Randomization Helps in LTL Model Checking*

Lubos Brim, Ivana Cerna, and Martin Necesal

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{brim, cerna,xnecesal}@fi.muni.cz

Abstract. We present and analyze a new probabilistic method for au-
tomata based LTL model checking of non-probabilistic systems with in-
tention to reduce memory requirements. The main idea of our approach
is to use randomness to decide which of the needed information (vis-
ited states) should be stored during a computation and which could be
omitted. We propose two strategies of probabilistic storing of states. The
algorithm never errs, i.e. it always delivers correct results. On the other
hand the computation time can increase. The method has been embed-
ded into the SPIN model checker and a series of experiments has been
performed. The results confirm that randomization can help to increase
the applicability of model checkers in practice.

1 Introduction

Model checking is one of the major recent success stories of theoretical computer
science. Model checkers are tools which take a description of a system and a prop-
erty and automatically check whether the system satisfies the property. There
are now many different varieties of model checkers including model checkers for
real-time systems and probabilistic systems.

Practical application of model checking in the hardware verification became a
routine. Many companies in the hardware industry use model checkers to ensure
the quality of their products. With the debugging potential afforded by model
checking, design of hardware components can be made much more reliable and
moreover model checking is seen to accelerate the design process, significantly
decreasing the time to market. However, the situation in software model checking
is completely different. Software is much more complicated system due to its
size and dynamic nature. To achieve similar benefits as in hardware verification,
additional methods and techniques need to be explored.

One of the very successful techniques is randomization. The term “proba-
bilistic model checking” (or “probabilistic verification”) refers to a wide range of
techniques. There are two ways in which probability features in this area. The
first approach concerns applying model checking to systems which inherently
include probabilistic information [11,4, 1, 2]. The second approach concerns sys-
tems which are non-probabilistic, but of size which makes exhaustive checking

* This work has been partially supported by the Grant Agency of Czech Republic
grants No. 201/00/1023 and 201/00/0400.

impractical or infeasible [9,5]. The aim is to use randomization to make model
checking more efficient, albeit at a cost of establishing satisfaction with high
probability, possibly with a one-sided error, rather than certainty, or at a cost
of other resources. While the topic of verification of probabilistic systems has
been intensively studied, there are only a few attempts to use randomization in
verification of non-probabilistic systems.

In the paper we focus on automata based LTL model checking of non-proba-
bilistic systems. Our aim is to attack the state-ezplosion problem (the number
of reachable states grows exponentially in the number of concurrent components
and is the main limitation in practical applications of model checkers). Various
techniques and heuristics reducing the random access memory required have
been proposed. One possible solution (called on-the-fly model checking) is to
generate only the part of the state graph required to validate or disprove the
given property. On-the-fly algorithms generate the state space in a depth-first
manner and keep only track of reached states to avoid doing unnecessary work.
Another solution makes use of the fact that one of the reasons of the state explo-
sion problem is the generation of all interleavings of independent transitions in
different concurrent components. Partial order reduction techniques were intro-
duced to ensure that many of these unnecessary interleavings are not explored
during state generation.

If we have some knowledge about the structure of the state graph in advance
(before starting the actual verification), we can apply even more efficient heuris-
tics. As in general it is not the case we suggest to use a probabilistic method
which can be viewed as a probability distribution on a set of deterministic tech-
niques. We explore two probabilistic approaches to achieve significant space
reduction in the depth first search based model checking of non-probabilistic
systems.

The core of the first approach is to use randomness to decide which of the
needed information (visited states) should be stored during a computation and
which could be omitted. Consequently, the time complexity of the computation
can increase. The second method simply implements the idea of randomizing
the branching structure. Both methods are of Las Vegas type, i.e. they always
deliver the correct answer. In the paper we focus on the first method and report
on the second one briefly. We stress that both methods are compatible (can
be used simultaneously) with on-the-fly and partial order reduction techniques.
We have implemented both methods and the experiments gave surprisingly very
good results in competition with non-probabilistic approaches.

The paper is organized as follows. We first review some background on model
checking using automata, define the corresponding graph-theoretic problem, and
briefly discuss possible sources for applying randomization. Then we propose the
probabilistic reduction algorithm and report experimental results achieved. We
conclude with the description of the second method and with some final remarks.

2 Problem Setting

We consider the following verification problem. A finite state transition graph
(also called a Kripke structure) is used to represent the behavior of a given
system and a linear temporal logic (LTL) formula is used to express the desired
property of the system. The basic idea of automata-based LTL model checking
is to associate with each LTL formula a Biichi automaton that accepts exactly
all the computations that satisfy the formula. If we consider a Kripke structure
to be a Biichi automaton as well, then the model checking can be described as
a language containment problem and consequently as a non-emptiness problem
of (intersecting) Biichi automata. A Biichi automaton accepts some word iff
there exists an accepting state reachable from the initial state and from itself.
Hence, we can sum up the model checking problem we consider as the following
graph-theoretic problem.

Non-emptiness problem of Biichi automata.

Given a directed graph G = (V, E), start state (vertex) s € V, a set of accepting
states F' C V| determine whether there is a member of F' which is reachable from
s and belongs to a nontrivial strongly connected component of G.

The direct approach to solve the problem is to decompose the graph into
nontrivial strongly connected components (SCCs), which can be done in time
linear in the size of the graph using the Tarjan’s algorithm [10]. However, con-
structing SCCs is not memory efficient since the states in the SCCs must be
explicitly stored during the procedure. Courcoubetis et al. [3] have proposed an
elegant way to avoid the explicit computation of SCCs. The idea is to use a nested
depth-first search to find accepting states that are reachable from themselves (to
compute accepting path). The pseudo-code of the NestedDFS algorithm is given
in Fig. 1. Only two bits need to be added to each state to separate the states
stored in VisitedStates during the first and the second (nested) DFS. The ex-
treme space efficiency of the NestedDFS algorithm is achieved to the detriment
of time. The time might double when all the states are reachable in both searches
and there are no accepting cycles. However, in applications to real systems the
space is actually more critical resource. This makes the nested depth-first search
the main algorithm used in many verification tools which support the automata
based approach to model checking of LTL formulas (e.g. SPIN).

The space requirements of the NestedDFS algorithm are determined by the
necessity of storing VisitedStates in randomly accessed memory. Several im-
plementations of NestedDFS use different data structures to represent the set
VisitedStates. The basic one is a hash table [6]. Another implementation [12]
makes use of symbolic representation of VisitedStates via Ordered Binary Deci-
sion Diagrams (OBDD).

Hash compaction is used in [14], where the possible hash-collisions are not
re-solved. The algorithm can thus detect a state as visited even if it is not.
Consequently, not all reachable states are explored during the search, and an
error might go undetected.

proc DFS(s)
add {s, 0} to VisitedStates;
foreach successor ¢ of s do
if {¢,0} not in VisitedStates then DFS(t) fi
od;
if accepting(s) then seed := s; NDFS(s) fi
end

proc NDFS(s)
add {s, 1} to VisitedStates;
foreach successor t of s do
if {¢,1} not in VisitedStates
then NDFS(t)
else if t = seed then “report cycle” fi fi
od

end

Fig. 1. Algorithm NestedDFS

Another technique which has been investigated to reduce the amount of ran-
domly accessed memory is state-space caching [5]. The idea is based on the
observation that when doing a depth-first search of a graph, storing only the
states that are on the search stack is sufficient to guarantee that the search
terminates. While this can produce a very substantial saving in the use of ran-
domly accessed memory, it usually has a disastrous impact on the run time of
the search. Indeed, each state will be visited as many times as there are simple
paths reaching it. An improvement on this idea is to store not only the states
that are on the search stack, but also a bounded number of other states (as many
as will fit into the chosen “state-space cache”). If the state-space cache is full
when a new state needs to be stored, random replacement of a state that is not
currently on the search stack is used.

The advantage of state-space caching is that the amount of memory that is
used can be reduced with a limited impact on the time required for the search.
Indeed, if the cache is large enough to contain the whole state space, there is
no change in the required time. If the size of the cache is reduced below this
limit, the time required for the search will only increase gradually. Experimental
results, however, show that below a threshold that is usually between 1/2 and 1/3
of the size of the state space, the run time explodes, unless additional techniques
are used to restrict the number of distinct paths that can reach a given state [5].

The behavior of state-space caching is quite the opposite of that of the hash-
ing technique. Indeed, state-space caching guarantees a correct result, but at the
cost of a potentially large increase in the time needed for the state-space search.
On the other hand, hashing never increases the required run time, but can fail to

explore the whole state space. A combination of state space caching and hashing
has been proposed and investigated in [9].

In this paper we propose a new technique to attack the state-explosion prob-
lem using a simple probabilistic method. Actually, the technique has been strongly
motivated by our intention to improve the performance of the model checker
SPIN, and the technique has been embedded into SPIN for testing purposes.

The proposed method allows to solve the emptiness problem of Biichi au-
tomata (i.e. complete LTL model checking and not only reachability) and it
never errs. It can be briefly described in the following way. The algorithm is
based on the nested depth-first search as described in Fig. 1. Each time the
algorithm backtracks through a state it employs a proper reduction strategy to
decide whether the state will be kept in the VisitedStates table or whether it will
be removed. We propose two reduction strategies, the dynamic and the static
one. While the first one takes on the frequency of visiting the state, the second
one allows to eliminate delayed storing of the state and thus decreases the num-
ber of visits of individual states. We specify properties of systems determining
which strategy suits better for a given verification problem.

3 Algorithm with Probabilistic Reduction Strategy

The reason to store the states in the table of visited states during nested depth-
first search is to speed up the verification by preventing the multiplication of
work when states are re-visited. A state that is visited only once need not be
stored at all, while storing a state which will be visited many times can result in
a significant speed-up. The standard nested depth-first search algorithm stores
all visited states. On the other side, the optimal strategy for storing states
would take into account the number of times a state will be eventually visited
— a visitation factor. As it is generally impossible to compute this parameter in
advance, we will use probabilistic method to solve the problem.

The pseudo-code of the modified nested depth-first-search algorithm with
reduction strategy, NestedDFSReSt, is given in Fig. 2. Whenever the DF'S pro-
cedure explores a new state, the state is temporally saved in the VisitedStates
table (with parameter 0). Whenever DF'S backtracks trough a state, a test Re-
ductionStrategy is performed and if the test evaluates to true the state is removed
from the VisitedStates table. We will consider two basic probabilistic strategies
of removing states. The first one dynamically decides on removing a state each
time the state is backtracked through, while the second heuristic decides ran-
domly in advance (before the verification is started) which states will be stored
permanently.

As in the case of DFS, the NDFS procedure also needs the list of states
it has visited to be efficient. Therefore every exploring of a new state results
in its saving to the VisitedStates table (with parameter 1). Whenever NDFS
backtracks trough a state it respects the ReductionStrategy test performed on
this state by the DFS procedure and if necessary removes the state from the
table.

proc DFS(s)

add {s, 0} to VisitedStates;

foreach successor ¢ of s do

if {¢,0} not in VisitedStates then DFS(t) fi

od;

if accepting(s) then sced := s; NDFS(s) fi;

if ReductionStrategy(s) then delete {s,*} from VisitedStates fi
end

proc NDFS(s)
if accepting(s) and {s, 0} not in VisitedStates then exit fi; (x)
add {s, 1} to VisitedStates;
foreach successor ¢ of s do
if {¢,1} not in VisitedStates
then NDFS(t)
else if t = seed then “report cycle” fi i
od;
if {s,0} not in VisitedStates then delete {s,1} from VisitedStates fi
end

Fig. 2. Algorithm NestedDFSReSt

Removing states from the VisitedStates table has direct impact on the time
complexity of the algorithm as re-visiting a state removed from the table invokes
a new search from this state.

The correctness of the Nested DFSReSt algorithm follows from the correctness
of the NestedDFS algorithm [3]. The additional key arguments it depends on are
summarized in the following two lemmas.

Lemma 1. During the whole computation the sequence of states with which the
DFS procedure is called (DFSstack) forms a path in the graph G. The same is
true for the NDFS procedure and NDFSstack.

Proof: The (N)DFS procedure is always called with the argument ¢ which is a
successor of the current state s.

Lemma 2. Suppose that during the whole computation both the DFSstack and
the NDFSstack are subsets of VisitedStates, then the NestedDFSReSt algorithm
terminates.

Proof: From the inclusion follows that the (N)DFSstack always forms a simple
path. The number of simple paths in G is finite and each one is explored at most
once.

Theorem 1. The algorithm NestedDFSReSt is correct.

Proof: Whenever the (N)DFS procedure explores a new state, the state is tem-
porally saved in the VisitedStates table. Therefore (N)DFSstack C VisitedStates
is invariantly true and Nested DFSReSt always terminates due to the Lemma 2.
If NestedDFSReSt reports “cycle” then due to the Lemma 1 there is a reachable
cycle containing an accepting state. Conversely, suppose there is a reachable cy-
cle containing an accepting state in GG. Deleting states from VisitedStates table
cannot cause leaving out any call of (N)DFS(t) which would have been performed
by NestedDFS algorithm. Moreover, the situation in which the condition of the
if test on the very first line (denoted by x) in NDFS is true is equivalent to
the situation when {s, 1} is in VisitedStates in NestedDFS algorithm. Therefore
NestedDFSReSt searches trough all the paths NestedDFS does and thus reports
“cycle” when NestedDFS does. |

Notice that the test on the first line (x) of NDFS prevents re-searching of
an accepting state and thus speeds-up significantly the overall time complexity.
This fact was confirmed also by experimental results.

The proof of the Theorem 1 is based on the fact that the NestedDFSReSt
algorithm searches through all the paths the NestedDFS one does. Due to this
fact our algorithm is compatible with additional techniques used for state space
reductions, especially with partial order reduction techniques used in SPIN.

3.1 Dynamic Reduction Strategy

The pseudo-code implementing the dynamic reduction strategy is as follows:

funct ReductionStrategy-Dynamic(s) : boolean
p := random|0, 1];
if p < Pyer
then ReductionStrategy-Dynamic := true
else ReductionStrategy-Dynamic := false fi
end

Py is a fixed parameter determining the probability of deleting a state
from VisitedStates table. Each time the DFS backtracks through a state s the
state is deleted with the probability Py, and is kept stored with the probability
Psio =1 — Py Once a state is kept stored in the table by the DFS procedure,
it is never removed. The probability that a state will be eventually stored thus
depends on the number k of its visits during the computation and is equal to
Prob(s is eventually stored) = 1 — P§,. This means that a state with higher
visitation factor k has also higher probability to be stored permanently. The
probability that the state s will be re-visited more than ¢ times is equal to
Prob(s is i times deleted) = Pj,.

The dynamic reduction strategy would lead to a non-trivial reduction of
randomly accessed memory if there is a non-trivial subset of the state space
that will never be permanently stored. The expected memory reduction can be
expressed as P x (size of the state space), where P is the probability that a state

will never be permanently stored. If k is the average visitation factor then P can
be estimated as P%,. Therefore, we would like to have the highest possible value
of the probability that a state will never be permanently stored.

On the other hand, not saving a frequently visited state increases the time
complexity of the whole computation. Therefore, we are interested in the ex-
pected number of visits after which the state is stored permanently. Consider an
elementary event {s is permanently stored during its i-th visit}. Then

Prob({s is permanently stored during its i-th visit}) = Pi;' Py,.

Let H be a random variable over the above mentioned elementary events defined
as
H ({s is permanently stored during its i-th visit}) = i.

We have that the expected value of H is

E(H) =Y iPy;'Pito = Pato »_iPi) = Puo Y > Pi/t =
i=1 i=1 j=1i=j
oo Pj71 Ps , oo ' PS) PO
:S“’Zld% -1 ItD 2%121 ;3 T
j=1 — Ldel — Ldel j=0 — Lidel L — Idel
Psto _ Psto _ 1

B Psto
It can be seen that the expected value of the random variable H depends on the
probability Py, and indicates that value Pg, should be high.

We can conclude that in systems with a high visitation factor we cannot ex-
pect reasonable space savings without enormous increase of the time complexity.

(1- Py P2,

sto

3.2 Static Reduction Strategy

The second strategy tries to eliminate the main disadvantage of the dynamic re-
duction strategy, namely the delayed storage of a state. If a state will eventually
be permanently stored, why not to store it immediately during the first visit.
When deciding which states are to be stored we should prefer states with high
visitation factor. As we cannot compute this factor in advance we use probabilis-
tic decision. All states are in advance and randomly divided into two groups:
states which will be stored and those which will never be stored (represented
as R). Hence, each state is permanently stored during its first visit or never.
The ratio between stored and non-stored states is selected with the intention to
achieve as highest reduction in state space as possible.
The pseudo-code implementing the static reduction strategy is as follows:

funct ReductionStrategy-Static(s) : boolean
ifse R
then ReductionStrategy-Static := true
else ReductionStrategy-Static := false fi
end

The disadvantage of the static reduction strategy is its insensibility to the
visitation factor.

4 Experiments

To be able to compare experimentally our probabilistic algorithm with the non-
probabilistic one, we have embedded the algorithm into SPIN model checker.

We have performed a series of tests on several types of standard parametrized
(scalable) verification problems. Here we report on two of them only:

Peterson Peterson’s algorithm solves the mutual exclusion problem. We have
considered the algorithm for parameter N = 3 determining the number of
processes. The property to be verified was O(ncrit < 2) (no more than one
process is in critical section).

Philosophers Dining Philosophers is a model of a problem of sharing of re-
sources by several processes. We have considered the algorithm for N = 4
and N = 6. The property to be verified was OO0 (FEatingAny = 1) (absence
of deadlock).

The other problems we have considered were e.g. the Leader Election problem,
Mobile processes. In all these experiments we have obtained similar results.

As our algorithm is compatible with partial order reduction techniques used
in SPIN we have compiled all problems with partial order reductions.

For each verification problem we first give two most important characteris-
tics of the computation performed by SPIN checker: States (the number of states
saved in the VisitedStates table) and Transitions (the number of performed tran-
sitions). The number of transition is proportional to the overall time complexity
of the computation. The size of the VisitedStates table in SPIN’s computation
is nondecreasing. Once a state is stored in the table it is never removed. On the
other hand in the NestedDFSReSt algorithm every visited state is temporally
stored in the table and only when it is backtracked through the (random) deci-
sion about its permanent storing is made. Therefore for our algorithm we need
another characteristic, namely the highest size of the Visited States table, Peak
States. The parameter States declares the number of states stored in the table
at the end of computation. The remaining two parameters, State Saving and
Transition Overhead, compare performance of the deterministic algorithm and
the probabilistic ones. Computations of probabilistic algorithms were repeated
10 times, presented values are the average ones.

Peterson’s Algorithm

Results of experiments are summarized in the Table 1. The best results with
Dynamic Strategy were achieved for storing probability 0.5 where saving in the
size of stored state space was 33% while increase in the time was negligible, and
for probability 0.1 with 52% space saving and multiplication factor 4 of time.
To get deeper inside we mention that the computation without the reduction

| | States] Peak] Saving| Transitions] Overhead|

|[SPIN | 17068] 17068] 0%] 32077] 1.00]
Dynamic Strategy

Peyo = 0.50 10998 11421 33% 46074 1.44
Py =0.10 6724 8263 52% 136344 4.25
Py = 0.01 5559 7407 57%| 1110526 34.62
Static Strategy

Py =075 12807 12812 25% 38761 1.21
Py = 0.50 8568 9661 43% 63662 1.98
Py = 0.40 6852 8417 51% 390737 12.18

Table 1. Summary of Experimental Results for Peterson

strategy took about 1.5 second in this case. Yet another increase in the deleting
probability results in substantial grow of time but does not improve space saving
factor significantly.

| | States] Peak] Saving| Transitions] Overhead|
|[SPIN | 3727] 3727] 0%] 18286 1.00]
Dynamic Strategy

Py = 0.50 3047 3178 15% 33475 1.83
P10 =0.10 2482 2686 28% 139263 7.62
P10 =0.01 2316 2531 32% 1287156 70.39
Static Strategy

Pyyo =0.75 2788 2961 21% 49112 2.69
Py = 0.60 2221 2577 31% 232973 12.74
P10 = 0.50 1875 2340 37% 3285607 179.68

Table 2. Summary of Experimental Results for Philosophers with N =4

Experiments with Static Strategy reveal that we can achieve 43% space saving
for the price of double time complexity. 51% space saving is attained with worse
time multiplication factor (12 in comparison to 4) than in the case of Dynamic
Strategy. The difference between storing probability and real space savings (i.e.
for storing probability 0.4 we would expect 60% saving instead of measured 51%)
has two reasons. Firstly, as we do not know which states of the state space are
actually reachable in the verified system we have to divide the whole state space
in advance. Secondly, the division determines states which are permanently saved
but the VisitedStates table contains also temporally saved states and its size can
be temporally greater (parameter Peak States). State space saving is computed
via comparing the number of saved states by non-probabilistic computation and
the peak value of probabilistic computation.

Dining Philosophers

Results of experiments are summarized in the Table 2 for N = 4 and in the
Table 3 for N = 6. In both cases the results are comparable. Dynamic Strategy
again gives the best results for storing probability between 0.5 and 0.1. Any fur-
ther decrease in the storing probability below 0.1 results in significant increase
of time complexity. In the case of Static Strategy reasonable results were ob-
tained for storing probability 0.75 and further decreasing of probability leads to
unreasonable time overhead and thus prevents from higher space savings.

| | States] Peak] Saving| Transitions| Overhead]
|SPIN | 191641] 191641] 0% 1144950] 1.00]
Dynamic Strategy

P =0.50 160426 165461 14% 2152384 1.88
Po =0.10 136081 145214 24% 9400300 8.21
Py, =0.01 131306 140758 27%| 91533400 79.90
Static Strategy

Pyyo =0.75 143661 155920 19% 6702840 5.85
Py = 0.65 124377 143691 25%| 116103466 101.40

Table 3. Summary of Experimental Results for Philosophers with N =6

Generally, the results for Philosophers are worse than those for Peterson’s
algorithm and are remarkably influenced by the visitation factor. While in the
Peterson’s algorithm the average number of state visits in SPIN’s computation
is 32077/17068 = 1.8, in Philosophers it is 4.9 (N = 4) and 6 (N = 6). Experi-
mental observations are thus in accordance with deduced theoretical results.

5 Random Nested DFS

Besides the algorithm with probabilistic reduction strategy we have also explored
the potential of randomizing the branching points in nested depth first search.
Verification tools typically build the state space from the syntactical description
of the problem. E.g. in SPIN the foreach successort of s do in the depth first
search is implemented as for i = 1 to n cycle. This means that the search order is
fixed by the input PROMELA program describing the system. If the verification
fails due to space limitations it is recommended to re-write the program to
re-order the guarded commands in conditionals and loops. However, the user
typically has no information on what would be a good re-arrangement. Hence,
the situation is very suitable for a randomized approach.

We have implemented the foreach successort of s do in the depth first
search as a random selection of the successors ordering and performed a series of
comparisons with the standard SPIN tool on similar set of problems as we did
before. Even though the method is trivial, the results we obtained were quite

surprising. For instance for the Philosophers (with an error) the results are
partially summarized in the Table 4.

SPIN Random NDFS
N|| States] Trans| Memory Runs| Success| States] Trans| Memory
11)| 288922| 1449200(56.9 MB 10 10| 100421 505150 26.4
12 205.0 MB 10 3 68355 346824 19.9
14 2.8 GB 50 5 46128 250266 16.2
16 38.5 GB 50 5 46288 245406 17.8
20 6.7 TB 50 2 38282 213639 18.2

Table 4. Summary of Experimental Results for Random Nested DFS

For the value of the parameter N greater than 11 the SPIN model checker
was not able to complete the computation. We therefore give estimated values for
the memory requirements obtained by extrapolation from finished computations.
The randomized algorithm was repeatedly performed (Runs) and the number
of successful runs (discovering the error before memory overflow) is reported
(Success). The experiments indicate that even a small number of repetitions can
dramatically increase the power of the tool.

We have also considered some artificial verification examples, which demon-
strate the potential of the method in some extreme cases. Consider the following
verification problem defined by the program

1 proc ExIF

2 MainCounter := 0; StepCounter := 0;

3 while StepCounter < 1000 do

4 if

5 true — MainCounter := MainCounter + 1
6 true — MainCounter := MainCounter + 2
7 fi;

8 StepCounter := StepCounter + 1 od

9 end

and the LTL formula
O(MainCounter < 2000 — Diff)

The parameter Diff determines the ratio of runs of the program that satisfy
and violate the formula. More precisely, the probability that MainCounter =
2000 — Diff is

13 1000
Prob(MainCounter = 2000 — Diff) = <1D01(1J£> <§>

We have performed experiments for various values of Diff. The results are sum-
marized in the Table 5. The experiments have confirmed that the actual memory

savings strictly depend on the value of the parameter Diff, that is on the proba-
bility of a faulty run, and have ranged from 20% up to 90%. We stress that after
re-ordering of guarded commands in the EzIF program (swapping lines 5 and 6)
SPIN finds the counterexample immediately. Re-writing the program helps in
this case. The next example shows that in some situations even re-writing the
program does not help.

| Diff] ViolProb| Algorithm] States| Transitions]| %]
400| 1.3642.10~'%| RandNestedDFS 37999 55810/ 10.4%
SPIN 363202 543502 100.0%

200| 8.2249.10~9%| RandNestedDFS 368766 551537 57.3%
SPIN 643602 964002| 100.0%

100 6.7017.10~ 162 | RandNestedDFS 647855 969977 79.6%
SPIN 813802 1219250 100.0%

Table 5. Summary of Experimental Results for ExIF

Let us consider the LTL formula
O((StepCounter < 1000) V (MainCounter # 1500)).

The formula expresses the property that at the end of every computation (i.e.
when StepCounter = 1000) the value of MainCounter is not 1500. It is easy to
see that the EzIF program does not fulfil this property. The erroneous computa-
tions are those where both guards are selected equally. For every re-ordering of
the guards SPIN has to search the significant part of the state space to discover
a counterexample. On the other hand, the RandNestedDFS algorithm successes
very quickly as it selects both guards with the same probability. The same effect
has been observed in other tests as well. E.g. in the Leader election problem, for
every permutation of all guards SPIN has searched approximately the same num-
ber of states while RandNestedDF'S has needed to search through significantly
smaller part of the state space.

6 Conclusions

While verification of probabilistic systems seems to be ready to move to the
industrial practice, the use of probabilistic methods in model checking of non-
probabilistic systems is at its beginning. The use of probabilistic methods in the
explicit state enumeration techniques to reduce the memory required by hashing
is an excellent example of the potential of probabilistic methods. Our intention
was to investigate other possibilities how randomization could help in model
checking.

We have proposed a new probabilistic verification method which could reduce
the amount of random access memory necessary to store the information about

the system. The reduction rate depends on the verified system, namely on the
average number of state visits. Our experiments have confirmed that the method
could achieve a non-trivial reduction within reasonable time overhead.

Another important issue for further study is to examine possibilities of com-
bining our probabilistic reduction strategy algorithm with other techniques to
reduce memory usage. We also plan to perform additional experiments to give a
more comprehensive view of the performance of our technique and of its scala-
bility.

7 Acknowledgement

We would like to thank Jif{f Barnat for introducing us to the mysteries of the
SPIN model checker and for his advice and efficient help with incorporating our
algorithms into SPIN.

References

1. C. Baier and M. Kwiatkowska. Model Checking for a Probabilistic Branching Time
Logic with Fairness. DISTCOMP: Distributed Computing, 11, 1998.

2. A. Bianco and L. De Alfaro. Model Checking of Probabilistic and Nondeterministic
Systems. In P. S. Thiagarajan, editor, Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), volume 1026 of LNCS, pages 499-513.
Springer-Verlag, 1995.

3. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties. Formal Methods in System
Design, 1:275-288, 1992.

4. C. Courcoubetis and M. Yannakakis. The Complexity of Probabilistic Verification.
Journal of the ACM, 42(4):857-907, July 1995.

5. P. Godefroid, G. J. Holzmann, and D. Pirottin. State-Space Caching Revis-
ited. Formal Methods in System Design: An International Journal, 7(3):227-241,
November 1995.

6. G. J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in System
Design: An International Journal, 13(3):289-307, Nov. 1998.

7. G.J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Search.
In The SPIN Verification System, pages 23-32. American Mathematical Society,
1996. Proc. of the Second SPIN Workshop.

8. M. Narasimha, R. Cleaveland, and P. Iyer. Probabilistic Temporal Logics via
the Modal Mu-Calculus. In W. Thomas, editor, Proceedings of the Second Interna-
tional Conference on Foundations of Software Science and Computation Structures
(FoSSaCS), volume 1578 of LNCS, pages 288-305. Springer-Verlag, 1999.

9. U. Stern and D.L. Dill. Combining State Space Caching and Hash Compaction. In
B. Straube and J. Schoenherr, editors, 4. GI/ITG/GME Workshop zur Methoden
des Entwurfs und der Verifikation Digitaler Systeme, pages 81-90. Shaker Verlag,
Aachen, 1996.

10. R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM journal on
computing, pages 146-160, Januar 1972.

11.

12.

13.

14.

M. Vardi. Probabilistic Linear-Time Model Checking: An Overview of the
Automata-Theoretic Approach. In J.-P. Katoen, editor, International AMAST
Workshop on Formal Methods for Real-Time and Probabilistic Systems (ARTS),
volume 1601 of LNCS, pages 265-276. Springer-Verlag, 1999.

W. Visser. Using OBDD Encodings for Space Efficient State Storage during On-
the-fly Model Checking. Proceedings of the 1st SPIN Workshop, Montreal, Canada,
1995.

A. K. Wisspeintner, F. Huber, and J. Philipps. Model Checking and Random
Competition — A Study Using the Model Checking Framework MIC. 10. GI/ITG
Fachgesprich ”Formale Beschreibungstechniken fiir verteilte Systeme”, pages 91—
100, June 2000.

P. Wolper and D. Leroy. Reliable Hashing Without Collision Detection. In C. Cour-
coubetis, editor, Proc. 5th International Computer Aided Verification Conference
(CAV’93), volume 697 of LNCS, pages 59-70. Springer-Verlag, 1993.

