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Abstract

Distributed automata-based LTL model-checking relies on algorithms for finding
accepting cycles in a Biichi automaton. The approach to distributed accepting cy-
cle detection as presented in [9] is based on maximal accepting predecessors. The
ordering of accepting states (hence the maximality) is one of the main factors affect-
ing the overall complexity of model-checking as an imperfect ordering can enforce
numerous re-explorations of the automaton. This paper addresses the problem of
finding an optimal ordering, proves its hardness, and gives several heuristics for find-
ing an optimal ordering in the distributed environment. We compare the heuristics
both theoretically and experimentally to find out which of these work well.

1 Introduction

Over the past decade, many techniques using distributed and/or parallel pro-
cessing have been developed to combat the computational complexity of ver-
ification problems. They cover reachability analysis [3,14,17,21], verification
of branching time logics [4,5,7,8,12,15], linear time logics [1,2,10], equivalence
checking [6,18], and other verification problems.

In this paper we concentrate on the technique of maximal accepting pre-
decessor for LTL model-checking as presented in [9]. We show how this tech-
nique can be extended and optimised to speed-up LTL model-checking in a
distributed environment.

The maximal accepting predecessors (MAP) algorithm comes out from
the automata approach which reduces the LTL model-checking problem to
the emptiness problem for Biichi automata. A Biichi automaton accepts a
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non-empty language if and only if there is a reachable accepting cycle in the
Biichi automaton graph.

Reachability is a graph exploration technique that can be efficiently par-
allelised. The MAP algorithm exploits reachability for cycle detection in the
distributed environment. The algorithm is derived from the observation that
all vertices on a cycle have the same set of predecessors. To avoid computing
sets of all predecessors the algorithm assigns to every vertex a single repre-
sentative predecessor. Another core idea of the algorithm is to make use of
vertex ordering to determine suitable representatives. Namely, supposing the
vertices of the graph are ordered, the representative is the maximal accepting
predecessor of the vertex (or null value if there is none). A sufficient condition
for a graph to contain an accepting cycle is that there is an accepting vertex
with itself as the maximal accepting predecessor. Unfortunately, this is not
a necessary condition as there can exist an accepting cycle with “its” maxi-
mal accepting predecessor lying outside of it. For this reason the algorithm
systematically re-classifies those accepting vertices which do not lie on any
cycle as non-accepting and re-computes the maximal accepting predecessors.
The overall complexity of the MAP algorithm is mainly derived from both
computing the representatives and the number of iterations in which vertices
are re-classified and the representatives are re-computed. It turns out that
the vertex ordering is of crucial importance for improving the performance of
the algorithm.

In [9] a few basic vertex orderings have been considered, a systematic ex-
position of vertex orderings and its impact on the algorithm effectiveness has
been left open. In this paper we investigate the influence of the vertex ordering
in detail. First of all, we introduce the notion of an optimal ordering as the
ordering for which the MAP algorithm terminates in the very first iteration,
i.e. without re-classifying the representatives. The optimal ordering can be
computed for example by depth-first search traversal of the graph. However,
as we prove, the problem itself is P-complete and its efficient distributed so-
lution is not at hand (Section 3). Therefore, we formulate several heuristics
to resolve the ordering problem in a distributed environment and investigate
their theoretical properties (Section 4). All heuristics went through a detailed
experimental evaluation (Section 5) giving a deeper insight into their practical
usability in the distributed verification.

2 Maximal Accepting Predecessors

In this section, we recapitulate the main idea of the MAP algorithm as pre-
sented in [9], concentrating on the impact of vertex ordering on the complexity
of the algorithm.

The MAP algorithm follows the automata-based approach to LTL model-
checking [22]. The verification problem is reduced to the emptiness prob-
lem for Biichi automata and is represented as a graph problem. Let A =
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(3,5,6,s, Acc) be a Biichi automaton where X is an input alphabet, S is a
finite set of states, 6 : S x ¥ — 2% is a transition relation, s is an initial
state and Acc C S is a set of accepting states. The automaton A can be
identified with a directed graph G4 = (V| E, s, A), called an automaton graph,
where V' C S is a set of vertices corresponding to all reachable states of the
automaton A, E = {(u,v) | u,v € V and v € d(u,a) for some a € ¥}, s € V
is a distinguished initial vertex corresponding to the initial state of A and A is
a distinguished set of accepting vertices corresponding to reachable accepting
states of A.

Definition 2.1 Let G = (V, E,s, A) be an automaton graph. The reacha-
bility relation ~TC V x V is defined as u ~T v iff there is a directed path
(ug, uq, ..., ur) in G where ug = u, u, = v and k > 0.

A directed path (ug,uq,...,u) forms a cycle if ug = uy and the path
contains at least one edge. A cycle is accepting if at least one vertex on the
path (ug,uq,...,u;) belongs to the set of accepting vertices A.

A Biichi automaton recognises a non-empty language iff its automaton
graph contains an accepting cycle. The MAP algorithm detects accepting
cycles by maximal accepting predecessors. It assumes a linear ordering < on
the set V' of vertices. The ordering is extended to the set V- U{null} (null ¢ V')
by setting null < v for all v e V.

Definition 2.2 Let G = (V, E,s, A) be an automaton graph. A mazimal
accepting predecessor function of the graph G, mapg : V. — (V U {null}), is
defined as

mapg(v) = {

max{u € A |u~* v} if{ueAdju~tv}#£0D
null otherwise

If there is a vertex v € V with mapg(v) = v, the algorithm reports an
accepting cycle. However, it can happen that the graph contains an accepting
cycle and for all v € V' the inequality mapg(v) # v holds. As all vertices on a
cycle must have the same maximal accepting predecessor, this can only happen
if this predecessor lies outside the cycle. Such a vertex can be removed from the
set of accepting vertices without violating the existence of an accepting cycle in
the graph. This idea is formalised in the notion of a deleting transformation.
Whenever the deleting transformation is applied to an automaton graph G
with mapg(v) # v for all v € V, it shrinks the set of accepting vertices by
deleting the vertices which evidently do not lie on any cycle.

Definition 2.3 Let G = (V, E, s, A) be an automaton graph and mapg its
maximal accepting predecessor function. A deleting transformation is defined
as del(G) = (V,E,s, A), where A = A\ {u € A| mapg(u) < u}).

Note that the application of the deleting transformation can result in a
different map function but it preserves the property “the graph contains an
accepting cycle”. The MAP algorithm alternately computes the map function
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Fig. 1. Deleting transformation

and applies the deleting transformation till an accepting cycle is discovered or
the set of accepting states is empty.

MAP Algorithm
while A # () do
compute mapg;
if (Ju € A: mape(u) = u)
then return CYCLE
else G = del(G);
fi
od
return NO CYCLE

In our original algorithm [9] the deleting transformation has been defined
using the set {u € A | Jv € V.imaps(v) = u} of accepting vertices to be
removed. The new formulation of the deleting transformation used here is
more appropriate in the context of optimising vertex ordering as it generally
removes more vertices. E.g. consider the graph on Figure 2 with two accepting
vertices 2 and 4 and the vertex ordering given by their numbers. The algorithm
terminates in two iterations under the original definition (in the first iteration
the vertex 4 is deleted, in the second one the vertex 2 is deleted) while it
needs only one iteration to terminate under the new definition (both accepting
vertices are deleted at once as mapg(2) = null < 2 and mapg(4) = null <
4). The correctness of the modified algorithm can be easily proved following
similar arguments as given in [9].

3 Optimal Vertex Ordering for the MAP Algorithm

The time complexity of the distributed MAP algorithm is O(a? - m), where
a is the number of accepting vertices and m is the number of edges in the
automaton graph. Here the factor a-m comes from the computation of the map
function and the factor a relates to the number of iterations, i.e., computations
of the del function. In order to optimise the complexity one aims to decrease
the number of iterations by choosing an appropriate vertex ordering. A natural
way how to order the vertices is to use the enumeration order as it is computed
in the enumerative on-the-fly model-checking. In [9], each vertex was identified
with a vector of three numbers — the workstation identifier, the row number
in the hash table, and the column number in the row. The ordering of vertices
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was given by the lexicographical ordering of these triples. In this section, we
define the notion of an optimal ordering and prove that the optimal ordering
problem is P-complete.

Let < be a linear ordering on vertices used by the algorithm MAP and
iter_ be the number of iterations of the main cycle till the algorithm MAP
terminates.

Definition 3.1 An ordering < is optimal iff iter_, = 1.

The optimality of an ordering is tightly related to a reachability relation
on the set of accepting vertices.

Definition 3.2 An ordering < respects reachability iff for all u,v € A, when-
ever (u~T v AvobT u) then u < v.

Lemma 3.3 If an ordering < respects reachability then it is optimal.

Proof. We prove that non-optimal ordering does not respect reachability.

Suppose the ordering < is not optimal and there is an accepting cycle in the
graph G. The algorithm does not detect an accepting cycle in the first iteration
if for all accepting vertices u the value mapg(u) # u. Let v be the maximal
accepting vertex lying on a cycle. Then v < mapg(v), mapg(v) ~T v, and
v T mapg(v). Therefore < does not respect reachability.

If there is no accepting cycle in the graph, then there is an accepting vertex
v which is not re-classified as non-accepting after the first iteration of the MAP
algorithm. It means that v < mapg(v) and mapg(v) ~* v. From acyclicity
we have v " mapg(v), which implies that < does not respect reachability.

Lemma 3.4 For every automaton graph there is an optimal ordering. More-
over, an optimal ordering can be computed in time O(a - m).

Proof. We give algorithm which computes an optimal ordering. As a first
step, the algorithm computes the reachability relation R = {(u,v) | u,v €
A,u ~T wv}. This computation can be done for example by running a
reachability procedure from all accepting vertices separately which takes time
O(a-m).

Now, if the graph does not contain any accepting cycle, then for u,v € A
we put w < v if and only if (u,v) € R. Other pairs of vertices are ordered
arbitrarily. If the graph contains an accepting cycle, then there is a vertex u
with (u,u) € R. Let v < u for every accepting vertex v, v # u. Other pairs
of vertices are again ordered arbitrarily.

Notice, that a graph can have several optimal orderings, as the ordering of
non-accepting vertices and of accepting vertices, which are mutually unreach-
able, is not important.

The question is whether an optimal ordering can be computed more effi-
ciently in the distributed environment. We provide a strong evidence that the
computation of an optimal ordering cannot be significantly speeded up by the
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use of any reasonable number of parallel processors. Namely, we prove that
the optimal ordering problem is P-complete and thus inherently sequential. A
problem is P-complete if it belongs to P and every language L € P is log-space
reducible to the problem (see [13] for details on P-completeness).

The optimal ordering problem is to decide for a given automaton graph
and two accepting vertices u, v whether u precedes v in every optimal ordering
of graph vertices. Lemma 3.4 shows that the optimal ordering problem is in
P. We prove P-hardness by reduction from the NAND circuit value problem.

A NAND boolean circuit is a sequence B = (By,...,B,) where By =
1 and B; = =(B;, V B;,), i1,i2 < i. Let value(By) = true, value(B;) =
—(value(B;,) V value(B;,)), and value(B) = value(B,). The NAND circuit
value (NANDCYV) problem is to decide for a given NAND boolean circuit B
whether value(B) = true. Ladner [16] shows that the NANDCYV problem is
P-complete.

Theorem 3.5 The optimal ordering problem is P-hard.

Proof. By log-space reduction of the NANDCYV problem to the optimal or-
dering problem. Let B = (By,...,B,) be a NAND boolean circuit. We
construct an automaton graph G and identify its two vertices u, v in such a
way that u precedes v in every optimal ordering of graph vertices if and only
if value(B) = true.

First, for each B; we construct a graph G; inductively. The graph Gy =
({Tv, Lo, Fo}, {(T0, Lv), (1o, Fy), (Fo, o) }) is depicted in Figure 2a). Let B, =
—=(B;, V B;,). Then G; contains as its subgraphs G;, and Gj,, new vertices T;,
I;, F;, and new edges as depicted in Figure 2b).

129

a) graph Gy b) graph G;

Fig. 2. Construction of the automaton graph

We prove that for all ¢ = 0,...,n the graph G; has specific reachability
properties. Namely,

if value(B;) = true then T; ~>t I, ~F Fy Fy ~*+ I, I A4+ Ty, and F 47 T,
if value(B;) = false then F; ~T I; ~>T T, Ty ~7T I, I; o671 Fy, and T; 6T Fj.
6
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The assertion can be proved by induction on i. For i = 0, value(By) = true
and the assertion can be easily checked following Figure 2a).

For the induction step let us suppose value(B;) = true. Then value(B;,) =
value(B;,) = false and by induction hypothesis there are paths from I;, to Tj,
and from I, to T;,. These paths together with edges (73, I;), (I;, I;,), (T3, I;,),
and (T;,, F;) form a path from T; to F; in G;. On the other hand, as there is
no path from I; to Fj in Gj;, neither from [;, to Fj, in G;,, there is no path
both from I; and F; to T} in G;.

The case value(B;) = false divides into three subcases depending on val-
ues of value(B;,) and value(B;,), all subcases are handled analogously to the
previous case.

To finish the proof of P-hardness of the optimal ordering problem, let us
reduce the NAND boolean circuit B to the automaton graph G containing as
its subgraph G,,, a new initial vertex S and edges from S to all vertices in
G,. Vertices T, and F,, are accepting. From properties of G,, we have that
if value(B) = true then T,, ~T F, A F,, o6+ T, and if value(B) = false then
F, ~*T T, AT, +" F,. We claim that value(B) = true iff in every optimal
ordering T,, precedes F,. Clearly, if value(B) = true and F, preceded T,
then map(T,) = null, map(F,) = T,, and the MAP algorithm would need
two iterations to complete the cycle detection. For the opposite implication,
if value(B) = false, then ordering in which F,, precedes T, is optimal as
map(F,) = null and map(T,) = F,. To conclude the proof we observe that
the construction of the graph GG can be done in space logarithmic with respect
to the circuit size.

12

4 Heuristics for vertex ordering

As the optimal ordering problem is P-complete, we cannot expect the compu-
tation of an optimal ordering in the distributed environment to be significantly
more efficient than in the sequential setting. Therefore we aim for non-optimal
orderings. In this section, we describe several heuristics for computing a vertex
ordering. All but one are easily computable in the distributed environment.
For all orderings we indicate how “far” is the computed ordering from the
optimal one. We elaborate a quantitative measure that characterizes the dis-
tance.

Definition 4.1 Let < be an ordering and v = (uy,...,u,) be a path in G.
Then (u;,...,u;) is a reverse subsequence of the sequence (ui, ..., uy) if
Uiy, ..., U;, are accepting vertices and w;, < ... < u;, < u;. The maximal
length of a reverse subsequence of the path v is the index of the path ~,
index 4 (7).

Index of a vertex u is defined as indez . (u) = max{index_(v) | v is a path
from the initial vertex to the vertex u in G}.

Index of an automaton graph G is defined as indez < (G) = max{indez - (u) |
u is a vertex in G'}.
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To illustrate the definition, let v = (4,2,3,5,1) be the path depicted on
Figure 3 and 1 < 2 < 3 <4 < 5. Then (4,2), (4,3), (4,3,1), and (3,1) are
reverse subsequences of the sequence (4,2,3,5,1). On the other hand, the
sequences (4,2,3,1) and (5, 1) are not reverse subsequences of . Index of the
path v is 3.

O-@0-0-6-0

Fig. 3. Path with reverse subsequence (4,3, 1)

Theorem 4.2 For a graph G and a vertex ordering <, iters = indez 4(G).

Proof. To prove the inequality indez-(G) < iter let us assume there is a
vertex u with index - (u) > iter.. Let 0 = (uy,...u) be a reverse subsequence
of a path from s to u with |o| = indez(u). Then at least two vertices u;, u;
(i < j) have to be deleted from A during the same deleting transformation.
But u; ~* wj, u; < u; and therefore u; < map(u;). This contradicts the
definition of the deleting transformation.

For the opposite inequality index(G) > iter, let u be a vertex and
v = (s,...u) be a path such that index.(v) = indezx-(u) = indexL(G) = k.
Let o = (uq, usg, . . . ux) be the reverse subsequence of the maximal length of the
path v. By induction on the index 7 we prove that the vertex u; is removed
from the set of accepting vertices during the ith iteration of the algorithm
MAP.

For ¢+ = 1 the assertion follows from the maximality of . For the induction
step assume that the vertex u; ; was removed during the (i — 1)th iteration.
If u; is not removed from the set of accepting vertices during the ith iteration
then there is a vertex v; € A with s ~" v; ~7 u; and u; < v; (i.e. in the ith
iteration u; < map(u;)). The vertex v; is re-classified as non-accepting not
sooner than during the ith iteration and we can repeat similar arguments for
the vertex v;. As a result we have vertices u; < v; < v;_1 < ...v; with s ~T
vy ~T .. v; ~T ;. Hence (vy,v9,...0;u;,. .. up) iS a reverse subsequence
with k 4 1 vertices of a path from s to u. This contradicts the maximality of
v and o.

Now we define several vertex orderings which are based on different ways
of graph traversal. All but the first one are envisaged to be appropriate for
the distribution.

Definition 4.3 Let GG be an automaton graph.

<prs: Suppose the graph G is traversed by depth first search (DFS). We
define u <ppg v iff the vertex w is backtracked by DFS later than the
vertex v (i.e., <ppg is the reverse of DFS-postorder).

<prs: Suppose the graph G is traversed by breadth first search (BFS). We
define u <gpg v iff the vertex u is visited by BFS before the vertex v.

8



AL ALEIVEy A HEALIR S, AYAVAVAY DY ALY LS WA vLg A

< Brspreds: Suppose the graph G is traversed by BEFS. Let G’ be the breadth
first search tree. Let visit(u) = (acc_preds, BF'S,,), where acc_preds is the
number of accepting predecessors of the vertex u in G' and BF'S,,, is the
time when the vertex u is visited by BFS. We define u < gpgpreas v iff visit(u)
is lexicographically smaller than wvisit(v).

The difference between <ppgpreqs and <pps is shown in Figure 4. In both
graphs the successors of the initial vertex are proceeded from left to right. For
the left hand side graph iter_,., . = 2 and iter.,,; = 1 (since a <pgs b,
but b <ppspress a) while for the right hand side graph iter_,., ., = 1 and
iter . = 2 (since d <ppspreas ¢, but ¢ <pps d).

Fig. 4. Comparison of <prspreds and <prg

For the next ordering suppose the graph G is divided into subgraphs G,
Gs,. .., Gy. Further suppose G is traversed by a modified depth first search
(cDFS) which differs from DFS in traversing cross edges (edges with vertices
from distinct subgraphs). For each subgraph, ¢cDFS maintains a queue of
vertices from which it starts a local DFS. A local DFS traverses only the re-
spective subgraph. When a cross edge is encountered, its endpoint is enqueued
to the respective queue and the search backtracks. cDFS is initiated with a
local DFS from an initial vertex and terminates when no local DF'S is running
and all queues are empty. A straightforward way to distribute the computa-
tion of ¢cDFS is to place subgraphs G, G,..., G, on different computers and
run local DFSs in parallel.

<¢prst Suppose the graph G is traversed by cDFS. For u € G;, v € G; we
define u <.ppg v iff i < j or (i = j and u is backtracked later than v).

Lemma 4.4 <ppg is an optimal ordering, i.e., index -, ..(G) = 1.

Proof. According to Lemma 3.3 it suffices to prove that <pgg respects the
reachability relation. Let u,v € A, u ~T v and v 4" u. If u is visited by DFS
before v, then u is backtracked after all its successors and therefore u <ppg v.
If u is visited later than v, then v must have been backtracked before u was
reached, because there is no path from v to u. Hence u <prg v. The optimality
of <pps corresponds with P-completeness of the DFS problem [20].

Lemma 4.5 For each < € {<prs, <Brspreds, <cprs} there is an automaton
graph G such that index L (G) = |A|.
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Proof. Graph certificating the upper bound for <prs and <prgpress is de-
picted in Figure 5a) (successors of the initial vertex are traversed from left to
right, ap <pps a1 <grs .. .G, and ag < BFSpreds 1 =BFSpreds - - .am) and for
<cprs in Figure 5b) (successors of the initial vertex are traversed bottom up,
d <cprs ¢ <cprs D).

a) upper bounds for <pps and < prspreds b) upper bound for <.prs

Fig. 5. Upper bounds

5 Experiments

We have implemented variants of the MAP algorithm using vertex orderings
described in the previous section. The experiments have been performed on
a network of ten Intel Pentium 4 2.6 GHz workstations with 1 GB of RAM
each interconnected with a 100Mbps Fast Ethernet and using tools provided
by our own distributed verification environment DiVinE [11].

Name Vertices | Acc. Vertices | Error
Elevator10_1 891372 307692 | NO
LookUpProc8_2 1954569 1458848 | NO
PublicSubscribe_1 | 2051215 204612 | NO
Rether10.4 11325003 5649118 | NO
Rether08_2 2898644 850689 | YES
PLCshedule600_-1 5096287 3827319 | YES
Lifts4_1 998570 331596 | NO
Phils141._3 7193116 2410147 | NO
TrainGate8_2 17572372 11668232 | YES
Peterson3Err_1 1135804 796734 | YES

Table 1

Summary of graphs

10
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TrainGate8.2 | 2 | 4| 6 8 |10 | |PLCshedule600_-1{2| 4 | 6 | 8 | 10
<rnp | Time| 89 |69 45 | 24 | 10 <RND Time [9]|109| 45 | 62 | 13
Tter. | 1 | 1| 1 111 Iter. |1 1|1 |11
<prs |Time|116(67| 34 | 23 | 16 <BFS Time |7 9 | 3 | 14| 18
Tter. | 1 | 1| 1 111 Iter. |1 1|1 |11
~<BFSpreds | Iime| 77 |65 26 | 20 | 14 ~<BFSpreds | Time |3| 3 2 3 3
Tter. | 1 | 1| 1 111 Iter. (1| 1 |1 |11
<cprs |Time| — | —|1417 (855|744 ~cDFS Time |—|820|588|450|242
Tter. | — | —| 1 111 Iter. || 1 |1 |11
Peterson3Err 1| 2 | 4 | 6 | 8 | 10 Rether08_2 2 1416|810
<rnp | Time| 81 |127] 52 | 70 | 65 <rND |Time| 86 | 70 | 32 | 40 | 31
Tter. | 1 | 1|1 | 1|1 Tter.| 1 | 1 | 1| 1] 1
<BrFs | Time|167|387|246|216|165 <Brs | Time|465|285|146|158| 93
Tter. | 1 | 1|1 | 1|1 Tter.| 1 | 1 | 1| 1] 1
<BFSpreds | Time | 116|213 |114| 98 | 72 | | <BFSpreds | Time |342|136| 88 |131| 95
Tter. | 1 | 1|1 | 1|1 Tter.| 1 | 1 | 1| 1] 1
<epDFs | Time | 141(162(219|129|114 <epDFs | Time|465|281|232|186|129
Tter. | 1 | 1|1 | 1|1 Tter.| 1 | 1 | 1| 1] 1
Table 2

Experimental results: Graphs containing accepting cycles

In order to examine the performance of the algorithm, we performed an
extensive experimental evaluation using graphs representing various verifica-
tion problems. The graphs are identified in Table 1 along with their most
important characteristics — the number of reachable vertices and the number
of reachable accepting vertices. The column Error indicates the presence or
absence of an accepting cycle in the graph. Most of the graphs could not be
stored on a single computer.

We compared vertex orderings <prs, <prspreds, and <.prs. Moreover,
there are several natural vertex orderings derived from the random hash func-
tion used for storing states (see [9] for more details). We used the best one
from [9], denoted <gyp, as a “benchmark” for the comparison with newly
presented orderings.

Detailed results of all experiments are reported in Tables 2 and 3. For
every graph and every ordering we performed experiments on various numbers
of workstations. For each setup we give the number of iterations performed
by the algorithm and its run time in seconds. The run time represents an
average taken from several runs. The sign =" means that the setup resulted

11



AL ALEIVE Yy

N HALIN LRy

4vaAaVIVAY UUY ALV JavAv 4O

Experimental results: Graphs without accepting cycles

in a computation which does not finish due to memory limitations.

Elevator10_1 2(41] 6| 8 |10 | |PublicSubscribe 1| 2 | 4 | 6 | 8 | 10
<rnDp | Time|295(193|167|153|119 <RND Time |[152| 92 | 67 | 66 | 50
Tter. | 14 | 14 | 14 | 14 | 14 Iter. 8| 8| 81|88
<Brs | Time|296 |265 |346|382|208 <BFS Time |[159|97 | 72| 56 | 52
Iter. | 5 | 7| 8 |10 | 8 Iter. 4 16 |6]|6]6
~<BFSpreds | 1ime | 159|130 (119|117 | 90 | | <BFSpreds| Time |152| 91 | 67 | 64 | 52
Iter. | 3 | 4 | 4| 4] 4 Tter. 313131313
<cprs | Time|841|530|637 (294|294 ~cDFS Time |336(195|285(195|142
Iter. | 33 | 48 | 49 | 33 | 48 Iter. 718|888
Lifts4_1 214161810 Lup8.2 2 4 6 8 | 10
<rnp | Time|225|112| 76 | 67 | 60 <rnp | Time| 714 | 678 | 266 | 245|196
Iter. | 12 |10 | 8 | 8 | 10 Iter. | 12 | 12 | 12 | 12| 12
<prs |Time|227(121| 91 | 73 | 60 <BrFs |Time|1640| 866 | 547 | 508|365
Iter. | 3 | 4 | 4| 4| 3 Iter. | 5 7 9 819
<BFSpreds | Lime | 29912421190 121|105 | | <BFspreds | Time | 427 | 293 | 185 | 167|129
Iter. | 4 | 4 | 5| 5| 4 Iter. | 3 3 3 3|3
<cprFs | Time| 397225360 (216|151 <cprFs | Time|1780(1038{1354|995 | 690
Iter. | 11 | 21 | 26 | 26 | 28 Iter. | 34 | 41 | 38 | 48 | 45
Phils14L_3 2 4 6 8 10 Rether10.4 |2(4|6| 8 10
<rnD | Time | 2718|1983 |2220 | 3269 | 2709 <mnD | Time|—|—|—|1130| 722
Tter. | 11 | 11 | 11 | 11 | 11 Iter. |—|—|—| 20 20
<Brs | Time|3444|2606|4812|1935|2813 <Brs |Time|—|-|-|1390| 945
Iter. | 4 4 9 6 8 Tter. |—|—|—| 10 11
~<BFSpreds | Time | 3430 1735|2597 | 1427|1226 | | <BFSpreds | Time |—|—|—| 594 | 406
Iter. | 3 3 3 3 3 Iter. |—|—|—| 4 5
<cprs |Time| - [6237]6304|5635|5121 <cprFs | Time|—|—|—[5692|15278
Tter. | - 13 | 12 | 12 | 14 Tter. |—|—|—| 165 | 171
Table 3

In the case of graphs with an accepting cycle, all computations performed
only one iteration. In other words, an optimal ordering was found immediately.
Although this may seem strange from a theoretical point of view, there is some
experimental evidence for this. The number of iterations is bounded by the
quotient graph height. The quotient graph of G = (V, E) is a graph (W, H),

12




AL ALEIVEy A HEALIR S, AYAVAVAY DY ALY LS WA vLg A

such that T is the set of strongly connected components of G and (C4,Cy) € H
if and only if C} # C5 and there exist r € Cy, s € Cy such that (r,s) € E. The
height of the quotient graph is the length of the longest path in the quotient
graph. As argued in [19], the quotient graph height is for model checking
graphs typically low and thus the MAP algorithm tends to have only a few
iterations. In the presence of an accepting cycle, the number of iterations is
typically just one.

Furthermore, in some cases you can notice that a computation on fewer
workstations takes less time than a computation on more workstations. These
irregularities are caused by the hash function used for partitioning and are
not related to the algorithm’s behaviour.

Yet another observation drawn from the experiments is that in some cases
the number of iterations necessary to finish the computation is quite different
under different orderings, but the resulting times are very close. This is caused
by the uneven number of re-explorations during one iteration. However, lower
number of iterations generally results in a faster computation.

As for the orderings, though <pps and <ppspress are both based on the
BES traversal, <prspress oOutperformed <ppg in most experiments. In fact,
our experiments suggest the <ppgyreqs ordering to be the best one among the
compared orderings.

The <.prs ordering can be considered from the theoretical point of view
as a promising one, as it tries to mimic the optimal <ppg ordering. However,
it fails to scale well. The high number of iterations is caused by the direct
influence of graph distribution on vertex ordering and by the high number
of cross edges in the distributed graph. Due to these reasons is the positive
impact of distribution dampened.

The random ordering <zyp can be classified as a “better average”. It
is interesting to note that despite its randomness it sometimes outperforms
orderings which have been designed to employ specific graph features.

Finally, for the <pps, <prspress and <gyp orderings the algorithm works
on-the-fly as it simultaneously computes the map function and performs cycle
detection. The experiments clearly demonstrated that in the presence of an
accepting cycle, the algorithm was able to detect it during the first iteration.
Thus it was not necessary to generate the whole graph. For graphs without
accepting cycles the number of workstations had typically small impact on the
number of iterations (except for the ordering <.pps).

6 Conclusions

The paper complements the distributed LTL model-checking algorithm MAP
arising out from the maximal accepting predecessors concept. First, we prove
that for every graph there is an optimal ordering of graph vertices for which
the MAP algorithm terminates in one iteration. The optimal ordering can be
computed in time linear to the size of the graph, however the problem itself

13
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is P-complete and thus hard to parallelise. Therefore we provide and evaluate
several heuristics computing a vertex ordering on-the-fly and such that they
are easy to incorporate into the distributed MAP algorithm.

Conclusions both from theoretical and experimental evaluation are that
none of the heuristics outperforms the others. On average, the most reliable
heuristic iS < ppgpress (based on breadth first search) followed by <zyp based
on (random) hashing.

The presented approach to the optimisation of the time complexity of the
MAP algorithms aims at decreasing the number of iterations of the algorithm.
An alternative direction is to optimise the computation of the map function
in each iteration. This computation is based on the relaxation of graph edges
(in the same way as in the Belmann-Ford algorithm) and we do not find this
too promising.
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