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zAbstra
t. We present and analyze a new probabilisti
 method for au-tomata based LTL model 
he
king of non-probabilisti
 systems with in-tention to redu
e memory requirements. The main idea of our approa
his to use randomness to de
ide whi
h of the needed information (vis-ited states) should be stored during a 
omputation and whi
h 
ould beomitted. We propose two strategies of probabilisti
 storing of states. Thealgorithm never errs, i.e. it always delivers 
orre
t results. On the otherhand the 
omputation time 
an in
rease. The method has been embed-ded into the SPIN model 
he
ker and a series of experiments has beenperformed. The results 
on�rm that randomization 
an help to in
reasethe appli
ability of model 
he
kers in pra
ti
e.1 Introdu
tionModel 
he
king is one of the major re
ent su

ess stories of theoreti
al 
omputers
ien
e. Model 
he
kers are tools whi
h take a des
ription of a system and a prop-erty and automati
ally 
he
k whether the system satis�es the property. Thereare now many di�erent varieties of model 
he
kers in
luding model 
he
kers forreal-time systems and probabilisti
 systems.Pra
ti
al appli
ation of model 
he
king in the hardware veri�
ation be
ame aroutine. Many 
ompanies in the hardware industry use model 
he
kers to ensurethe quality of their produ
ts. With the debugging potential a�orded by model
he
king, design of hardware 
omponents 
an be made mu
h more reliable andmoreover model 
he
king is seen to a

elerate the design pro
ess, signi�
antlyde
reasing the time to market. However, the situation in software model 
he
kingis 
ompletely di�erent. Software is mu
h more 
ompli
ated system due to itssize and dynami
 nature. To a
hieve similar bene�ts as in hardware veri�
ation,additional methods and te
hniques need to be explored.One of the very su

essful te
hniques is randomization. The term \proba-bilisti
 model 
he
king" (or \probabilisti
 veri�
ation") refers to a wide range ofte
hniques. There are two ways in whi
h probability features in this area. The�rst approa
h 
on
erns applying model 
he
king to systems whi
h inherentlyin
lude probabilisti
 information [11, 4, 1, 2℄. The se
ond approa
h 
on
erns sys-tems whi
h are non-probabilisti
, but of size whi
h makes exhaustive 
he
king? This work has been partially supported by the Grant Agen
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h Republi
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impra
ti
al or infeasible [9, 5℄. The aim is to use randomization to make model
he
king more eÆ
ient, albeit at a 
ost of establishing satisfa
tion with highprobability, possibly with a one-sided error, rather than 
ertainty, or at a 
ostof other resour
es. While the topi
 of veri�
ation of probabilisti
 systems hasbeen intensively studied, there are only a few attempts to use randomization inveri�
ation of non-probabilisti
 systems.In the paper we fo
us on automata based LTL model 
he
king of non-proba-bilisti
 systems. Our aim is to atta
k the state-explosion problem (the numberof rea
hable states grows exponentially in the number of 
on
urrent 
omponentsand is the main limitation in pra
ti
al appli
ations of model 
he
kers). Variouste
hniques and heuristi
s redu
ing the random a

ess memory required havebeen proposed. One possible solution (
alled on-the-
y model 
he
king) is togenerate only the part of the state graph required to validate or disprove thegiven property. On-the-
y algorithms generate the state spa
e in a depth-�rstmanner and keep only tra
k of rea
hed states to avoid doing unne
essary work.Another solution makes use of the fa
t that one of the reasons of the state explo-sion problem is the generation of all interleavings of independent transitions indi�erent 
on
urrent 
omponents. Partial order redu
tion te
hniques were intro-du
ed to ensure that many of these unne
essary interleavings are not exploredduring state generation.If we have some knowledge about the stru
ture of the state graph in advan
e(before starting the a
tual veri�
ation), we 
an apply even more eÆ
ient heuris-ti
s. As in general it is not the 
ase we suggest to use a probabilisti
 methodwhi
h 
an be viewed as a probability distribution on a set of deterministi
 te
h-niques. We explore two probabilisti
 approa
hes to a
hieve signi�
ant spa
eredu
tion in the depth �rst sear
h based model 
he
king of non-probabilisti
systems.The 
ore of the �rst approa
h is to use randomness to de
ide whi
h of theneeded information (visited states) should be stored during a 
omputation andwhi
h 
ould be omitted. Consequently, the time 
omplexity of the 
omputation
an in
rease. The se
ond method simply implements the idea of randomizingthe bran
hing stru
ture. Both methods are of Las Vegas type, i.e. they alwaysdeliver the 
orre
t answer. In the paper we fo
us on the �rst method and reporton the se
ond one brie
y. We stress that both methods are 
ompatible (
anbe used simultaneously) with on-the-
y and partial order redu
tion te
hniques.We have implemented both methods and the experiments gave surprisingly verygood results in 
ompetition with non-probabilisti
 approa
hes.The paper is organized as follows. We �rst review some ba
kground on model
he
king using automata, de�ne the 
orresponding graph-theoreti
 problem, andbrie
y dis
uss possible sour
es for applying randomization. Then we propose theprobabilisti
 redu
tion algorithm and report experimental results a
hieved. We
on
lude with the des
ription of the se
ond method and with some �nal remarks.



2 Problem SettingWe 
onsider the following veri�
ation problem. A �nite state transition graph(also 
alled a Kripke stru
ture) is used to represent the behavior of a givensystem and a linear temporal logi
 (LTL) formula is used to express the desiredproperty of the system. The basi
 idea of automata-based LTL model 
he
kingis to asso
iate with ea
h LTL formula a B�u
hi automaton that a

epts exa
tlyall the 
omputations that satisfy the formula. If we 
onsider a Kripke stru
tureto be a B�u
hi automaton as well, then the model 
he
king 
an be des
ribed asa language 
ontainment problem and 
onsequently as a non-emptiness problemof (interse
ting) B�u
hi automata. A B�u
hi automaton a

epts some word i�there exists an a

epting state rea
hable from the initial state and from itself.Hen
e, we 
an sum up the model 
he
king problem we 
onsider as the followinggraph-theoreti
 problem.Non-emptiness problem of B�u
hi automata.Given a dire
ted graph G = (V;E), start state (vertex) s 2 V , a set of a

eptingstates F � V , determine whether there is a member of F whi
h is rea
hable froms and belongs to a nontrivial strongly 
onne
ted 
omponent of G.The dire
t approa
h to solve the problem is to de
ompose the graph intonontrivial strongly 
onne
ted 
omponents (SCCs), whi
h 
an be done in timelinear in the size of the graph using the Tarjan's algorithm [10℄. However, 
on-stru
ting SCCs is not memory eÆ
ient sin
e the states in the SCCs must beexpli
itly stored during the pro
edure. Cour
oubetis et al. [3℄ have proposed anelegant way to avoid the expli
it 
omputation of SCCs. The idea is to use a nesteddepth-�rst sear
h to �nd a

epting states that are rea
hable from themselves (to
ompute a

epting path). The pseudo-
ode of the NestedDFS algorithm is givenin Fig. 1. Only two bits need to be added to ea
h state to separate the statesstored in VisitedStates during the �rst and the se
ond (nested) DFS. The ex-treme spa
e eÆ
ien
y of the NestedDFS algorithm is a
hieved to the detrimentof time. The time might double when all the states are rea
hable in both sear
hesand there are no a

epting 
y
les. However, in appli
ations to real systems thespa
e is a
tually more 
riti
al resour
e. This makes the nested depth-�rst sear
hthe main algorithm used in many veri�
ation tools whi
h support the automatabased approa
h to model 
he
king of LTL formulas (e.g. SPIN).The spa
e requirements of the NestedDFS algorithm are determined by thene
essity of storing VisitedStates in randomly a

essed memory. Several im-plementations of NestedDFS use di�erent data stru
tures to represent the setVisitedStates. The basi
 one is a hash table [6℄. Another implementation [12℄makes use of symboli
 representation of VisitedStates via Ordered Binary De
i-sion Diagrams (OBDD).Hash 
ompa
tion is used in [14℄, where the possible hash-
ollisions are notre-solved. The algorithm 
an thus dete
t a state as visited even if it is not.Consequently, not all rea
hable states are explored during the sear
h, and anerror might go undete
ted.



pro
 DFS(s)add fs; 0g to VisitedStates;forea
h su

essor t of s doif ft; 0g not in VisitedStates then DFS(t) �od;if a

epting(s) then seed := s; NDFS(s) �endpro
 NDFS(s)add fs; 1g to VisitedStates;forea
h su

essor t of s doif ft; 1g not in VisitedStatesthen NDFS(t)else if t = seed then \report 
y
le" � �odend Fig. 1. Algorithm NestedDFSAnother te
hnique whi
h has been investigated to redu
e the amount of ran-domly a

essed memory is state-spa
e 
a
hing [5℄. The idea is based on theobservation that when doing a depth-�rst sear
h of a graph, storing only thestates that are on the sear
h sta
k is suÆ
ient to guarantee that the sear
hterminates. While this 
an produ
e a very substantial saving in the use of ran-domly a

essed memory, it usually has a disastrous impa
t on the run time ofthe sear
h. Indeed, ea
h state will be visited as many times as there are simplepaths rea
hing it. An improvement on this idea is to store not only the statesthat are on the sear
h sta
k, but also a bounded number of other states (as manyas will �t into the 
hosen \state-spa
e 
a
he"). If the state-spa
e 
a
he is fullwhen a new state needs to be stored, random repla
ement of a state that is not
urrently on the sear
h sta
k is used.The advantage of state-spa
e 
a
hing is that the amount of memory that isused 
an be redu
ed with a limited impa
t on the time required for the sear
h.Indeed, if the 
a
he is large enough to 
ontain the whole state spa
e, there isno 
hange in the required time. If the size of the 
a
he is redu
ed below thislimit, the time required for the sear
h will only in
rease gradually. Experimentalresults, however, show that below a threshold that is usually between 1/2 and 1/3of the size of the state spa
e, the run time explodes, unless additional te
hniquesare used to restri
t the number of distin
t paths that 
an rea
h a given state [5℄.The behavior of state-spa
e 
a
hing is quite the opposite of that of the hash-ing te
hnique. Indeed, state-spa
e 
a
hing guarantees a 
orre
t result, but at the
ost of a potentially large in
rease in the time needed for the state-spa
e sear
h.On the other hand, hashing never in
reases the required run time, but 
an fail to



explore the whole state spa
e. A 
ombination of state spa
e 
a
hing and hashinghas been proposed and investigated in [9℄.In this paper we propose a new te
hnique to atta
k the state-explosion prob-lem using a simple probabilisti
 method. A
tually, the te
hnique has been stronglymotivated by our intention to improve the performan
e of the model 
he
kerSPIN, and the te
hnique has been embedded into SPIN for testing purposes.The proposed method allows to solve the emptiness problem of B�u
hi au-tomata (i.e. 
omplete LTL model 
he
king and not only rea
hability) and itnever errs. It 
an be brie
y des
ribed in the following way. The algorithm isbased on the nested depth-�rst sear
h as des
ribed in Fig. 1. Ea
h time thealgorithm ba
ktra
ks through a state it employs a proper redu
tion strategy tode
ide whether the state will be kept in the VisitedStates table or whether it willbe removed. We propose two redu
tion strategies, the dynami
 and the stati
one. While the �rst one takes on the frequen
y of visiting the state, the se
ondone allows to eliminate delayed storing of the state and thus de
reases the num-ber of visits of individual states. We spe
ify properties of systems determiningwhi
h strategy suits better for a given veri�
ation problem.3 Algorithm with Probabilisti
 Redu
tion StrategyThe reason to store the states in the table of visited states during nested depth-�rst sear
h is to speed up the veri�
ation by preventing the multipli
ation ofwork when states are re-visited. A state that is visited only on
e need not bestored at all, while storing a state whi
h will be visited many times 
an result ina signi�
ant speed-up. The standard nested depth-�rst sear
h algorithm storesall visited states. On the other side, the optimal strategy for storing stateswould take into a

ount the number of times a state will be eventually visited{ a visitation fa
tor. As it is generally impossible to 
ompute this parameter inadvan
e, we will use probabilisti
 method to solve the problem.The pseudo-
ode of the modi�ed nested depth-�rst-sear
h algorithm withredu
tion strategy, NestedDFSReSt, is given in Fig. 2. Whenever the DFS pro-
edure explores a new state, the state is temporally saved in the VisitedStatestable (with parameter 0). Whenever DFS ba
ktra
ks trough a state, a test Re-du
tionStrategy is performed and if the test evaluates to true the state is removedfrom the VisitedStates table. We will 
onsider two basi
 probabilisti
 strategiesof removing states. The �rst one dynami
ally de
ides on removing a state ea
htime the state is ba
ktra
ked through, while the se
ond heuristi
 de
ides ran-domly in advan
e (before the veri�
ation is started) whi
h states will be storedpermanently.As in the 
ase of DFS, the NDFS pro
edure also needs the list of statesit has visited to be eÆ
ient. Therefore every exploring of a new state resultsin its saving to the VisitedStates table (with parameter 1). Whenever NDFSba
ktra
ks trough a state it respe
ts the Redu
tionStrategy test performed onthis state by the DFS pro
edure and if ne
essary removes the state from thetable.



pro
 DFS(s)add fs; 0g to VisitedStates;forea
h su

essor t of s doif ft; 0g not in VisitedStates then DFS(t) �od;if a

epting(s) then seed := s; NDFS(s) �;if Redu
tionStrategy(s) then delete fs; �g from VisitedStates �endpro
 NDFS(s)if a

epting(s) and fs; 0g not in VisitedStates then exit �; (�)add fs; 1g to VisitedStates;forea
h su

essor t of s doif ft; 1g not in VisitedStatesthen NDFS(t)else if t = seed then \report 
y
le" � �od;if fs; 0g not in VisitedStates then delete fs; 1g from VisitedStates �end Fig. 2. Algorithm NestedDFSReStRemoving states from the VisitedStates table has dire
t impa
t on the time
omplexity of the algorithm as re-visiting a state removed from the table invokesa new sear
h from this state.The 
orre
tness of the NestedDFSReSt algorithm follows from the 
orre
tnessof the NestedDFS algorithm [3℄. The additional key arguments it depends on aresummarized in the following two lemmas.Lemma 1. During the whole 
omputation the sequen
e of states with whi
h theDFS pro
edure is 
alled (DFSsta
k) forms a path in the graph G. The same istrue for the NDFS pro
edure and NDFSsta
k.Proof: The (N)DFS pro
edure is always 
alled with the argument t whi
h is asu

essor of the 
urrent state s.Lemma 2. Suppose that during the whole 
omputation both the DFSsta
k andthe NDFSsta
k are subsets of VisitedStates, then the NestedDFSReSt algorithmterminates.Proof: From the in
lusion follows that the (N)DFSsta
k always forms a simplepath. The number of simple paths in G is �nite and ea
h one is explored at moston
e.Theorem 1. The algorithm NestedDFSReSt is 
orre
t.



Proof: Whenever the (N)DFS pro
edure explores a new state, the state is tem-porally saved in the VisitedStates table. Therefore (N)DFSsta
k � VisitedStatesis invariantly true and NestedDFSReSt always terminates due to the Lemma 2.If NestedDFSReSt reports \
y
le" then due to the Lemma 1 there is a rea
hable
y
le 
ontaining an a

epting state. Conversely, suppose there is a rea
hable 
y-
le 
ontaining an a

epting state in G. Deleting states from VisitedStates table
annot 
ause leaving out any 
all of (N)DFS(t) whi
h would have been performedby NestedDFS algorithm. Moreover, the situation in whi
h the 
ondition of theif test on the very �rst line (denoted by �) in NDFS is true is equivalent tothe situation when fs; 1g is in VisitedStates in NestedDFS algorithm. ThereforeNestedDFSReSt sear
hes trough all the paths NestedDFS does and thus reports\
y
le" when NestedDFS does. �Noti
e that the test on the �rst line (�) of NDFS prevents re-sear
hing ofan a

epting state and thus speeds-up signi�
antly the overall time 
omplexity.This fa
t was 
on�rmed also by experimental results.The proof of the Theorem 1 is based on the fa
t that the NestedDFSReStalgorithm sear
hes through all the paths the NestedDFS one does. Due to thisfa
t our algorithm is 
ompatible with additional te
hniques used for state spa
eredu
tions, espe
ially with partial order redu
tion te
hniques used in SPIN.3.1 Dynami
 Redu
tion StrategyThe pseudo-
ode implementing the dynami
 redu
tion strategy is as follows:fun
t Redu
tionStrategy-Dynami
(s) : booleanp := random[0; 1℄;if p � Pdelthen Redu
tionStrategy-Dynami
 := trueelse Redu
tionStrategy-Dynami
 := false �endPdel is a �xed parameter determining the probability of deleting a statefrom VisitedStates table. Ea
h time the DFS ba
ktra
ks through a state s thestate is deleted with the probability Pdel and is kept stored with the probabilityPsto = 1� Pdel. On
e a state is kept stored in the table by the DFS pro
edure,it is never removed. The probability that a state will be eventually stored thusdepends on the number k of its visits during the 
omputation and is equal toProb(s is eventually stored) = 1 � P kdel. This means that a state with highervisitation fa
tor k has also higher probability to be stored permanently. Theprobability that the state s will be re-visited more than i times is equal toProb(s is i times deleted) = P idel.The dynami
 redu
tion strategy would lead to a non-trivial redu
tion ofrandomly a

essed memory if there is a non-trivial subset of the state spa
ethat will never be permanently stored. The expe
ted memory redu
tion 
an beexpressed as P �(size of the state spa
e), where P is the probability that a state



will never be permanently stored. If k is the average visitation fa
tor then P 
anbe estimated as P kdel. Therefore, we would like to have the highest possible valueof the probability that a state will never be permanently stored.On the other hand, not saving a frequently visited state in
reases the time
omplexity of the whole 
omputation. Therefore, we are interested in the ex-pe
ted number of visits after whi
h the state is stored permanently. Consider anelementary event fs is permanently stored during its i-th visitg. ThenProb(fs is permanently stored during its i-th visitg) = P i�1del Psto:Let H be a random variable over the above mentioned elementary events de�nedas H(fs is permanently stored during its i-th visitg) = i:We have that the expe
ted value of H isE(H) = 1Xi=1 iP i�1del Psto = Psto 1Xi=1 iP i�1del = Psto 1Xj=1 1Xi=j P i�1del == Psto 1Xj=1 P j�1del1� Pdel = Psto1� Pdel 1Xj=0 P jdel = Psto1� Pdel P 0del1� Pdel == Psto(1� Pdel)2 = PstoP 2sto = 1PstoIt 
an be seen that the expe
ted value of the random variable H depends on theprobability Psto and indi
ates that value Psto should be high.We 
an 
on
lude that in systems with a high visitation fa
tor we 
annot ex-pe
t reasonable spa
e savings without enormous in
rease of the time 
omplexity.3.2 Stati
 Redu
tion StrategyThe se
ond strategy tries to eliminate the main disadvantage of the dynami
 re-du
tion strategy, namely the delayed storage of a state. If a state will eventuallybe permanently stored, why not to store it immediately during the �rst visit.When de
iding whi
h states are to be stored we should prefer states with highvisitation fa
tor. As we 
annot 
ompute this fa
tor in advan
e we use probabilis-ti
 de
ision. All states are in advan
e and randomly divided into two groups:states whi
h will be stored and those whi
h will never be stored (representedas R). Hen
e, ea
h state is permanently stored during its �rst visit or never.The ratio between stored and non-stored states is sele
ted with the intention toa
hieve as highest redu
tion in state spa
e as possible.The pseudo-
ode implementing the stati
 redu
tion strategy is as follows:fun
t Redu
tionStrategy-Stati
(s) : booleanif s 2 Rthen Redu
tionStrategy-Stati
 := trueelse Redu
tionStrategy-Stati
 := false �end



The disadvantage of the stati
 redu
tion strategy is its insensibility to thevisitation fa
tor.4 ExperimentsTo be able to 
ompare experimentally our probabilisti
 algorithm with the non-probabilisti
 one, we have embedded the algorithm into SPIN model 
he
ker.We have performed a series of tests on several types of standard parametrized(s
alable) veri�
ation problems. Here we report on two of them only:Peterson Peterson's algorithm solves the mutual ex
lusion problem. We have
onsidered the algorithm for parameter N = 3 determining the number ofpro
esses. The property to be veri�ed was �(n
rit < 2) (no more than onepro
ess is in 
riti
al se
tion).Philosophers Dining Philosophers is a model of a problem of sharing of re-sour
es by several pro
esses. We have 
onsidered the algorithm for N = 4and N = 6. The property to be veri�ed was ��(EatingAny = 1) (absen
eof deadlo
k).The other problems we have 
onsidered were e.g. the Leader Ele
tion problem,Mobile pro
esses. In all these experiments we have obtained similar results.As our algorithm is 
ompatible with partial order redu
tion te
hniques usedin SPIN we have 
ompiled all problems with partial order redu
tions.For ea
h veri�
ation problem we �rst give two most important 
hara
teris-ti
s of the 
omputation performed by SPIN 
he
ker: States (the number of statessaved in the VisitedStates table) and Transitions (the number of performed tran-sitions). The number of transition is proportional to the overall time 
omplexityof the 
omputation. The size of the VisitedStates table in SPIN's 
omputationis nonde
reasing. On
e a state is stored in the table it is never removed. On theother hand in the NestedDFSReSt algorithm every visited state is temporallystored in the table and only when it is ba
ktra
ked through the (random) de
i-sion about its permanent storing is made. Therefore for our algorithm we needanother 
hara
teristi
, namely the highest size of the Visited States table, PeakStates. The parameter States de
lares the number of states stored in the tableat the end of 
omputation. The remaining two parameters, State Saving andTransition Overhead, 
ompare performan
e of the deterministi
 algorithm andthe probabilisti
 ones. Computations of probabilisti
 algorithms were repeated10 times, presented values are the average ones.Peterson's AlgorithmResults of experiments are summarized in the Table 1. The best results withDynami
 Strategy were a
hieved for storing probability 0.5 where saving in thesize of stored state spa
e was 33% while in
rease in the time was negligible, andfor probability 0.1 with 52% spa
e saving and multipli
ation fa
tor 4 of time.To get deeper inside we mention that the 
omputation without the redu
tion



States Peak Saving Transitions OverheadSPIN 17068 17068 0% 32077 1.00Dynami
 StrategyPsto = 0:50 10998 11421 33% 46074 1.44Psto = 0:10 6724 8263 52% 136344 4.25Psto = 0:01 5559 7407 57% 1110526 34.62Stati
 StrategyPsto = 0:75 12807 12812 25% 38761 1.21Psto = 0:50 8568 9661 43% 63662 1.98Psto = 0:40 6852 8417 51% 390737 12.18Table 1. Summary of Experimental Results for Petersonstrategy took about 1.5 se
ond in this 
ase. Yet another in
rease in the deletingprobability results in substantial grow of time but does not improve spa
e savingfa
tor signi�
antly. States Peak Saving Transitions OverheadSPIN 3727 3727 0% 18286 1.00Dynami
 StrategyPsto = 0:50 3047 3178 15% 33475 1.83Psto = 0:10 2482 2686 28% 139263 7.62Psto = 0:01 2316 2531 32% 1287156 70.39Stati
 StrategyPsto = 0:75 2788 2961 21% 49112 2.69Psto = 0:60 2221 2577 31% 232973 12.74Psto = 0:50 1875 2340 37% 3285607 179.68Table 2. Summary of Experimental Results for Philosophers with N = 4Experiments with Stati
 Strategy reveal that we 
an a
hieve 43% spa
e savingfor the pri
e of double time 
omplexity. 51% spa
e saving is attained with worsetime multipli
ation fa
tor (12 in 
omparison to 4) than in the 
ase of Dynami
Strategy. The di�eren
e between storing probability and real spa
e savings (i.e.for storing probability 0.4 we would expe
t 60% saving instead of measured 51%)has two reasons. Firstly, as we do not know whi
h states of the state spa
e area
tually rea
hable in the veri�ed system we have to divide the whole state spa
ein advan
e. Se
ondly, the division determines states whi
h are permanently savedbut the VisitedStates table 
ontains also temporally saved states and its size 
anbe temporally greater (parameter Peak States). State spa
e saving is 
omputedvia 
omparing the number of saved states by non-probabilisti
 
omputation andthe peak value of probabilisti
 
omputation.



Dining PhilosophersResults of experiments are summarized in the Table 2 for N = 4 and in theTable 3 for N = 6. In both 
ases the results are 
omparable. Dynami
 Strategyagain gives the best results for storing probability between 0.5 and 0.1 . Any fur-ther de
rease in the storing probability below 0.1 results in signi�
ant in
reaseof time 
omplexity. In the 
ase of Stati
 Strategy reasonable results were ob-tained for storing probability 0.75 and further de
reasing of probability leads tounreasonable time overhead and thus prevents from higher spa
e savings.States Peak Saving Transitions OverheadSPIN 191641 191641 0% 1144950 1.00Dynami
 StrategyPsto = 0:50 160426 165461 14% 2152384 1.88Psto = 0:10 136081 145214 24% 9400300 8.21Psto = 0:01 131306 140758 27% 91533400 79.90Stati
 StrategyPsto = 0:75 143661 155920 19% 6702840 5.85Psto = 0:65 124377 143691 25% 116103466 101.40Table 3. Summary of Experimental Results for Philosophers with N = 6Generally, the results for Philosophers are worse than those for Peterson'salgorithm and are remarkably in
uen
ed by the visitation fa
tor. While in thePeterson's algorithm the average number of state visits in SPIN's 
omputationis 32077/17068 = 1.8, in Philosophers it is 4.9 (N = 4) and 6 (N = 6). Experi-mental observations are thus in a

ordan
e with dedu
ed theoreti
al results.5 Random Nested DFSBesides the algorithm with probabilisti
 redu
tion strategy we have also exploredthe potential of randomizing the bran
hing points in nested depth �rst sear
h.Veri�
ation tools typi
ally build the state spa
e from the synta
ti
al des
riptionof the problem. E.g. in SPIN the forea
h su

essor t of s do in the depth �rstsear
h is implemented as for i = 1 to n 
y
le. This means that the sear
h order is�xed by the input PROMELA program des
ribing the system. If the veri�
ationfails due to spa
e limitations it is re
ommended to re-write the program tore-order the guarded 
ommands in 
onditionals and loops. However, the usertypi
ally has no information on what would be a good re-arrangement. Hen
e,the situation is very suitable for a randomized approa
h.We have implemented the forea
h su

essor t of s do in the depth �rstsear
h as a random sele
tion of the su

essors ordering and performed a series of
omparisons with the standard SPIN tool on similar set of problems as we didbefore. Even though the method is trivial, the results we obtained were quite



surprising. For instan
e for the Philosophers (with an error) the results arepartially summarized in the Table 4.SPIN Random NDFSN States Trans Memory Runs Su

ess States Trans Memory11 288922 1449200 56.9 MB 10 10 100421 505150 26.412 205.0 MB 10 3 68355 346824 19.914 2.8 GB 50 5 46128 250266 16.216 38.5 GB 50 5 46288 245406 17.820 6.7 TB 50 2 38282 213639 18.2Table 4. Summary of Experimental Results for Random Nested DFSFor the value of the parameter N greater than 11 the SPIN model 
he
kerwas not able to 
omplete the 
omputation. We therefore give estimated values forthe memory requirements obtained by extrapolation from �nished 
omputations.The randomized algorithm was repeatedly performed (Runs) and the numberof su

essful runs (dis
overing the error before memory over
ow) is reported(Su

ess). The experiments indi
ate that even a small number of repetitions 
andramati
ally in
rease the power of the tool.We have also 
onsidered some arti�
ial veri�
ation examples, whi
h demon-strate the potential of the method in some extreme 
ases. Consider the followingveri�
ation problem de�ned by the program1 pro
 ExIF2 MainCounter := 0; StepCounter := 0;3 while StepCounter < 1000 do4 if5 true ! MainCounter :=MainCounter + 16 true ! MainCounter :=MainCounter + 27 �;8 StepCounter := StepCounter + 1 od9 endand the LTL formula �(MainCounter < 2000�Di� )The parameter Di� determines the ratio of runs of the program that satisfyand violate the formula. More pre
isely, the probability that MainCounter =2000�Di� isProb(MainCounter = 2000�Di� ) = �1000Di� ��12�1000We have performed experiments for various values of Di�. The results are sum-marized in the Table 5. The experiments have 
on�rmed that the a
tual memory



savings stri
tly depend on the value of the parameter Di�, that is on the proba-bility of a faulty run, and have ranged from 20% up to 90%. We stress that afterre-ordering of guarded 
ommands in the ExIF program (swapping lines 5 and 6)SPIN �nds the 
ounterexample immediately. Re-writing the program helps inthis 
ase. The next example shows that in some situations even re-writing theprogram does not help.Di� ViolProb Algorithm States Transitions %400 1:3642:10�10 RandNestedDFS 37999 55810 10.4%SPIN 363202 543502 100.0%200 8:2249:10�96 RandNestedDFS 368766 551537 57.3%SPIN 643602 964002 100.0%100 6:7017:10�162 RandNestedDFS 647855 969977 79.6%SPIN 813802 1219250 100.0%Table 5. Summary of Experimental Results for ExIFLet us 
onsider the LTL formula�((StepCounter < 1000)_ (MainCounter 6= 1500)):The formula expresses the property that at the end of every 
omputation (i.e.when StepCounter = 1000) the value of MainCounter is not 1500. It is easy tosee that the ExIF program does not ful�l this property. The erroneous 
omputa-tions are those where both guards are sele
ted equally. For every re-ordering ofthe guards SPIN has to sear
h the signi�
ant part of the state spa
e to dis
overa 
ounterexample. On the other hand, the RandNestedDFS algorithm su

essesvery qui
kly as it sele
ts both guards with the same probability. The same e�e
thas been observed in other tests as well. E.g. in the Leader ele
tion problem, forevery permutation of all guards SPIN has sear
hed approximately the same num-ber of states while RandNestedDFS has needed to sear
h through signi�
antlysmaller part of the state spa
e.6 Con
lusionsWhile veri�
ation of probabilisti
 systems seems to be ready to move to theindustrial pra
ti
e, the use of probabilisti
 methods in model 
he
king of non-probabilisti
 systems is at its beginning. The use of probabilisti
 methods in theexpli
it state enumeration te
hniques to redu
e the memory required by hashingis an ex
ellent example of the potential of probabilisti
 methods. Our intentionwas to investigate other possibilities how randomization 
ould help in model
he
king.We have proposed a new probabilisti
 veri�
ation method whi
h 
ould redu
ethe amount of random a

ess memory ne
essary to store the information about



the system. The redu
tion rate depends on the veri�ed system, namely on theaverage number of state visits. Our experiments have 
on�rmed that the method
ould a
hieve a non-trivial redu
tion within reasonable time overhead.Another important issue for further study is to examine possibilities of 
om-bining our probabilisti
 redu
tion strategy algorithm with other te
hniques toredu
e memory usage. We also plan to perform additional experiments to give amore 
omprehensive view of the performan
e of our te
hnique and of its s
ala-bility.7 A
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