are called projections of A ® B.

We identify a Biichi automaton A with its graph representation G(A). Let
G(A) be a graph of a Biichi automaton A and let s be a state (vertex) of
this graph. Then we denote by SCC(A,s) the maximal strongly connected
component of the graph G(A) that the state s belongs to and by SCC(A) the
set of all maximal strongly connected components of the graph G(A).

For s = (sa,sB) € Sagp we put m1(s) = sa and ma(s) = sp and for
C C Sagp we define 71 (C) = Usee m1(s) and m2(C) = Uec m2(s). Finally, we
can define the function Part(s) : Sagp — 254 as

Part(s) = SCC(A ® B, ma(s))

We now state a correspondence between strongly connected components in
product graph G(A®B) and its projections G(A) and G(B). This correspondece
forms the base of our distributed version of the nested DFS algorithm.

Lemma 1. Let A, B be Biichi automata. If C € SCC(AQ® B) then w1 (C) forms
a (not necessarily mazimal) strongly connected component of A and wo(C) forms
a (not necessarily mazimal) strongly connected component of B.

Lemma 2. There is a partition on SCC(A® B) such that for every class C in
the partition holds true that w1(C) is a mazimal strongly connected component
in G(A) and 7_2(C) is a mazimal strongly connected component in G(B).

It follows immediately that for any cycle C = sy, ..., s, S0 in G(A® B) the
equality Part(sg) = Part(s1) = ... = Part(s,) = Part(sg) holds. Moreover, we
claim the following lemma.

Lemma 3. Let A, B be Biichi automata. If D in G(AQ B) is an accepting cycle
then the set w1 (D) forms an accepting cycle in G(A) and the set wo(D) forms
an accepting cycle in G(B).

According to Lemma 3 it is meaningful to characterize types of maximal
strongly connected components of a given graph. Maximal strongly connected
components can be classified in the following three categories:

Type F: (Fully Accepting) Any cycle within the component contains at least
one accepting state. (There is no non-accepting cycle within the component.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

Lemma 4.

1. Let s € Sagp is such that both SCC(A, m(s)) and SCC(B,my(s)) are fully
accepting components. Then any cycle in G(A ® B) containing the state s
is an accepting cycle.

2. Let s € Sagp is such that SCC(A,m1(s)) or SCC(B,m(s)) is a non-
accepting component. Then any cycle in G(A® B) containing the state s is
a non-accepting cycle.



Note that in the remaining cases we cannot say anything about the “type”
of the cycle.

In the following we suppose that the product automaton A ® B is a syn-
chronous product of a verified system automaton A and a negative claim au-
tomaton B.

We now present the distributed version of the nested DFS algorithm which
effectively uses the decomposition of the negative claim automaton B into max-
imal strongly connected components and exploits the type of each component.
Note, that in the Biichi automaton A all the states are accepting.

The strategy for partitioning the state space of the product automaton is
to place on the same network node all the states that belong to the same
maximal strongly connected component of the Biichi automaton B (regardless
of the component’s type). Hence, we have as many different network nodes as
strongly connected components in the graph of B. The advantage is that a
node can be considered to be of an appropriate “type”, therefore different and
specific algorithms can be used on different types of nodes.

Since no cycle is split among different network nodes we can restrict the
nested DFS part of the algorithm only to those successors of an originating
accepting state that are local on the network node. Omitting some successors
makes the nested DFS even more efficient in comparison to the sequential one.

We further modify the basic algorithm from Figure 1 in the spirit of [9].
Namely, if the currently explored state s is already in the in_stack and the
component SCC(B,ms(s)) is fully accepting then the presence of an accepting
cycle is ensured (see Lemma 4 and note the fact that all states of A are ac-
cepting). Therefore, the nested search does not have to be called in this case at
all.

The pseudo-code of the final Distributed Nested DFS algorithm (which is
running on each network node) is given in Figure 2. Each node maintains its
own local queue of states to be explored and is responsible for its own part
of the state space. When a node generates a new state s, it uses the function
Part (s) to find out whether the state belongs to the network node. If the state
does not belong to the node a message containing the state is sent to its owner.

3 Implementation and Experiments

We have implemented an experimental version of the Distributed Nested DFS
algorithm using the SPIN verifier version 3.4.10 and performed a series of pre-
liminary tests. The implementation has been done in C using our own version
of a simple message-passing layer over the standard TCP/IP. All the experi-
ments were performed without partial order reductions on a cluster of Pentium
PC Linux workstations with 256 Mbytes of RAM each, interconnected with a
100Mbps Ethernet.

Our algorithm uses a manager process running on the “master” network
node to initiate and terminate the distributed computation. The manager pro-
cess decomposes the negative claim automaton into maximal strongly connected
components using the standard Tarjan’s algorithm [12] and defines the parti-
tion of the state space. In the distributed computation all the involved network
nodes perform the same algorithm for the assigned part of the state space. The
termination detection is done using a virtual ring-based distributed algorithm.



proc Node(t)
if Part(initstate) =1
then queue[i] := {initstate}
else queueli] := 0
fi
while Not End do
if queueli] # 0
then state := Head(queue[i])
queueli] := Tail(queueli])
in_stack[i] := {state}
DFS(3, state)

od
end

proc DFS(i, state)
if (state,0) & visited][i]
then visited[i] := visited[i] U {(state,0)};
foreach s € Succ(state) do
if Part(s) # 14
then queue[Part(s)] := (queue[Part(s)], s)
else in_stack[i] := in_stack[i] U {s}
DFS(i,s)
in_stack[i] := in_stack[i] \ {s}
fi od
if Accepting(state) A Part(state) is of type P
then Nested DFS(i, state)
fi
else if state € in_stack[i] A Part(state) is of type F
then Report(” Cycle Found”)
fifi
end

proc NestedDFS (i, state)
if (state, 1) & visited
then visited := visited U {(state, 1)}
foreach s € Succ(state) do
if Part(s) = Part(state)
then if state € in_stack[i]
then Report(” Cycle Found”)
else NestedDF S(i,s)
fifi

R
=

end

Fig. 2. Distributed Nested DFS Algorithm



For our experiments we have decided to choose some of the standard ex-
amples found in the SPIN distribution (ABP), in the HSF-SPIN distribu-
tion (elevator), and one modification (elevator IT). The elevator models are
parametrized and the size of the state space is exponential in the parameter.

For each example specified as a PROMELA model we have performed four
experiments. We have run the sequential nested DFS algorithm (SPIN) to verify
the property (results are reported in the column “NDFS”) and the standard
DFS algorithm (SPIN) to generate the reachable state space (column “DFS”).
The latter is important even if the property does not hold in order to obtain the
necessary information about the size of the whole reachable state space. The
remaining columns report results of the distributed nested DFS computation
(column “D-NDFS”) and the distributed DFS (column “D-DFS”) in which
in comparison to the D-NDFS all the nested DFS parts were omitted. Each
subcolumn of columns “D-NDFS” and “D-DFS” records the results obtained
for one network node.

Every table contains for each network node the following information: the
number of wvisited states, the number of transitions, and the number of sent
messages. As messages are buffered the number of packets is also reported.
Accepting cycle indicates whether an accepting cycle was discovered on the
network node or not. Runtime gives the running time of the experiment in
seconds.

3.1 Alternating Bit Protocol

ABP is a very simple and small system. The purpose of this experiment was
to evaluate how the network communication and book-keeping slows down the
overall performance. Moreover, we were quite surprised by the perfectly bal-
anced partition of the state space among the network nodes.

Model: Alternating Bit Protocol
Parameters: none

Formula: O(p = ((Cq) V (Or)))
The number of maximal SCC: 3

| [NDFS[DFS[D-NDFS[D-DFS]

Visited states 24| 69||23] 10| 9||23|23|23
Transitions 32|| 110|[34| 10| 9||34/38|38
Messages —  —|12] 3| 3||12| 2| 2
Number of packets —  — 4| 3| 3| 4| 2| 2
Accepting cycle yes| —|no|yes|yes|—|—|—
Runtime (seconds)|| 0.02]| 0.01 1.33 1.07

3.2 Elevator

The elevator has no strategy for serving the floors (the next floor to be served
is chosen randomly). That is why hardly any formula representing the stan-
dard liveness elevator’s property holds. The model has been tested for several
values of the parameter LEVELS. For bigger values of the parameter the dis-
tributed algorithm was faster than the original sequential one in spite of the



communication overhead. However, the speedup was not the primary goal of
the distribution.

Another remarkable fact is that the proportion of visited states on the net-
work nodes has been preserved for different values of parameter. We suppose
this is caused by the natural “similarity” or “regularity” of the reachable state
spaces.

Model: Elevator

Parameter: LEVELS = 3 (the number of floors)
Formula: O(p = <C(gAT))

The number of maximal SCC: 2

| [NDFS| DFS|D-NDFS| D-DFS |
Visited states 223||218327)| 35649|167((142597| 75730
Transitions 397|(941279(1141108(210(564434|376845
Messages — —| 27817| 2(]111271 2
Number of packets — — 278| 2| 1115 2
Accepting cycle yes — no| yes — —
Runtime (seconds)| 0.06] 3.17 1.18 4.09
Model: Elevator

Parameter: LEVELS = 4 (the number of floors)
Formula: O = <(gAT))

The number of maximal SCC: 2

| [NDFS| DFS|D-NDFS| D-DFS |
Visited states 246||1542810| 48162|193| 963240 579569
Transitions 4201(/7894380(/223118|366||4462360|3432020
Messages — —]| 47791 2| 955824 2
Number of packets — — 48| 2 958 2
Accepting cycle yes — no| yes — —
Runtime (seconds)|| 0.07| 45.35 2.13 39.73

3.3 Elevator II

In contrast to the previous examples which were small and of “academic” type
this one is a little bit more realistic and hence more important. The Elevator 11
serves the floors in a fair way. This allows to formulate interesting liveness prop-
erties, e.g. that the elevator passes every floor without serving it at most once.
The decomposition of the negative claim automaton has 11 maximal strongly
connected components. In the table we present the network nodes with the
maximal and the minimal number of visited states only. Notice, that the same
formula can be verified as two standalone formulas (emergent by splitting the
formula in the top-level wedge) each represented by an automaton with 8 max-
imal strongly connected components.

Model: Elevator 11

Parameter: LEVELS = 5 (the number of floors)

Formula: O(ro = (—po U (po U (—po U (po A 0)))))A
O(r1 = (=p1 U (p1 U (=p1 U (p1 A 0)))))

The number of maximal SCC: 11



NDFS| DFS| D-NDFS| D-DFS

max|min max|min
Visited states 542324| 542324(|119773| 0]119773| 0O
Transitions 5474040(12566650(560074|  0||560074| 0
Messages — —||405429]  3||405428| 2
Number of packets — —| 1357, 3| 1356 2
Accepting cycle no — no| no — —
Runtime (seconds)| 28.35| 15.89 19.29 19.59

4 Conclusions

We have proposed a distributed algorithm for LTL model checking that runs
on a cluster of PCs. The main novelty of our approach is that we use the de-
composition of the negative claim automaton into maximal strongly connected
components to distribute the verification problem over the cluster. In addition
to the fact that we are able to decompose the task so that several instances
of the verification procedure can be performed in parallel, we are also able to
perform an improved version of the nested DFS algorithm. We stress that our
technique is compatible with other state space saving techniques, like partial
order reductions, state compression, state hashing.

We did not compare the results to any other distributed methods or tech-
niques for the LTL model checking since the newly presented approach is in-
dependent of them. On the other hand, the technique is not quite suitable for
standalone usage as the number of maximal strongly connected components of
the claim automaton can be small. Therefore, the results have to be interpreted
as a possible supplementary way of the state-space partition. The approach can
be combined with most of the previously presented techniques and methods.
Moreover, the new approach to the distribution of the algorithm is applicable
in the framework of multi-thread programming as well.

In the current implementation we assign to a network node the part corre-
sponding to a single maximal strongly connected component. There are other
possible and more sophisticated strategies for partitioning the state space which
may utilize knowledge about the component’s type. One of them places states
belonging to a component of type N randomly on network nodes which is pos-
sible because the only relevant information for these states is their reachability
and it can be analysed e.g. using the algorithm of Lerda and Sisto[10]. The com-
putation over components of type P and F' can be distributed using algorithms
presented in [2, 5].

We intend to implement and experiment other strategies for distribution of
the verification problem that use additional information gained from the verified
property. Also, we would like to continue our search for similar improvements
achieved through exploring the structure of the modeled system.

The other question is whether it is possible to find specialized algorithms
for Fully accepting and Partially accepting subclasses of the problem. We would
also like to explore the possibility of turning all type P components of negative
claim automaton into type F' components which could lead to simpler algorithm.
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