
SOFSEM’01, Milovy, Czech Republic - final version

How to Employ Reverse Searh in DistributedSingle Soure Shortest Paths?Lubo�s Brim, Ivana �Cern�a, Pavel Kr��al, and Radek Pel�anekDepartment of Computer Siene, Faulty of InformatisMasaryk University Brno, Czeh Republifbrim,erna,xkral,xpelanekg�fi.muni.zAbstrat. A distributed algorithm for the single soure shortest pathproblem for direted graphs with arbitrary edge lengths is proposed.The new algorithm is based on relaxations and uses reverse searh forinspeting edges and thus avoids using any additional data strutures.At the same time the algorithm uses a novel way to reognize a reahablenegative-length yle in the graph whih failitates the salability of thealgorithm.1 IntrodutionThe single soure shortest paths problem is a key omponent of many appli-ations and lots of e�etive sequential algorithms are proposed for its solution(for an exellent survey see [3℄). However, in many appliations graphs are toomassive to �t ompletely inside the omputer's internal memory. The resultinginput/output ommuniation between fast internal memory and slower externalmemory (suh as disks) an be a major performane bottlenek.In partiular, in LTL model heking appliation (see Setion 6) the graph istypially extremely large. In order to optimize the spae omplexity of the om-putation the graph is generated on-the-y. Suessors of a vertex are determineddynamially and onsequently there is no need to store any information aboutedges permanently. Therefore neither the tehniques used in external memoryalgorithms (we do not know any properties of the examined graph in advane)nor the parallel algorithms based on adjaeny matrix graph representation areappliable.The approah we have been looking upon is to inrease the omputationalpower (espeially the amount of randomly aessed memory) by building a pow-erful parallel omputer as a network of heap workstations with disjoint memorywhih ommuniate via message passing.With respet to the intended appliation even in the distributed environmentthe spae requirements are the main limiting fators. Therefore we have beenlooking for a distributed algorithm ompatible with other spae-saving teh-niques (e.g. on-the-y tehnique or partial order tehnique). Our distributed? This work has been partially supported by the Grant Ageny of Czeh Republigrant No. 201/00/1023.



SOFSEM’01, Milovy, Czech Republic - final version

algorithm is therefore based on the relaxation of graph's edges [5℄. Distributedrelaxation-based algorithms are known only for speial settings of single soureshortest paths problem. For general digraphs with non-negative edge lengthsparallel algorithms are presented in [6, 7, 9℄. For speial ases of graphs, like pla-nar digraphs [10℄, graphs with separator deomposition [4℄ or graphs with smalltree-width [2℄, more eÆient algorithms are known. Yet none of these algorithmsis appliable to general digraphs with potential negative length yle.The most notable features of our proposed distributed algorithm are reversesearh and walk to root approahes. The reverse searh method is known to bean exeedingly spae eÆient tehnique [1, 8℄. Data strutures of the proposedalgorithm an be naturally used by the reverse searh and it is possible to reduethe memory requirements whih would be otherwise indued by strutures usedfor traversing graph (suh as a queue or a stak). This ould save up to one thirdof memory whih is pratially signi�ant.Walk to root is a strategy how to detet the presene of a negative lengthyle in the input graph. The yle is looked for in the graph of parent pointersmaintained by the method. The parent graph yles, however, an appear anddisappear. The aim is to detet a yle as soon as possible and at the sametime not to inrease the time omplexity of underlying relaxation algorithmsigni�antly. To that end we introdue a solution whih allows to amortize thetime omplexity of yle detetion over the omplexity of relaxation.2 Problem De�nition and General MethodLet (G; s; l) be a given triple, where G = (V;E) is a direted graph, l : E ! R isa length funtion mapping edges to real-valued lengths and s 2 V is the sourevertex. We denote n =j V j and m =j E j. The length l(p) of the path p is thesum of the lengths of its onstituent edges. We de�ne the shortest path lengthfrom s to v byÆ(s; v) = �minfl(p) j p is a path from s to vg if there is suh a path1 otherwiseA shortest path from vertex s to vertex v is then de�ned as any path p withlength l(p) = Æ(s; v). If the graph G ontains no negative length yles (negativeyles) reahable from soure vertex s, then for all v 2 V the shortest path lengthremains well-de�ned and the graph is alled feasible. The single soure shortestpaths (SSSP) problem is to determine whether the given graph is feasible and ifso to ompute Æ(s; v) for all v 2 V . For purposes of our algorithm we supposethat some linear ordering on verties is given.The general method for solving the SSSP problem is the relaxation method[3, 5℄. For every vertex v the method maintains its distane label d(v) and parentvertex p(v). The subgraph Gp of G indued by edges (p(v); v) for all v suh thatp(v) 6= nil is alled the parent graph. The method starts by setting d(s) = 0 andp(s) = nil. At every step the method selets an edge (v; u) and relaxes it whih



SOFSEM’01, Milovy, Czech Republic - final version

means that if d(u) > d(v) + l(v; u) then it sets d(u) to d(v) + l(v; u) and setsp(u) to v.If no d(v) an be improved by any relaxation then d(v) = Æ(s; v) for allv 2 V and Gp determines the shortest paths. Di�erent strategies for seleting anedge to be relaxed lead to di�erent algorithms. For graphs where negative ylesould exist the relaxation method must be modi�ed to reognize the unfeasibilityof the graph. As in the ase of relaxation various strategies are used to detetnegative yles [3℄. However, not all of them are suitable for our purposes {they are either unompetitive (as for example time-out strategy) or they are notsuitable for distribution (suh as the admissible graph searh whih uses hardlyparallelizable DFS or level-based strategy whih employs global data strutures).For our version of distributed SSSP we have used the walk to root strategy.The sequential walk to root strategy an be desribed as follows. Suppose therelaxation operation applies to an edge (v; u) (i.e. d(u) > d(v) + l(v; u)) and theparent graph Gp is ayli. This operation reates a yle in Gp if and only if u isan anestor of v in the urrent parent graph. This an be deteted by followingthe parent pointers from v to s. If the vertex u lies on this path then there is anegative yle; otherwise the relaxation operation does not reate a yle.The walk to root method gives immediate yle detetion and an be easilyombined with the relaxation method. However, sine the path to the root anbe long, it inreases the ost of applying the relaxation operation to an edgeto O(n). We an use amortization to pay the ost of heking Gp for yles.Sine the ost of suh a searh is O(n), the searh is performed only after theunderlying shortest paths algorithm performs 
(n) work. The running time isthus inreased only by a onstant fator. However, to preserve the orretnessthe behavior of walk to root has to be signi�antly modi�ed. The amortizationis used in the distributed algorithm and is desribed in detail in Setion 5.3 Reverse SearhReverse searh is originally a tehnique for generating large sets of disrete ob-jets [1, 8℄. Reverse searh an be viewed as a depth-�rst graph traversal thatrequires neither stak nor node marks to be stored expliitly { all neessary infor-mation an be reomputed. Suh reomputations are naturally time-onsuming,but when traversing extremely large graphs, the atual problem is not the timebut the memory requirements.In its basi form the reverse searh an be viewed as the traversal of a span-ning tree, alled the reverse searh tree. We are given a loal searh funtion fand an optimum vertex v�. For every vertex v, repeated appliation of f has togenerate a path from v to v�. The set of these paths de�nes the reverse searhtree with the root v�. A reverse searh is initiated at v� and only edges of thereverse searh tree are traversed.In the ontext of the SSSP problem we want to traverse the graph G. Theparent graph Gp orresponds to the reverse searh tree. The optimum vertexv� orresponds to the soure vertex s and the loal searh funtion f to the



SOFSEM’01, Milovy, Czech Republic - final version

parent funtion p. The orrespondene is not exat sine p(v) an hange duringthe omputation whereas original searh funtion is �xed. Consequently someverties an be visited more than one. This is in fat the desired behavior forour appliation. Moreover, if there is a negative yle in the graph G then ayle in Gp will our and Gp will not be a spanning tree. In suh a situationwe are not interested in the shortest distanes and the way in whih the graphis traversed is not important anymore. We just need to detet suh a situationand this is delegated to the yle detetion strategy.pro Reverse searh (s)p(s) := ?;v := s;while v 6= ? doDo something (v);u := Get suessor (v ;NULL);while u does not exist dolast := v ; v := p(v);u := Get suessor (v ; last);odv := u;odend
pro Call reursively (v)Do something (v);for eah edge (v ;w) 2 E doif p(w) = v thenCall reursively (w)�odendFig. 1. Demonstration of the reverse searhFig. 1 demonstrates the use of the reverse searh within our algorithm.Both proedures Call reursively(v) and Reverse searh(v) traverse the subtreeof v in the same manner and perform some operation on its hildren. ButCall reursively uses a stak whereas Reverse searh uses the parent edges forthe traversal. The funtion Get suessor(v, w) returns the �rst suessor u of vwhih is greater than w with respet to the ordering on the verties and p(u) = v.If no suh suessor exists an appropriate announement is returned.4 Sequential SSSP Algorithm with Reverse SearhWe present the sequential algorithm (Fig. 2) and prove its orretness and om-plexity �rst. This algorithm forms the base of the distributed algorithm presentedin the subsequent setion.The Trae proedure visits verties in the graph (we say that a vertex isvisited if it is the value of the variable v). The proedure terminates either whena negative yle is deteted or when the traversal of the graph is ompleted.The RGS funtion ombines the relaxation of an edge as introdued in Se-tion 2 and the Get suessor funtion from Setion 3. It �nds the next vertex uwhose label an be improved. The hange of p(u) an reate a yle in Gp andtherefore the WTR proedure is started to detet this possibility. If the hangeis safe the values d(u) and p(u) are updated and u is returned.In what follows the orretness of the algorithm is stated. Due to the spaelimits the proofs are only skethed.



SOFSEM’01, Milovy, Czech Republic - final version

1 pro Trae (s)2 p(s) := ?; v := s;3 while v 6= ? do4 u := RGS (v ;NULL);5 while u does not exist do6 last := v ; v := p(v);7 u := RGS (v ; last); od8 v := u; od9 end1 pro RGS (v ; last)fRelax and Get Suessorg2 u := suessor of v greater than last ;3 while d(u) � d(v) + l(u; v) do4 u := next suessor of v ; od5 if u exists then6 WTR (v ;u);7 d(u) := d(v) + l(u; v); p(u) := v ;8 return u;9 else return u does not exist; �10 end1 pro WTR (at ; looking for)fWalk To Rootg2 while at 6= s and at 6= looking for do at := p(at); od3 if at = looking for then negative yle deteted �4 end Fig. 2. Pseudo-ode of the sequential algorithmLemma 1. Let G ontains no negative yle reahable from the soure vertex s.Then Gp forms a rooted tree with root s and d(v) � Æ(s; v) for all v 2 V at anytime during the omputation. Moreover, one d(v) = Æ(s; v) it never hanges.Proof: The proof is prinipally the same as for other relaxation methods [5℄.Lemma 2. After every hange of the value d(v) the algorithm visits the vertex v.Proof: Follows diretly from the algorithm.Lemma 3. Let G ontains no negative yle reahable from the soure vertex s.Every time a vertex w is visited the sequene S of the assignments on line 6 ofthe proedure Trae will eventually be exeuted for this vertex. Until this happensp(w) is not hanged.Proof: The value p(w) annot be hanged beause G has no negative yle anddue to Lemma 1 the parent graph Gp does not have any yle. Let h(w) denotesthe depth of w in Gp. We prove the lemma by bakward indution (from n to0) with respet to h(w). For the basis we have h(w) = n, w has no hild andtherefore RGS(w,NULL) returns u does not exist and the sequene S is exeutedimmediately. For the indutive step we assume that the lemma holds for eah vsuh that h(v) � k and let h(w) = k � 1, fa1; a2; : : : ; arg = fu j (w; u) 2 Eg.Sine h(ai) = k for all i 2 f1; : : : ; rg, we an use the indution hypothesis foreah ai and show that the value of the variable u in RGS is equal to ai exatlyone. Therefore RGS returns u does not exist for w after a �nite number of stepsand the sequene S is exeuted.



SOFSEM’01, Milovy, Czech Republic - final version

Theorem 1 (Corretness of the sequential algorithm). If G has no neg-ative yle reahable from the soure s then the sequential algorithm terminateswith d(v) = Æ(s; v) for all v 2 V and Gp forms a shortest-paths tree rooted at s.If G has a negative yle, its existene is reported.Proof: Let us at �rst suppose that there is no negative yle. Lemma 3 appliedto the soure vertex s gives the termination of the algorithm. Let v 2 V and< v0; v1; : : : ; vk >; s = v0; v = vk is a shortest path from s to v. We show thatd(vi) = Æ(s; vi) for all i 2 f0; : : : kg by indution on i and therefore d(v) = Æ(s; v).For the basis d(v0) = d(s) = Æ(s; s) = 0 by Lemma 1. From the indutionhypothesis we have d(vi) = Æ(s; vi). The value d(vi) was set to Æ(s; vi) at somemoment during the omputation. From Lemma 2 vertex vi is visited afterwardsand the edge (vi; vi+1) is relaxed. Due to Lemma 1, d(vi+1) � Æ(s; vi+1) =Æ(s; vi)+l(vi; vi+1) = d(vi)+l(vi; vi+1) is true before the relaxation and therefored(vi+1) = d(vi) + l(vi; vi+1) = Æ(s; vi) + l(vi; vi+1) = Æ(s; vi+1) holds after therelaxation. By Lemma 1 this equality is maintained afterwards.For all verties v; u with v = p(u) we have d(u) = d(v) + l(v; u). This followsdiretly from line 7 of the RGS proedure. After the termination d(v) = Æ(s; v)and therefore Gp forms a shortest paths tree.On the other side, if there is a negative yle in G, then the relaxation proessalone would run forever and would reate a yle in Gp. The yle is detetedbeause before any hange of p(v) WTR tests whether this hange does notreate a yle in Gp.Let us suppose that edges have integer lengths and let C = maxfj l(u; v) j :(u; v) 2 Eg.Theorem 2. The worst time omplexity of the sequential algorithm is O(Cn4).Proof: Eah shortest path onsists of at most n � 1 edges and �C(n � 1) �Æ(s; v) � C(n � 1) holds for all v 2 V . Eah vertex v is visited only after d(v)is lowered. Therefore eah vertex is visited at most O(Cn) times. Eah visitonsists of updating at most n suessors and an update an take O(n) time(due to the walk to root). Together we have O(Cn3) bound for total visitingtime of eah vertex and O(Cn4) bound for the algorithm.We stress that the use of the walk to root in this algorithm is not unavoidableand the algorithm an be easily modi�ed to detet a yle without the walk toroot and run in O(Cn3) time. The walk to root has been used to make thepresentation of the distributed algorithm (where the walk to root is essential)learer.5 Distributed AlgorithmFor the distributed algorithm we suppose that the set of verties is divided intodisjoint subsets. The distribution is determined by the funtion owner whihassigns every vertex v to a proessor i. Proessor i is responsible for the subgrafdetermined by the owned subset of verties. Good partition of verties among



SOFSEM’01, Milovy, Czech Republic - final version

proessors is important beause it has diret impat on ommuniation om-plexity and thus on run-time of the program. We do not disuss it here beauseit is itself quite a diÆult problem and depends on the onrete appliation.The main idea of the distributed algorithm (Fig. 3) an be summarized asfollows. The omputation is initialized by the proessor whih owns the sourevertex by alling Trae(s;?) and is expanded to other proessors as soon as thetraversal visits the \border" verties. Eah proessor visits verties basially inthe same manner as the sequential algorithm does.While relaxation an be performed in parallel, the realization of walk to rootrequires more areful treatment. Even if adding the edge initiating the walk toroot does not reate a yle in the parent graph, the parent graph an ontain ayle on the way to root reated in the meantime by some other proessor. Thewalk to root we used in the sequential algorithm would stay in this yle forever.Amortization of walk brings similar problems. We propose a modi�ation of thewalk to root whih solves both problems.Eah proessor maintains a ounter of started WTR proedures. The WTRproedure marks eah node through whih it proeeds by the name of the vertexwhere the walk has been started (origin) and by the urrent value of the proessorounter (stamp). When the walk reahes a vertex that is already marked withthe same origin and stamp a negative yle is deteted and the omputationis terminated. In distributed environment it is possible to start more than onewalk onurrently and it may happen that the walk reahes a vertex that isalready marked by some other mark. In that ase we use the ordering on vertiesto deide whether to �nish the walk or to overwrite the previous mark andontinue. In the ase that the walk has been �nished (i.e. it has reahed theroot or a vertex marked by higher origin, line 9 of WTR) we need to remove itsmarks. This is done by the REM (REmove Marks) proedure whih follows thepath in the parent graph starting from the origin in the same manner as WTRdoes. The values p(v) of marked verties are not hanged (line 6 of RGS ) andtherefore the REM proedure an �nd and remove the marks. However, due topossible overwriting of walks, it is possible that the REM proedure does notremove all marks. Note that these marks will be removed by some other REMproedure eventually. The orretness of yle detetion is guaranteed as for theyle detetion the equality of both the origin and stamp is required.The modi�ations of walk to root enfores the Trae proedure to stop whenit reahes a marked vertex and to wait till the vertex beomes unmarked. More-over, walk to root is not alled during eah relaxation step (WTR amortizationondition beomes true every n-th time it is alled).Whenever a proessor has to proess a vertex (during traversing or walk toroot) it heks whether the vertex belongs to its own subgraph. If the vertex isloal, the proessor ontinues loally otherwise a message is sent to the ownerof the vertex. The algorithm periodially heks inoming messages (line 4 ofTrae). When a request to update parameters of a vertex u arrives, the proessorompares the urrent value d(u) with the reeived one. If the reeived valueis lower than the urrent one then the request is plaed into the loal queue.



SOFSEM’01, Milovy, Czech Republic - final version

1 pro Main2 while not �nished do3 req := pop(queue);4 if req.length = d(req.vertex) then Trae (req.vertex; req.father); �5 od6 end1 pro Trae (v; father)2 p(v) := father ;3 while v 6= father do4 Handle messages;5 u := RGS(v;NULL);6 while u does not exist do7 last := v; v := p(v);8 u := RGS(v; last); od9 v := u;10 od11 end1 pro RGS (v ; last) fRelax and Get Suessorg2 u := suessor of v greater than last;3 while u exists do4 if u is loal then5 if d(u) > d(v) + l(u; v) then6 if mark(u) then wait; �7 p(u) := v;8 d(u) := d(v) + l(u; v);9 if WTR amortization then WTR([u; stamp℄; u); in(stamp); �10 return u;12 �13 else send message(owner(u); \update u; v; d(u) + l(u; v)");14 �15 u := next suessor of v ;16 od17 return u does not exist;18 end1 pro WTR ([origin; stamp℄;at) fWalk To Rootg2 done := false;3 while :done do4 if at is loal5 then6 if mark(at) = [origin; stamp℄!7 send message(Manager ; \negative yle found");8 terminate9 (at = soure) _ (mark(at) > [origin; stamp℄)!10 if origin is loal11 then REM ([origin; stamp℄; origin)12 else send message(owner(origin);13 \start REM ([origin; stamp℄; origin))" �14 done := true;15 (mark(at) = nil) _ (mark(at) < [origin; stamp℄)!16 mark(at) := [origin; stamp℄;17 at := p(at)18 �19 else send message(owner(at); \start WTR([origin; stamp℄; at)");20 done := true21 �22 od23 end Fig. 3. Pseudo-ode of the distributed algorithm



SOFSEM’01, Milovy, Czech Republic - final version

Anytime the traversal ends the next request from the queue is popped and anew traversal is started.Another type of message is a request to ontinue in the walk to root (resp. inremoving marks), whih is immediately satis�ed by exeuting the WTR (resp.REM ) proedure.The distributed algorithm terminates when all loal queues of all proessorsare empty and there are no pending messages or when a negative yle is de-teted. A manager proess is used to detet the termination and to �nish thealgorithm by sending a termination signal to all proessors.Theorem 3 (Corretness and omplexity of the distributed algorithm).If G has no negative yle reahable from the soure s then the distributed algo-rithm terminates with d(v) = Æ(s; v) for all v 2 V and Gp forms a shortest-pathstree rooted at s. If G has a negative yle, its existene is reported.The worst time omplexity of the algorithm is O(Cn3).Proof: The proof of the orretness of the distributed algorithm is tehniallymore involved and due to the spae limits is presented in the full version of thepaper only. The basi ideas are the same as for the sequential ase, espeially inthe ase when G has no negative yle. Proof of the orretness of the distributedwalk to root strategy is based on the ordering on walks and on the fat that ifG ontains a reahable negative yle then after a �nite number of relaxationsteps Gp always has a yle.Complexity is O(Cn3) due to the amortization of the walk to root.6 ExperimentsWe have implemented the distributed algorithm. The experiments have beenperformed on a luster of seven workstations interonneted with a fast 100MbpsEthernet using Message Passing Interfae (MPI) library.We have performed a series of pratial experiments on partiular types ofgraphs that represent the LTL model heking problem. The LTL model hekingproblem is de�ned as follows. Given a �nite system and a LTL formula deidewhether the given system satis�es the formula. This problem an be redued tothe problem of �nding an aepting yles in a direted graph [11℄ and has alinear sequential omplexity. In pratie however, the resulting graph is usuallyvery large and the linear algorithm is based on depth-�rst searh, whih makesit hard to distribute. We have redued the model heking problem to the SSSPproblem with edge lengths 0, -1. Instead of looking for aepting yles we detetnegative yles.The experimental results learly on�rm that for LTL model heking ouralgorithm is able to verify systems that were beyond the sope of the sequentialmodel heking algorithm.Part of our experimental results is summarized in the table below. The tableshows how the number of omputers inuenes the omputation time. Time isgiven in minutes, 'M' means that the omputation failed due to low memory.



SOFSEM’01, Milovy, Czech Republic - final version

Number of ComputersNo. of Verties 1 2 3 4 5 6 794578 0:38 0:35 0:26 0:21 0:18 0:17 0:15608185 5:13 4:19 3:04 2:26 2:03 1:49 1:35777488 M 6:50 4:09 3:12 2:45 2:37 2:05736400 M M M 6:19 4:52 4:39 4:257 ConlusionsWe have proposed a distributed algorithm for the single soure shortest pathsproblem for arbitrary direted graphs whih an ontain negative length y-les. The algorithm employs reverse searh and uses one data struture for twopurposes | omputing the shortest paths and traversing the graph. A novel dis-tributed variant of the walk to root negative yle detetion strategy is engaged.The algorithm is thus spae-eÆient and salable.Beause of the wide variety of relaxation and yle detetion strategies thereis plenty of spae for future researh. Although not all strategies are suitable fordistributed solution, there are surely other possibilities besides the one proposedin this paper.Referenes1. D. Avis and K. Fukuda. Reverse searh for enumeration. Disrete Appl. Math.,65:21{46, 1996.2. S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of smalltreewidth. In Automata, Languages and Programming, pages 244{255, 1995.3. B. V. Cherkassky and A. V. Goldberg. Negative-yle detetion algorithms. Math-ematial Programming, Springer-Verlag, 85:277{311, 1999.4. E. Cohen. EÆient parallel shortest-paths in digraphs with a separator deompo-sition. Journal of Algorithms, 21(2):331{357, 1996.5. T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introdution to Algorithms.MIT, 1990.6. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra'sshortest path algorithm. In Pro. 23rd MFCS'98, Leture Notes in ComputerSiene, volume 1450, pages 722{731. Springer-Verlag, 1998.7. U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In 6thInternational EURO-PAR Conferene. LNCS, 2000.8. J. Nievergelt. Exhaustive searh, ombinatorial optimization and enumeration:Exploring the potential of raw omputing power. In SOFSEM 2000, number 1963in LNCS, pages 18{35. Springer, 2000.9. K. Ramarao and S. Venkatesan. On �nding and updating shortest paths distribu-tively. Journal of Algorithms, 13:235{257, 1992.10. J. Tra� and C.D. Zaroliagis. A simple parallel algorithm for the single-soureshortest path problem on planar digraphs. In Parallel algorithms for irregularlystrutured problems, volume 1117 of LNCS, pages 183{194. Springer, 1996.11. M. Y. Vardi and P. Wolper. An automata-theoreti approah to automati programveri�ation (preliminary report). In 1st Symp. on Logi in Computer Siene,LICS'86, pages 332{344. Computer Soiety Press, 1986.


