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Abstract

Rebiak, A and I Stefanekova, Separation of deterministic, nondeterministic and alternating
complexity classes, Theoretical Computer Science 88 (1991) 297-311.

In this paper nondeterministic and deterministic complexity classes as well as alternating and

nondeterministic complexity classes for one-head and multihead Turing machines are separated,
while as a complexity measure the combined complexity measure — the product of time and

space — is considered, Further hierarchies are stated within a m\mn tyne of the nnmnufqhnn maodel

according to some complexity measures.

1. Introduction

The question of the nature of the relationship between nondeterminism and
determinism, and between alternation and nondeterminism is one of the most investi-
gated questions in complexity theory. In this work we separate nondeterminism from
alternation and determinism from nondeterminism for one-head and multihead
Turing machines (TM). In doing so, combined complexity measure — the product of
time and space — is considered as a complexity measure.

Namely, for one-head TM we shall prove that

(NTM(1)-TIME x SPACE (n-log n))—(DTM(1)-TIME

(ATM(1)-TIME x SPACE (n-log n))—(NTM(1)-TIME
x SPACE(0(n?)))#0,

0304-3975/91/803.50 © 1991—Elsevier Science Publishers B.V.
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where DTM(1)-TIME x SPACE( f(n)), NTM(1)-TIME x SPACE( f(n)), ATM(1)-
TIME x SPACE( f(n)) are the families of languages recognized by one-head deter-
ministic, nondeterministic and alternating Turing machines, respectively, for which
the product of the time and space complexity is at most ¢ f(n).

The consequence of this assertion is the separation of the classes DLOG, NLOG
and ALOG with regard to the time compiexity

(NLOG-TIME(n))—(DLOG-TIME (o(n?/log n)))#(b
(ALOG-TIME(n))—(NLOG-TIME (o(n?/log n))) #0.
It follows from these facts that even if DLOG=NLOG (NLOG =ALOG), there

exists a language for which deterministic TM (nondeterministic TM) working in the
logarithmic space has to use a substantially larger time than nondeterministic (alter-
nating) TM working in the same space.

In the second part of this paper some hierarchies within one type of model are
proved. The main result obtained is the following. Let M be one of the DTM(1),
NTM(1), ATM(1) models, let a(n) be a computable function and let b(n) be a function
such that b(n)=o0(a(n)?). Then,

(M-TIME x SPACE (a2(n)))—(M-TIME x SPACE (b(n))) #§.

Again, similar results are obtained for multihead TMs.

This paper is organized as follows. Section 2 involves some basic definitions.
Hierarchies for one-head computation models are given in Section 3.1, and those for
multihead computation models in Section 3.2. Results concerning hierarchies valid
within one computation model are formulated for one-head models in Section 4.1 and
for multihead models in Section 4.2.

*
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fr]
3
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2.1. Computation models

Hierarchies for deterministic, nondeterministic and alternating computation
models are obtained by proving particular lower and upper bounds of the time—-space
complexity for specific languages. Rudiments of lower bound proof technique appear
in [6] and have thereafter, been used in [2, 3, 5] for automata and in [1, 4] for TMs.
The idea of the proof is based on the interchange of certain substrings of the input

ln 2l mr ik i e o mam s i amomd el b Aldian e
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While doing so, upper bounds are stated for a TM model but, on the other hand,

lower bounds are obtained for a r\nm{)ntahnn model which is more ot—‘lnPrn] than the

TM one. It enables us to prove the hierarchies for a wide range of computation
models. We describe this general model only informally. Exact definition can be found
in [4].
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A k-heads alternating machine AM (k) consists of an input tape and a state control
unit. Read-only heads can move on the input tape in both directions by one field in
each step. The control unit is not a finite-state one, but it can contain an infinite
number of states (internal configurations) which are divided into two disjoint sets Kg
(existentional states) and Ky (universal states) with generally used meaning as in
alternating models. One computationai step of AM(k) depends on a k-tupie of
symbols read by the heads and on the internal configuration. According to this
informaiion, AM{k) can branch iis computation on a finite number of parallel
computations changing its state and movmg its heads. We require the existence of

a onngtant A~ A on
A vuLIoLaliL Ty OU\/IJ tllul. I.ll\/ v

by this constant.

Ry adding certain bounds to alternating machines we obtain some other models
— k-heads nondeterministic machines NM (k) if Ky=0, and k-heads deterministic
machines if K, =@ and transition relation is a function.

Obviously, an alternating machine is a generalization of an alternating multitape
Turing machine in the following sense.

(1) An alternating machine can have k heads on the input tape, a Turing machine
can have only one.

(2) It has an arbitrary organization of memory, not just a linear one as a Turing
machine has.

(3) One computational step of AM(k) depends on the whole content of the
memory, while one computational step of a Turing machine depends only on a con-
stant number of symbols scanned by the heads on ihe workiapes.

The state and the content of worktapes of TM form the internal conﬁguratlon

1 ctate 1
I owalC i

w

hounded from al’\r\\lp
oCuUngced rom asoy

tarminiatis mals a Turing manhinas avra

particular cases of AM(k), NM(k) and DM (k). We shall denote them as ATM (k),
NTM(k) and DTM (k). Particular cases of k-heads machines with a finite state control

DTM(} S rol
are alternating, nondeterministic and deterministic finite automata (we shall denote
them as AFA(k), NFA(k) and DFA(k), respectively).

2.2. Complexity measures

As complexity measures we consider the measures TIME, SPACE and PARAL-
LELISM. Let A be a machine, then its space complexity S ,(n)=1og, (C 4(n)), where
C 4(n) is the number of states used in accepting computations on words of the length n.
The time complexity T,(rn) and the parallel complexity P,(n) are defined as follows.
For every accepiing compuiaiion D of ihe machine A lei 7T,4(D) be equal io ihe
maximal number of steps performed in the sequential computatlons of D. Then,

T faN—=mav T (DD iqc an accanting comnntats of A4 on an inna + af la
L AU )T AR | £ g\ o 15 anl aClllpiilig uvluyukuuuu 01 A On an llAlJul Oi 1v1|5t11 nJ

Further, let P,(D) be the number of universal configurations in the computation D.
Then we define P4(n)=max { P,(D)| D is an accepting computation of 4 on an input
of length n} + 1. Let the values of T;(n), S,(n) and P,(n) be undefined if there is no
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word of length n accepted by A. For nondeterministic and deterministic computations
the parallel complexity is equal to 1.

Besides these measures, we consider combined complexity measures TIME-
SPACE - PARALLELISM for alternating models and TIME : SPACE for the other
ones. Let us define M-TIME x SPACE x PAR (f(n)) as a family of languages recog-
nized by those devices 4 of type M for which T,(n)S(n)P 4(n)=0(f(n)) hoids. The
families M-TIME x SPACE (f(n)), M-TIME x PAR (f(n)) and M-TIME (f(n)) are
defined in the same way.

The symbols O and Q have the following meaning. Let N’ be

{
\

a f he functione 4N 2N £ N’ N Then finl=0)
o giiv—= J oIy N Jun =9

YsJ FRS S 8L L0345 1V, LIV,

{
4 A
JaeR*,AmeN:VneN', nzm, f(n)<a-g(n) (f(n)=a-g(n)).

2.3. Additional notions

For a function #: N— N such that h(n)<n and any functions f: N->N, g: N—N let
us define the concept of a computable function: The function h(n) is called
(f(n), g(n))-computable by a computation model M iff there is a machine A4 of type
M such that:

(1) every computation of A stops in an accepting configuration K;

(2) in the configuration K the first reading head points to the h(n)th field on the
input tape;

() Ta(n)=0(f(n)), Sa(n)=0(g(n)).

The computation wiil often be considered as a tree with vertices — the configura-
tions. For the description of the computation on a word we shall use the notion of
a prominent configuration, which is dependent on a particular language. If ¥ is a set
of prominent configurations, let us define a pattern of computation D regarding V as

a tras IT with thaca fallawing nranartiac:
a ire o wiln uilse iouldwing properds:

(1) A source of U is a source of D.

(2) The other vertices of U/ are those ones from D which belong to V.

(3) Vertices u and v are joined by an edge in U iff there exists a path from u to v in
the computation D involving no prominent configuration.

The lower and upper bounds are proved in this paper for the following languages

over the alphabet {0,1,2}:
L={x2"x|xe{0,1}™, m>1},
PL={x,2"x,|x;,x,€{0,1}", m>1, x; #x,}.

g be functions £, g : N> N; f(n)=| n1/?

S(f, a)= {xlzg(n)xzzg(n) 29(”))6“,”2”("””") | xie{o’ 1}g(n)’

nyg(n)
v B

™

®
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where

y @xl_(('xl] 6-) X214 @ (—er1) (xlm®x2m® e @xrm))s

Xi= X1 Xz o X fOr 1<i<y,
nQ L N __ y, Agin) ~aln) ANaln) '\g(n)+z{n)| . =N 1) a(n)
rof ,y}—lxlé Z ..z Xfny £ Xi€EQY, Iy N
fin
n=l, ®x;#09", z(n)=n 2f(n)g(n)}
i=1

In this part we specify the hierarchies for deterministic, nondeterministic and
alternating one-head (Turing) machines. As a special case of this hierarchy we obtain
a hierarchy for the families DLOG, NLOG and ALOG.

In the first place the relation between deterministic and nondeterministic devices is
formulated. For the language PL the lower bound Q(n?) of TIME - SPACE complex-
ity on DM(1) machines and the upper bound O(n-logn) on NTM(1) are proved.

Proof. Let 4 be a DM(1), L(A)=PL and let 7,(n)S,(n)=Q(n?) be not true, ie.
VaeR™*, YmeN: As=m, T,(s)S4(s)<as?. We show that there is a word from PL
rejected by A. Let us consider the set L,={x2"x|xe{0,1}", 3m=n} for each
n divisible by 3. For the rejecting computation D, on a word ye L, (it is the only one)
we define a prominent configuration as follows:

(1) The initial configuration is a prominent configuration.

(2) The configuration K, in which the reading head reads the first or the last symbol
2 from the subword 27, is a prominent configuration iff the reading head had run over
the whole subword 2™ between the immediately preceding prominent configuration
and the conﬁgumuon K.

Let us denote as V a set of prominent configurations reached by A4 during the

computation Dyin time < T {n)- If the length of D is greate

because D, is a rejecting computation), we add to the set V the first prominent
configuration reached by 4 during D, in time > T 4(n) (if such exists). As the pattern of
the word y we consider the pattern of the computation D, regarding V.

v thaon T (n)lit g nacaihla
T uiall £ 417y iS pOSsSsioci
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Proposition 3.2. For every neN the number of different patterns of words from L, is
limited by 28Ta(mSatmin

Proof of Proposition 3.2. For the cardinality of V' it holds that |V |<3T,(n)/n since
between two prominent configurations A has to do at least m steps. The pattern of the
computation D, invoives at most | V|4 [ prominent configurations. The number of
prominent configurations can be limited by the number 254 _If any other configura-
tion is used in the rejecting computation, the computation can be stopped. Thus, the
number of all patterns of words from L, is 254" 4 (2542 ... 4 (254(m)(BTa(mim+1)
28T4m)Satmyn

—_

Proof of Lemma 3.1 (conclusion). The number of words from I, is 2"3. According
to the assumption, there exists a number s such that S,(s)7,(s)<s?/24, ie.
28Tu(9)54()s 23 Hence, there are two different words v=x2%3x and v’ =x'2%3x’
from L, having the same pattern P. We show that there is a word from PL rejected by
A. We distinguish two cases:

(1) The last prominent configuration K of the pattern P is reached in time < 74(s)
by at least one of D,, D, (for instance by D,). Let the position of the head in K be
s/3+1. Let us consider the computation on a word w=x2%3x". According to the
determinism of the machine A, the following assertion is valid. All prominent config-
urations of the pattern P are reached in D,, by 4 in the same order. Further, et K, and
K, be two prominent configurations of the pattern joined by an edge in P. Let the
position of the head in the configuration K, be s/3+ 1 {(or 1 if K is initialj {25/3], and
in the configuration K,, 2s/3 [s/3+ 1]. Then, the part of D,, between K, and K, is
identical with the part D, [ D, ] between K, and K,. The computation D, after
reaching the last prominent configuration K of P is identical with D, after K (in this
part the symbols on the right-hand side from 23 are not being read). Thus, the word
wePL is rejected by A (v was rejected). If the position of the head is 2s/3 in K, the word
w' =x'2%3x from PL is rejected by A.

(2) The last prominent configuration K of the pattern P is reached by both
computations D, and D, in time > T,(s). Let us consider deterministic computations
on the words w=x2%3x" and w'= x'2%3 x. The assertion from the point (1) is valid for
them too. Besides, T4(D,,(K))> T,(s) or T4(D,, (K))>T,(s), where T,(D,(K)) is the
time in which the computation D, reached K,

2T4(s) < T4(Dy(K)) + Ta(Dy(K)) = T4 (D, (K)) + T4 (D, (K)).

Let T,(D,(K))> T ,(s). Then, even if the word w were accepted by A, the time greater

than 7 .(¢) would he nececcarv for ite acce
‘‘‘‘‘‘ £ 418) WoUIQ °C necessary Ior s acce

Lemma 3.3. There is a NTM(1) machine A such that L(A)=PL and T (n)S.(n)=
O(n-logn).
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Proof. In the first phase of its computation, A verifies whether an input word
ye{0,1}™-2m-{0,1}™ for some meN. It takes time O(n) because the binary counting
up to m, which is equivalent to the searching of binary tree with m vertices, can be
performed within O(n) steps and space O(logn). In the second phase, A decides
nondeterministically which couple of the corresponding symbols is not equal. Time
O(n) and space O(iogn) are sufficient for 4 to verify its decision.

The lower hound was proved by Hromkovié in [4].

Lemma 3.5. There is an ATM(1) machine A such that L(A)=L and T (n)S4(n)=
O(n-logn).

Proof. Let us informally describe the computation of A4:

(1) the machine A verifies whether an input word ye{0,1}™-2™-{0,1}™ for some
meN;
(2) the machine A sets its head on the first symbol of the word y;
(3) the machine 4 branches the computation on two paraiiei computations;
(4) in the first one A moves the head H by one symbol to the right. If H reads
11

PP P S. SU P il A e o

symbol 2, then A goes into an accepting state, else it proceeds by point 3;

-L

10
(5) in the second of the two parallel computations 4 remembers the rea
and moves fl'\n hnor] u kv ’)m c-vm]'\n]c tn Hr\n riaht If tha evmkr\] | 100t rnad is e

(=3 8100 84 ViS5 WU UV rigia. Ax viiv (S e B <]

the remembered one, then A goes into an accepting state.
Clearly, the time complexity of A is not greater than O(n) and space O(logn).

]

Theorem 3.6.
(NM(1)-TIME x SPACE (n-logn))—(DM(1)-TIME

x SPACE(o(n?)))#0,
FARMAIN TIAMMDE CCDAMO Y cn . 1A~ 22\ IMNTRA /1Y TTRAT?
\nlvl\l}' 111lVIL, A D1 1‘\\,]_4\! lUsIl)}_{lVIVlkl}'l LIVI L
x SPACE(0(n?2)))#6.

Theorem 3.7.
(NTM(1)-TIME x SPACE(n-logn))—(DTM(1)-TIME
x SPACE(o(n?)))#0,
(ATM(1)-TIME x SPACE(n-logn))—(NTM(1)-TIME
x SPACE(o(n?))) #§.
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Proofs follow from the previous assertions.
For Turing machines working in the logarithmic space, we have the following
consequence from Theorem 3.7.

Consequence 3.8.
(NLOG-TIME(n))—(DLOG-TIME (o(n?/logn)))#9,
(ALOG-TIME((n))—(NLOG-TIME(o(n?/logn)))#.

3.2. Hierarchies for muitinead models

The hierarchies for multihead models are proved in the same way as for one-head
models. To separate nondeterminism and determinism let us consider the language
PS(f.g).

Lemma 3.9. For arbitrary natural number k>1, let A be a DM(k) such that
L(A)Y=PS(f, g). Then, T4(n)S(n)=Q(n*>?/logn).

Proof. Let A be a DM(k), L(A)=PS(f, g) and let T4(n)S(n)=£2(n>*/logn) be not
true, i.e. VaeR™*, YmeN: Is=m T, (s)S4(s)<a-s*?*/logs. From this follows the

has the form 96- k3 T,(s)S4(s)<s-g(s)/logs. We show that there is a word from
PS(f, g) rejected by A. Let us consider the set S,(f, g)—{weS{/, g)|Iw|=s}. For the
rejecting computation D, on a word yeS,(f, g) (it is the only one) let us say that
A compares a pair of subwerds (x;, x;) in D, iff D involves a configuration in which
one of the heads on the input tape points to the subword x; and some other one to the
subword x;. Below, every configuration in which one of the reading heads points to
the first or to the last symbol of the subword x, after this head had run over the whole
subword 29, is denoted as a v-prominent configuration for ve{l,...,f(s)}. Every
v-prominent configuration is a prominent configruation. Let us denote ¥ as the set of
prominent configurations reached by A during the computation D, in time < 7 4(n). If
the length of D, is greater than T,(n), we add to the set V' the first prominent

configuration reached by A during D, in time > T 4(n) (if such exists).

Proposition 3.10. For the rejecting computation D, on a word yeS;(f, g) there is a pair
of indices (i, ), 1 <i<j<f(s) such that
(@) the subwords x; and x; are not compared in D,, and
AN Y7 ot ia s ALLT { N n 2 aesimsnndiansat  anande masee
\U) ¥V Ccomprided Ut modt 1ORI f\D )/ t-pronunent coryigyuru

J-prominent configurations.

Proof of Proposition 3.10. The cardinality of the set V is at most (kT ,4(s)/g(s))
+1<2kT,(s)/g(s). There are, therefore, at least f(s)/2 subwords x, of the word
y such that D, involves at most 4kT4(s)/g(s) f(s) h-prominent configurations. The
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of the computation which is between the two prominent configurations at most k2
pairs of subwords are compared. Owing to the cardinality of the set V, at most
2k3 T 4(s)/g(s) pairs of subwords of the word y can be compared during D, within time
T 4(s). According to the assumption about s,

96L3T
i.e. 2k3 T 4(s)/g(s)<s/48. Thus, there are two subwords among the considered f(s)/2
ones which are not compared in D,. [

Proof of Lemma 3.9. (continued). The number of words in S,(f, g) is 299U &~ 1)
According to Proposition 3.10 there are two natural numbers hand r, 1 <h<r<f(s)
such that for the pair (&, r) conditions (a) and (b) in Proposition 3.10 hoid for at ieast
2912 (5) computations on words from S,(f, g). From among these words
20O =1 (£ 2( )20 =20 - 296)f2( 5y words can be chosen such that they
differ only in the subwords x, and x,. Let V’ involve only h- promment and

nf ratinnmg fram 1% Ac tha Af tha
Tauons 1ol < AD uiv jana st

CL
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Proposition 3.11. The number of different patterns of words form S,(f, g) is limited by
e(s), where

e(s)=2(5‘4(s)+k'logzs)'32kT,ﬂs)/s'

Proof. The number of prominent configurations can be limited by the number
L AQ AlQ lc\-‘-l{ln«v\

ske2%a =218 8297 and the cardinality of ' by the number 32ZkT,(s)/s
(Proposition 3.10). [J

Proof of Lemma 3.9. (conclusion). It holds that

2(SA(sJ+k-logzs)-32kTA(s)/s ,fZ(s)<2(3-32k3 T 4(5)S 4(s) log2 s)/s<2g(s)
9

ie. e(s)< 2“9/ 2(s). Hence, there are two words

v=x,29%_ x,

1
[y

290y, o x. 29y x.
fp oo X 1 29U X
0'=x1299 o 299 X, 29000 L x g 2990126

from S( f, g) with the following properties:

{1\ L and 2 L.
(1) UpF Uy anag u,ru,,

(2) v and v’ have the same pattern P;
(3) the couple of the subwords (u;, 1) of v and
are not compared in D, and D,..
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We show that there is a word from PS( f, g) rejected by A. We distinguish two cases in
a similar way as in the proof of Lemma 3.1.

Case [I: The last prominent configuration K of the pattern P is reached in time
< T4(s) by at least one of D, D, (for instance D,). At most one of the subwords u,, u,
(for instance u,) is being read in K. Then, the computation on the word

P Y T ) ~ ~als).,. . 'm(s) l'\a(s) - A a(s)+z(s)
W—Aj 4 i Ap—1 & Uy oo Ap—1 &7 “Wf(s)A
is identical with D after reaching K. Thus, the word wePS(f g)is rejected by 4. In the

other cases it is analogous.

Case 2: The last prominent configuration K of the pattern P is reached by both D,
and D, in time > T'(s). Let us consider the deterministic computation on words w and
w’ given by

w=x,299 L x, 1 29Wup X, 2900, L x ) 2900 TEO),

T(D,(K))>T(s)or T(D,, (K))>T(s). Let T(D,(K))>T(s). Then, even if the word
wePS( f, g) were accepted by A, a time greater than 7(s) would be necessary for its
acceptance.

which sum modulo 2 of Wthh f (n)—tuple of correspondmg symbols is equal to 1. The
verification of this decision takes linear time.

To separate nondeterminism and alternation, once again, we utilize the lower
bound for language S(f, g) proved in [4].

Lemma 3.13. For arbitrary natural number k>1, let A be an AM(k) such that
L(A)=S5(f,g). Then, T(n)S4(n)P 4(n)=Q(n*?/logn).

Lemma 3.14. There is an AFA(k) A such that L(A)=S(f, g) and T 4(n)=0(n).

Proof. Let us informally describe the computation of the machine A4:
(1) A verifies whether the lengths of all subwords x;, 2Jare g(n) and their number is

f(n).
(2) A sets its head H on the first symbol of the input word.
(3) A4 branches the computation on two parallel computations.
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(4) In the first one A moves the head H by one symbol to the right. If H reads
symbol 2, then A goes into an accepting state, else it proceeds by point (3).

(5) In the second of the two parallel computations 4 remembers the read symbol
and moves the head H by 2 g(n) symbols to the right. The machine 4 adds the symbol
just read to the remembered one. This is repeated f(n) times. If the remembered
symbol is equai to 0, A goes into an accepting state. [J

(NTM (k)-TIME x SPACE(n))— (DTM(k)-TIME
x SPACE(o(n*?/logn)))#9,
(ATM (k)-TIME x SPACE(n))— (DTM (k) — TIME

The same hierarchy holds for the machines AM(k), NM(k) and DM(k). As
a consequence of the above assertions, results related to the finite multihead automata
are obtained.

Theorem 3.16.
(NFA(k)-TIME(n))—(DFA(k)-TIME(o(n*?/logn)))#0,
(AFA(k)-TIME (n))—(NFA(k)-TIME(o(n>?/iog n)))¢¢.

The language S( f, g) is acceptable by a deterministic Turing machine in linear time
and by a deterministic multihead finite automaton in time O(n32). This, together with
Lemma 3.13, enables us to compare the computational power of deterministic and
alternating devices.

Theorem 3.17.
(DTM(1)-TIME(n)) —(AM(k)-TIME x SPACE
x PAR(o(n3?/logn)))#@,
(DFA (k)-TIME(n%?)) — (AM(k)-TIME x SPACE

x PAR(0(n*?/iogn))) #0.

4. Hierarchies referred to one computational model

Whereas in the preceding Section it was shown that nondeterministic (alternating)
Turing machines with a certain bound on TIME:SPACE complexity are more
powerful than the deterministic (nondeterministic) ones with greater bounds on
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TIME - SPACE complexity, in this part we shall demonstrate a distinction between
the complexity power of one type of a model with different bounds on TIME : SPACE
complexity (TIME+:SPACE-PARALLELISM complexity for alternating models).
Again, at first we consider one-head models and in the second part the multihead
ones.

The hierarchies are obtained by proving lower bounds on the computation com-
plexity of some languages recognized on AM(1) (AM (k)) machines and upper bounds

fiie PR B
oIl Ul lVl{l) [UFI‘\[K}} l(lC samme lCLIllllun as lll lllC p[cuculug beLlUll lb ubCU

4.1. One-head models

Let us consider a language L(a)={x2*™ xu|xe{0, 1}*™, ue{0, 1}~ 3™} for any
function a(n) a: N—N, 3a(n)<n.

Lemma 4.1. Let A be an AM(1) such that L(A)=L(a). Then, T n)S,(n)P4(n)=
Vo YW WA
sziai) ).

Proof, Let us sun
Proof, Tet us sup )
equality T,(n)S4(n )PA(n) Q(a(n) )1s not true. Let us consxder a set L}(a) consist-
ing of all words from L(a) of the length n having the same postfix u. For every
accepting computation we define a prominent configuration in such a way as in the
proof of Lemma 3.1. For a word ye L;(a)let D, be a fixed accepting computation on y.
Let V be a set of prominent configurations reached by A during the computation D,
As the pattern of the word y, we consider the pattern of the computation D), regarding
V. Then, the number of different patterns of words from L;/(a) can be limited (in the
same way as in Proposition 3.2) by the number

e(n)=24 SAMTamPamjam),

where d is the constant which bounds the branching from the universal states of
the machine A. According to the assumption, there is an seN for which
e(s)<2%®'=|L¥a)|. From this inequality follows the existence of two words
v=x2%%) xy and v'=x"2°®x"u from L¥(a) having the same pattern P. Hence, the
word x2%)x'u¢ L(a) is accepted, too. [J

Lemma 4.2. Let a be a function, a: N— N, where 3-a(n) <n and a(n) is (a(n), a(n))-
computable by DTM(1). Then, there exists a DTM(1) machine A recognizing the

language L{a) such ihai T 4(n)S{nj=0{a(n?)).

ase o e machine 4 computes the value 3-a(n)
and the reading head points to the 3 a(n) and the reading head points to the 3- a(n)th
symbol of the input word. In the second phase 4 moves the input head to the left and
copies the read symbols on the working tape until the input head reads the symbol 2.

Praof In the firet hacp of its com ntation th,
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Then, A compares the contents of the working tape with the prefix of the input word.
The second phase takes time 3-a(n) and space a(n). [

As the consequence of Lemmas 4.1. and 4.2. the following assertions hold.

Theorem 4.3. Let M be any device from DTM (1), NTM(i), ATM(1), DM (i), NM (i),
and AM(1). Let a(n), b(n) be functions a,b: N—>N,3-a(n)<n, 3-b(n)<n, a(n)is (a(n),

a{njj-compuiable by M and biny=o{a{n}’). Then,
(M-TIME x SPACE x PAR (a(n)?)))
—(M-TIME x SPACE x PAR(b(n))) #0.

4.2. Multihead models

Once again, we state the lower and the upper bounds of TIME - SPACE - PARAL-
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z(a(n))=a(n)—zf(a(n))g(a(n))}
for any function a: N—N, a(n)<n.

Lemma 4.4. Let A be an AM(k), keN, k> 1 such that L(A)=S(f, g) (a). Then,
T4(n)S 4(n)P 4(n)=0Q(a(n)*?/iogn). (1)
Prooi. Let us suppose that there is such an AM (k) 4 that L(A4)=S(f, g) (a) and the
equality (1) does not hold, i.e.
YeeR™, VmeN Is=m: T4(s)S(s)P4(s)<ca(s)*?*/logs.
From this it foiiows that

T4(8)Sa(s)Pa(s)<ca(s) 4- | | a(s)'? ]/2 |/logs.

For ¢ =1/(4-96-k?),

96k T4(5)S4(s)P4(s)<a(s)g(a(s))/logs.
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Let us consider a set S;(f, g)(a) consisting of all words from S(f; g)(a) of the length
s having the same postfix u. For every accepting computation we define a prominent
configuration in such a way as in the proof of Lemma 3.9. For a word yeS¥(f, g) (a)let
D, be an accepting computation on y. Let V' be a set of prominent configurations
reached by A during D,. the following assertion can be proved in the same way as in
the Proposition 3.10. [J

Proposition 4.5. For every accepring computation D, on the word yeS( f, g) (a) there is
a pair of indices i, j, | <i<j<f(a(s)), such that

(o) tlan corliiivnudo sro an msen sant anseasmvsaad foa N

\aj Lrne suuwurus Aj, .k] i nuL compureyu it Uy,

(b) D, involves at most 16dkT 4(s) P4(s)/a(s) i-prominent and 16dkT(s)P4(s)/a(s)

l-nrnmlnﬂnt /-nnﬁnurnNnnc
A rUrgT

For every yeS;(f, g)(a)let D, be a fixed accepting computation on y. The cardinal-
ity of the set S¥(f, g) (a) is

c(s)__zzg(a(sn(f(a(sn*1)'

It follows then from Proposition 4.5 that there are two natural numbers h, r
1<h<r< f(n(ﬂ\ such that the conditions (a) and (h\ hold for the nmr (h, r)in at least

¢(s)/f(a(s))* computations D, on words from S¥(f, g) (a). Further, let the pattern of
the word y be the pattern of the fixed accepting computation D, regarding the
r-prominent and h-prominent configurations from V. The number of different pat-

terns of words from S(f, g) (a) is limited by

e(s)= 2(Sa(s)+k-logs)32dkT 4 (s)P4(s)/a(s)

The existence of the word, which does not helong to S(f, g) (a) but is accepted by the

machine A, follows from these facts in such a way as in the proof of Lemma 3.9.

Lemma 4.6. Let a be a function a: N—N, a(n)<n; a(n) is (a(n)>2, 1)-computable by
DFA(k). Then, there exists a DFA (k) machine A recognizing the language S(f, g) (a)
such that T (n)=0(a(n)>?).

Proof. In the first phase the values a(n), g(a(n)), f(a(n)) are computed by A. Then,
A checks whether the lengths of all subwords x;, 27, are g(a(n)) and their number is
f(a(n)). Finaily, 4 checks whether the sum moduio 2 is zero. O

A n mcvancneasaaa s ~F
no a bUllBCL‘ubllbb Ul

Thearem 477 Lot M be any device from DFA(k), NFA(k), AFA(k), DTM(k),

NTM(k), ATM(k), DM(k), NM(k), AM(k). Let a(n), b(n) be functions a,b: N—N,
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a(n)<n, b(n)<n; a(n) is (a(n)*?, 1)-computable by M, b(n)=o0(a(n)*?/logn). Then,
(M-TIME x SPACE x PAR (a(n)*?))
—(M-TIME x SPACE x PAR(b(n)))#§.
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