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Abstra
tThe paper is devoted to the problem of extending the temporal logi
 CTL so thatit is more expressive and 
ompli
ated properties 
an be expressed more su

in
tly.The spe
i�
ation language RegCTL, an extension of CTL, is proposed. In RegCTLevery CTL temporal operator is augmented with a regular expression restri
tingthus moments when the validity is required. The resulting logi
 is more expressivethan previous extensions of CTL with regular expressions. RegCTL 
an be model-
he
ked on-the-
y and the model 
he
king algorithm is well distributable.1 Introdu
tionModel 
he
king is a very su

essful method for veri�
ation of 
omplex rea
tivesystems. A desired behavioural property of a rea
tive system is spe
i�ed asa formula of temporal logi
, while a formal des
ription of a system is usuallytransformed into a transition system (Kripke stru
ture). Model 
he
king al-gorithms verify that the system under study satis�es its expe
ted behaviouralspe
i�
ations.A key issue in developing model 
he
king algorithms is the 
hoi
e of a spe
i-�
ation language in whi
h a desired behaviour is des
ribed. The most 
ommonspe
i�
ation languages are temporal logi
s. Linear temporal logi
 formulas are1 This work has been partially supported by GACR grant No. 201/00/10232 Email: xbrazdil�fi.muni.
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Br�azdil, �Cern�ainterpreted over linear sequen
es, while in bran
hing temporal logi
s ea
h mo-ment in time may split into various possible futures. Among the linear timelogi
s the logi
 LTL 
an express pre
isely the star-free !-regular behaviours.Nevertheless there are natural linear \regular" behaviours whi
h 
annot beexpressed in this logi
, as e.g. the behaviour stating that an atomi
 proposi-tion p is true in all even moments of time. Besides this, the spe
i�
ation ofmany useful properties is 
umbersome for users. To widen its expressibilityseveral extensions were proposed. [11℄ suggested to use !-automata as tem-poral 
onne
tives and [6℄ strengthens the until operator of LTL by indexing itwith regular programs of propositional dynami
 logi
.In the bran
hing time framework a similar approa
h has been advo
ated in[5℄ using deterministi
 !-automata 
onne
tives, in [2℄, [1℄ proposing the RCTLlogi
 and in [9℄ for alternation free �-
al
ulus. We generalise the RCTL logi
adopting the approa
h from [6℄ and augment the until operator with a regularexpression. The resulting logi
 RegCTL is more expressive than RCTL logi
.RegCTL is in fa
t a natural extension of CTL. Intuitively, if the system isde�ned over a set AP of atomi
 propositions, then an in�nite behaviour of thesystem 
an be viewed as a word over the alphabet 2AP , and a set of allowedbehaviours 
an be des
ribed by a regular expression whose alphabet 
onsistsof Boolean formulas over AP . In RegCTL , every CTL temporal operator isaugmented with a regular expression restri
ting moments when the validity isrequired. Both CTL and RCTL temporal operators 
an be dire
tly formulatedin RegCTL .For model 
he
king RegCTL logi
 we use an automata theoreti
 approa
hpresented in [8℄. It is based on a translation of RegCTL formula into hesi-tant/weak symmetri
 alternating tree automaton. The model 
he
king prob-lem 
an be then redu
ed to 
he
king nonemptiness of 1-letter simple weakalternating word automaton. Employing methods from [4℄ we attain a dis-tributed lo
al model 
he
king algorithm (i.e, it 
omputes the ne
essary partof a transition system on-the-
y).On the 
ontrary to CTL, the size of the automaton 
orresponding to theformula 
an be exponential and therefore the model 
he
king of RegCTL isin PSPACE. Nevertheless, we identify a large subset of RegCTL formulas(subsuming e.g. whole RCTL) for whi
h the model 
he
king problem is in P(in fa
t it is quadrati
 with respe
t to the formula size and linear with respe
tto the size of Kripke stru
ture).The model 
he
king algorithm for RCTL from [2℄ is based on translatingRCTL formulas into CTL formulas and appropriate �nite automata, and usingCTL model 
he
king algorithms. For a sub
lass of RCTL (allowing to expressrea
hability properties) we present an on-the-
y algorithm. Thus our approa
hnot only in
reases the expressibility of RCTL but also allows us to use an on-the-
y algorithm for whole RCTL.The paper is organised as follows. We introdu
e the syntax and semanti
sof the RegCTL temporal logi
 in Se
tion 2, and 
ome up with an alternating2



Br�azdil, �Cern�aautomaton a

epting models of a RegCTL formula in Se
tion 3. Sequentialmodel 
he
king algorithm for this logi
 is proposed in Se
tion 4. The 
orre-sponding distributed model 
he
king pro
edure is presented in Se
tion 5. Wegive our 
on
lusions in Se
tion 6.2 The RegCTL logi
In this se
tion we de�ne the syntax and semanti
s of Regular CTL (RegCTL)logi
, whi
h extends the CTL logi
 [3℄ with regular expressions.Given a �nite set X, let B(X) be the set of all Boolean formulas over X(i.e., boolean formulas built from elements in X using ^, _ and :), wherewe also allow the formulas true and false. If only 
onne
tives ^ and _ areallowed, we talk about the set of positive Boolean formulas over X, B+(X).For a set S � X and a formula � 2 B(X), we say that S satis�es �, S j= �,if assigning true to elements of S and assigning false to elements in X n Smakes � true. The length kfk of formula f 2 B(X) is de�ned indu
tively:ktruek = kfalsek = kpk = 1 for p 2 X; kg _ hk = kg ^ hk = kgk+ khk + 1;k:gk = kgk+ 1.For a given set B(X) of boolean formulas, the set R of regular expressionsover B(X) is the least set 
ontaining B(X) and su
h that if P;Q 2 R thenalso P + Q; PQ; P � 2 R. Let us denote the language de�ned by a regularexpression R over B(X) as L(R) (the alphabet of L(R) is an appropriate subsetof B(X)). The length kRk of regular expression R is de�ned indu
tively: ifR = f for some f 2 B(X), then kRk = kfk; otherwise kP + Qk = kPQk =kPk+ kQk+ 1; kP �k = kPk+ 1.2.1 Syntax of RegCTLLet AP be a set of atomi
 propositions. An RegCTL state formula is either:� true, false, p, :p for all p 2 AP ,� � _  or � ^  , where � and  are RegCTL state formulas,� A� or E�, where � is a RegCTL path formula.An RegCTL path formula is:� �UR or � ~UR , where � and  are RegCTL state formulas and R is aregular expression over B(AP ) su
h that � 62 L(R).The 
losure 
l(�) of a RegCTL formula � is the set of all RegCTL statesubformulas in
luding � but ex
luding true and false. Moreover, we de�nethe multiset reg o

(�) representing all o

uren
es of regular expressions informula � . The length k�k of a RegCTL formula � is de�ned as j
l(�)j +�R2reg o

(�)kRk. 3



Br�azdil, �Cern�a2.2 Semanti
s of RegCTLThe semanti
s of RegCTL is de�ned with respe
t to 
omputation trees. A treeis a set T � N� su
h that if x:
 2 T where x 2 N� and 
 2 N , then also x 2 T ,and for all 0 � 
0 < 
; x:
0 2 T . The elements of T are 
alled nodes, and theempty word � is the root of T . For every x 2 T , the nodes x:
, where 
 2 Nare the su

essors of x. The number of su

essors of x is 
alled degree of xand is denoted by d(x). The node with no su

essors is 
alled leaf . A path �in a tree T is a minimal set � � T 
ontaining some node as its root and su
hthat for every x 2 �, either x is a leaf or there exists a unique 
 2 N su
h thatx:
 2 �. A tree 
ontaining a unique path starting in � is 
alled an (in)�niteword. Given an alphabet �, a �-labeled tree is a pair T = hT; Li where T isa tree and L : T �! � maps ea
h node of T to a letter in �. A 
omputationtree is a �-labeled tree T , where � = 2AP .The notation T ; x j= � indi
ates that a RegCTL state formula � holds atthe node x of the 
omputation tree T . Similarly, T ; � j=  indi
ates that aRegCTL path formula  holds along the path �. When T is 
lear from the
ontext, we write x j= � and � j=  . Also, T j= � if and only if T ; � j= �.For a �nite sequen
e of nodes x0; x1; : : : ; xn and a regular expression R overB(AP ) we write x0x1 : : : xn 2 L(R) i� there exists a word f0f1 : : : fn 2 L(R)su
h that L(xi) j= fi for all 0 � i � n.The relation j= is indu
tively de�ned as follows:� x j= true and x 6j= false� x j= p for p 2 AP i� p 2 L(x)� x j= :p for p 2 AP i� p 62 L(x)� x j= � _  i� x j= � or x j=  � x j= � ^  i� x j= � and x j=  � x j= A i� for every path � = �0�1 � � � ; su
h that �0 = x, we have � j=  � x j= E i� there exists a path � = �0�1 � � � ; su
h that �0 = x and � j=  � � j= �UR i� there exists i � 0 and �0�1 � � ��i 2 L(R) su
h that �j j= �for all 0 � j < i and �i j=  � � j= � ~UR i� for all i � 0 su
h that �0�1 � � ��i 2 L(R) and the followingproperty holds: if �i 6j=  , then there exists 0 � j < i su
h that �j j= �.Usual temporal operators 
an be expressed as follows: next operatorX� astrueU true�true�, until operator �U as �U true�true� , and release operator� ~U as � ~U true�true� .Let us 
onsider the RegCTL formula E(q ~U true�(true�true)�p) whi
h expressesthe fa
t that there exists a path where p holds at every even position and thisproperty 
an be released by q. This property 
an be expressed neither in CTLnor in RCTL.The RegCTL formula A(false ~Uw�b��a�(v��r+v��w�b��r)d) (see [2℄) illustrates theway how regular expressions 
an make the formulation of a property easier.4



Br�azdil, �Cern�aThe CTL formula expressing the same property is:AG(:(w ^ (EX(E[bU(a ^ (EX(((E[vU(r ^ :d℄)^(E[vU(w ^ (EX(E[bU(r ^ :d℄)))℄)))))℄))))3 Alternating tree automaton for RegCTL formulaThe model 
he
king algorithm for RegCTL we are going to present is based ona translation of a RegCTL state formula to an automaton over in�nite treeswhi
h a

epts models of the formula (in a similar way as for CTL [8℄).A symmetri
 �nite alternating automaton over in�nite trees is a tupleA = h�; Q; Æ; q0; F i, where � is an input alphabet, Q is a �nite set of states, Æ :Q�� �! B+(f3;2g�Q) is a transition fun
tion, q0 is an initial state. The setF spe
i�es an a

eptan
e 
ondition. We de�ne the size kAk of an automatonA as jQj+ jF j+ kÆk where kÆk is the sum of the lengths of the nonidenti
allyfalse formulas that appear as Æ(q; �) for some q 2 Q and � 2 �.A run hTr; ri of an alternating automaton A over a �-labelled tree hT; Liis a �r-labelled tree where �r = N� �Q and hTr; ri satis�es:� r(�) = (�; q0),� Let y 2 Tr with r(y) = (x; q) and Æ(q; L(x)) = �. Then there is a (possiblyempty) set S = f(
0; q0); (
1; q1); : : : ; (
n; qn)g � f0; : : : ; d(x)� 1g �Q su
hthat the following holds:(i) S satis�es �, where (3; p) , (0; p) _ : : : _ (d(x) � 1; p) and (2; p) ,(0; p) ^ : : : ^ (d(x)� 1; p) for p 2 Q,(ii) for all 0 � i � n, we have y:i 2 Tr and r(y:i) = (x:
i; qi).We 
onsider an alternating word automata to be a spe
ial 
ase of tree au-tomata with transition fun
tion Æ : Q� � �! B+(Q).Given a run hTr; ri and an in�nite path � in Tr, let inf(�) � Q be su
h thatq 2 inf(�) i� there are in�nitely many y 2 � for whi
h r(y) 2 N� � fqg (i.e.,inf(�) is the set of states whi
h appear in�nitely often in �). A run hTr; riis a

epting i� all of its in�nite paths satisfy the a

eptan
e 
ondition. Wedenote L(A) the set of all 
omputation trees for whi
h there is an a

eptingrun of A.Here we 
onsider two spe
ial types of alternating tree automata, so 
alledhesitant automata (HAA) and weak automata (WAA), with spe
ial restri
-tions on the transition fun
tion and spe
i�
 a

eptan
e 
onditions.In a hesitant automaton there exists a partition of Q into disjoint setsQ1; : : : ; Qm and a partial order � on the 
olle
tion of Qi's su
h that for everyq 2 Qi and q0 2 Qj for whi
h q0 o

urs in Æ(q; �) we have Qj � Qi. In addition,ea
h set Qi is 
lassi�ed as either transient, existential or universal. The typeof Qi is determined by rules: 5



Br�azdil, �Cern�a� Qi is a transient set i� for all q 2 Qi and � 2 �, Æ(q; �) 
ontains no elementwith a state from Qi.� Qi is an existential set i� for all q 2 Qi and � 2 �, Æ(q; �) 
ontains onlydisjun
tively related elements of the form (3; p) where p 2 Qi.� If Qi is an universal set for all q 2 Qi and � 2 �, Æ(q; �) 
ontains only
onjun
tively related elements of the form (2; p) where p 2 Qi.The a

eptan
e 
ondition is a tuple hG;Bi, where G;B � Q. Every in�nitepath � in Tr gets trapped within some existential or universal set Qi. Thepath then satis�es an a

eptan
e 
ondition hG;Bi i�� either Qi is an existential set and inf(�) \G 6= ;� or Qi is an universal set and inf(�) \ B = ;The depth of HAA is de�ned as a maximal length of a 
hain in the partialorder � on the 
olle
tion of Qi's.In a weak automaton there exists a partition of Q into Q1; : : : ; Qm withthe same partial order as in HAA. The a

eptan
e 
ondition F is a subset ofQ su
h that for every Qi, 1 � i � m, either Qi � F (Qi is an a

epting set)or Qi \ F = ; (Qi is a reje
ting set).Constru
tion of the automatonLet us �rst �x some notation. For ea
h RegCTL formula � the multisetreg o

(�) = fR1; : : : ; Rng represents all o

uren
es of regular expressions inthe formula. For every regular expression Ri we have a �nite state automatonAi = (Qi;�i; Æi; q0i ; Fi), �i � B(AP ), whi
h a

epts exa
tly L(Ri). We sup-pose all Qi's to be pairwise disjun
tive. For states of these automata we usesymbols r; q (with indi
es, if ne
essary). Moreover, let for r 2 Qi and � 2 2APsymbol su

(r; �) denote the set of states S�j=f Æi(r; f).Given a RegCTL formula � we 
onstru
t the weak symmetri
 alternatingautomaton A� = (2AP ; Q; Æ; �; F ). The set of states of the automaton A� isQ = (Si=1;:::nQi) [ 
l(�). Its transition fun
tion Æ is for all � 2 2AP de�nedindu
tively as follows:(i) Æ(p; �) = true if p 2 � and Æ(p; �) = false if p 62 �.(ii) Æ(:p; �) = true if p 62 � and Æ(:p; �) = false if p 2 �.(iii) Æ(� _  ; �) = Æ(�; �) _ Æ( ; �).(iv) Æ(� ^  ; �) = Æ(�; �) ^ Æ( ; �).(v) Æ(E(�URi ); �) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Wq2su

(r;�)(3; q) ^ Æ(�; �) if su

(r; �) \ Fi = ;� Æ(r; �) = (Wq2su

(r;�)(3; q) ^ Æ(�; �)) _ Æ( ; �) otherwise(vi) Æ(A(� ~URi ); �) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Vq2su

(r;�)(2; q) _ Æ(�; �) if su

(r; �) \ Fi = ;� Æ(r; �) = (Vq2su

(r;�)(2; q) _ Æ(�; �)) ^ Æ( ; �) otherwise6
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// ?>=<89:;q0 a //

a
((?>=<89:;/.-,()*+q1 bmm ?>=<89:;/.-,()*+q2 
mmFig. 1. Finite state automaton A for the regular expression R; edges are labelledwith atomi
 propositions (i.e. formulas over AP ); q1 and q2 are a

epting, q0 isinitial fbg // fbg // : : :fa; gg // fb; 
; gg 33hhhhhhhh

++VVVVVVVV f
g // f
g // : : :Fig. 2. Computation tree; nodes are labelled with atomi
 propositions true in them.(vii) Æ(E(� ~URi ); �) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Vq2su

(r;�)(3; q) _ Æ(�; �) if su

(r; �) \ Fi = ;� Æ(r; �) = (Vq2su

(r;�)(3; q) _ Æ(�; �)) ^ Æ( ; �) otherwise(viii) Æ(A(�URi ); �; k) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Wq2su

(r;�)(2; q) ^ Æ(�; �) if su

(r; �) \ Fi = ;� Æ(r; �) = (Wq2su

(r;�)(2; q) ^ Æ(�; �)) _ Æ( ; �) otherwiseRemark 3.1 We de�ne an empty disjun
tion to be false and empty 
onjun
-tion to be true.The automaton A� is weak. The a

eptan
e 
ondition is F = SQi forall Qi's su
h that the regular expression Ri o

urs in a subformula of theform E(� ~URi ) or A(� ~URi ). The weakness partition over the set of statesis formed by singletons f g,  2 
l(�), and by all sets Qi, 1 � i � n.The 
orre
tness of the given 
onstru
tion is guaranteed only for 
ases wherefor every regular expression Ri whi
h o

urs in a subformula of the formE(� ~URi ) or A(�URi ) the 
orresponding �nite automaton Ai is determin-isti
. Here deterministi
 automaton is an automaton su
h that for every itsstate r 2 Qi and � 2 2AP the 
ardinality of the set su

(r; �) is at most one(in the su

eeding text we always use this notion of determinism). To explainproblems 
aused by nondeterministi
 automata let us 
onsider the formula� � E(false ~URg), with R spe
i�ed on Fig.1, and the 
omputation tree fromFig.2.The automaton A� in state E(false ~URg) (� q0) reading fa; gg pro
eeds
onjun
tively to states q1 and q2 and to the node labelled fb; 
; gg. Being instate q1 and reading fb; 
; gg, A� remains in q1 and disjun
tively pro
eeds tothe node labelled f
g. Being in state q2 and reading fb; 
; gg, A� remains in q2and disjun
tively pro
eeds to the node labelled fbg. Both paths are �nite anda

epting and thus A� a

epts, but � is not true in the node labelled fa; gg.Remark 3.2 On the assumption of the determinism of relevant �nite au-7



Br�azdil, �Cern�atomata, the automaton A� is also hesitant. The hesitant partition is the sameas the weakness partition. The set Qi is existential i� the regular expressionRi o

urs in an subformula of the form E(�URi ) or E(� ~URi ). The set Qiis universal i� the regular expression Ri o

urs in an subformula of the formA(�URi ) or A(� ~URi ). Other sets are transient. The a

eptan
e 
onditionfor automaton A� is F = hG;Bi where� G = SQi for all Qi su
h that the regular expression Ri o

urs in an sub-formula of the form E(� ~URi ) and� B = SQi for all Qi su
h that the regular expression Ri o

urs in an sub-formula of the form A(�URi ).In what follows we suppose that �nite automata for regular expressions Riwhi
h o

urs in subformulas of the form E(� ~URi ) or A(�URi ) are deter-ministi
.Theorem 3.3 Let T = hT; Li be a 
omputation tree. Then the automatonA� a

epts T if and only if T j= � .Proof. We �rst prove that A� is 
omplete. That is, given a 
omputation treeT , a formula ' 2 
l(�) and a node x for whi
h T ; x j= ', then A� a

epts thesubtree of the 
omputation tree T with root x starting in the state '. Thusin parti
ular, if T j= � then A� a

epts T .To this end we use the following notation. For �nite automaton Ai, itsstates r; q and a node x 2 T we use q 2 Æi(r; x) as an abbreviation for q 2Æi(r; f) where f 2 B(AP ) and L(x) j= f . A 
omputation of Ai over x0 � � �xnis a sequen
e of states q0; : : : ; qn su
h that q0 is an initial state and qj+1 2Æi(qj; xj) for 0 � j < n. If moreover the 
ondition Æi(qn; xn) \ Fi 6= ; is true,then the 
omputation is a

epting.Let hTr; ri be a run of alternating automaton A� over a 
omputation treeT = hT; Li. We des
ribe a path in the run Tr as a sequen
e of its labels (i.e.,a sequen
e of tuples (x; q) where x 2 T and q 2 Q). Let (x0; q0) � � � be a �niteor in�nite path in Tr. We say that its pre�x pr is maximal in Q0 i� eitherpr = (x0; q0) � � � (xn; qn), q0; : : : ; qn 2 Q0 and q 62 Q0 for every su

essor (q; x)of (qn; xn) in Tr, or pr = (x0; q0) � � � is in�nite and qj 2 Q0 for 0 � j. Theproje
tion of a path � = (x0; q0) � � � is proj(�) = x0 � � � .We prove the 
ompleteness by indu
tion on the stru
ture of '. Cases' = p, ' = :p, ' = � _  , ' = � ^  are simple.� x0 j= E(�URi )There is a path x0 � � �xn in T su
h that x0 � � �xn 2 L(Ri), xj j= � for0 � j < n and xn j=  . Let q0; : : : ; qn be an a

epting 
omputation of Aiover x0 � � �xn.A� disjun
tively 
hooses states qj and input nodes xj. In every nodexj automaton A� 
onjun
tively pro
eeds as if it is in state �. Be
auseÆi(qn; xn) \ Fi 6= ;, A� in state qn pro
eeds as if it is in state  .8



Br�azdil, �Cern�a� x0 j= A(� ~URi ).Let x0 � � � be a path in T . For every pre�x x0 � � �xn of x0 � � � holds: ifx0 � � �xn 2 L(Ri) then either xn j=  or there exists 0 � k < n su
h thatxk j= �.A� reading node xj being in state q 2 Qi pro
eeds as follows: If xj j=� then it pro
eeds as if it is in state �. If Æi(q; xj) = ; then A� doesnot 
ontinue along this path. Otherwise it pro
eeds 
onjun
tively to allstates from Æi(q; xj) and to all su

essors of xj in T . If Æi(q; xj) \ Fi 6= ;then x0 � � �xj is in L(Ri) and xk 6j= � for 0 � k < j, thus the automaton
onjun
tively pro
eeds as if it is in state  . If � does not hold along somepath, then the path is a

epting due to the a

eptan
e 
ondition.� x0 j= E(� ~URi )There is a path x0 � � � in T su
h that for every its pre�x x0 � � �xn holds: ifx0 � � �xn 2 L(Ri) then either xn j=  or there exists 0 � k < n su
h thatxk j= �.A� reading node xj and being in state q pro
eeds as follows: if xj j= � thenit pro
eeds as if it is in state �. If Æi(q; xj) = ; then A� does not 
ontinuealong this path. Otherwise it pro
eeds to xj+1 and to single su

essor stateof q a

ording to Æi. If Æi(q; xj) \ Fi 6= ; then x0 � � �xj 2 L(Ri) and xk 6j= �for 0 � k < j and xj j=  , thus the automaton 
onjun
tively pro
eeds as ifit is in state  . If � does not hold along x0 � � � , then the path is a

eptingdue to the a

eptan
e 
ondition.� x0 j= A(�URi )Let x0 � � � be a path in T . There exists 0 � n su
h that x0 � � �xn 2 L(Ri),xn j=  and xj j= � for 0 � j < n.A� along the path x0 � � � follows the deterministi
 a

epting 
omputationof Ai over x0 � � �xn and simultaneously pro
eeds as if it is in state �. ThenA� in some state q reading xn pro
eeds as if it is in state  .We now prove that A� is sound. That is, given an a

epting run hTr; ri ofA� over a 
omputation tree T = hT; Li, we prove that for every y 2 Tr su
hthat r(y) = (x; '), ' 2 
l(�), we have T ; x j= '. Thus in parti
ular T ; � j= � .The proof pro
eeds by indu
tion on the stru
ture of '. Cases ' = p, ' = :p,' = �_ , ' = �^ are simple. In the next 
onstru
tion we make use of thefa
t that in A� we have several names for one state.� r(y) = (x0; E(�URi ))Let pr be a pre�x maximal inQi of a path in Tr starting with (x0; E(�URi )).Due to the a

eptan
e 
onditions the pre�x pr = (x0; E(�URi )) � � � (xn; qn)is �nite. Then A� in state qn reading xn must pro
eed as if it is in state  assuring xn j=  and x0 � � �xn 2 L(Ri). Moreover, along this pre�x it must
onjun
tively pro
eed as if it is in state � assuring xj j= � for 0 � j < n.� r(y) = (x0; A(� ~URi ))A� reads every path in T following all possible 
omputations of Ai overparti
ular paths. Let us �x an arbitrary path x0 � � � in T and its arbitrary9



Br�azdil, �Cern�apre�x x0 � � �xn 2 L(Ri).Let Pr be the set of all pre�xes pr maximal in Qi of all paths in Trstarting with (x0; A(� ~URi )) and su
h that proj(pr) is a pre�x of x0 � � � .Case 1 : There is a pre�x pr 2 Pr, pr = (x0; A(� ~URi )) � � � (xn; qn) � � � su
hthat Æi(qn; xn) \ Fi 6= ; (the length of pr 
an be greater than n). Then A�being in state qn reading xn has to pro
eed as if it is in state  , assuringthus xn j=  .Case 2 : There is no su
h pre�x. Let us 
onsider an a

epting 
omputationof Ai over x0 � � �xn. Then there must be 0 � k < n su
h that the automatonA� in state qk reading xk pro
eeds as if it is in state �, assuring thus xk j= �.The arguments hold true for any path x0 � � � in T and its pre�x x0 � � �xn 2L(Ri) and therefore x0 j= A(� ~URi ).� r(y) = (x0; E(� ~URi ))A� disjun
tively 
hooses a path in T following states of the only possible
omputation of Ai. Let pr be a pre�x maximal in Qi of a path in Tr startingwith (x0; E(� ~URi )).Case 1 : If pr is in�nite (it is possible due to a

eptan
e 
ondition) thenthank to the de�nition of Æ and determinism of Ai whenever a pre�x ofproj(pr) is in L(Ri) then A� pro
eeds as if it is in state  .Case 2 : Otherwise pr = (x0; E(� ~URi )) � � � (xn; qn). If Æi(qn; xn) = ;, thenno word with the pre�x x0 � � �xn is in L(Ri). If Æi(qn; xn) 6= ;, then A�pro
eeds in state qn reading xn as if it is in state �, assuring thus xn j= �.Note that whenever is a pre�x of x0 � � �xn in L(Ri) then A� pro
eeds as ifit is in state  (similar arguments as in Case 1).� r(y) = (x0; A(�URi ))A� reads every path in T following the only possible 
omputation of Ai.Let us �x an arbitrary path x0 � � � in T .Let pr = (x0; A(�URi )) � � � (xn; qn) be the pre�x maximal in Qi of thepath in Tr starting with (x0; A(�URi )) and su
h that proj(pr) is a pre�xof x0 � � � . The pre�x pr is �nite due to the a

eptan
e 
ondition. ThereforeA� in state qn reading xn must pro
eed as if it is in state  assuring xn j=  and x0 � � �xn 2 L(Ri). Moreover, along this pre�x it must 
onjun
tivelypro
eed as if it is in state �, assuring thus xj j= � for 0 � j < n. 24 Sequential RegCTL Model Che
kingAt �rst we de�ne the Kripke stru
ture as a tuple K = hAP;W;E;w0; Liwhere AP is a set of atomi
 propositions as de�ned above, W is a set ofstates, E � W �W is a transition relation that must be total (i.e., for everyw 2 W there exists w0 2 W su
h that hw;w0i 2 E), w0 is an initial state, andL : W ! 2AP maps ea
h state to the set of atomi
 propositions true in thatstate. 10



Br�azdil, �Cern�aWe de�ne the size kKk of K as jW j + jEj. Every Kripke stru
ture K =hAP;W;E;w0; Li 
an be viewed as a 2AP -labelled 
omputation tree TK =hTK; LKi obtained by unwinding K.The model 
he
king problem is for given temporal logi
 formula � andKripke stru
ture K to de
ide whether TK j= � . The model 
he
king algorithmfor a given RegCTL state formula � and a Kripke stru
ture K pro
eeds asfollows:(i) Constru
t the alternating automaton A� as de�ned above,(ii) Constru
t the produ
t automaton AK;� = K � A� whose language isnonempty i� TK j= � ,(iii) Che
k nonemptiness of the produ
t automaton AK;� .The produ
t automaton AK;� is exa
tly de�ned as follows: Let A� =h2AP ; Q� ; Æ� ; q0; F� i and K = hAP;W;E;w0; Li. The produ
t of A� and Kis a 1-letter alternating word automaton AK;� = hfag;W � Q� ; Æ; hw0; q0i; F iwhere Æ and F are de�ned as follows:� Let q 2 Q� , w 2 W , su

(w) = hw0; : : : ; wd(w)�1i and Æ� (q; L(w)) = �.Then Æ(hw; qi; a) = �0, where �0 is obtained from � by repla
ing ea
h (3; p)by hw0; pi _ : : : _ hwd(w)�1; pi and ea
h (2; p) by hw0; pi ^ : : : ^ hwd(w)�1; pi.� The a

eptan
e 
ondition F respe
ts the a

eptan
e 
ondition F� of A� . IfA� is weak then F = W � F� . If A� is hesitant and F� = hG;Bi thenF = hW �G;W �Bi.The produ
t automaton is hesitant (weak) if A� is hesitant (weak).Theorem 4.1 [8℄ AK;� a

epts a! i� TK j= � .ComplexityThe 
omplexity of the model 
he
king algorithm depends on the type ofthe formula. As we have shown in the previous se
tion, the ne
essary 
ondi-tion for A� to be 
orre
t is the determinism of �nite automaton for the regularexpression o

uring in a subformula of the form E(� ~UR ) or A(�UR ). Forthis reason we de�ne a deterministi
 fragment of RegCTL , det-RegCTL . Inthis fragment R o

uring in A(�UR ) or E(� ~UR ) are restri
ted to regu-lar expressions whi
h have deterministi
 �nite automata with the number ofstates linear with respe
t to the size of R. For a det-RegCTL formula � itis guaranteed that the number of states of A� is linear in k�k. For a generalRegCTL formula the number of states 
an be 2O(k�k) due to the ne
essarydeterminization. In both 
ases the length of Æ� (q; �) is linear in k�k.The 
omplexity of the model 
he
king algorithm problem is measured withrespe
t to the size of K and � . The key point is the size of the produ
tautomaton.The number of states of AK;� is jW j � jQ� j and the size of F is O(jW j � jQ� j).The length of Æ((w; p); a) is equal to the length of Æ� (p; L(w)) times the degree11



Br�azdil, �Cern�aof w. Summing up lengths of Æ((w; p); a) for �xed p and all states w 2 W givesus O(jEj � k�k). The total size of the transition fun
tion is O(jEj � k�k � jQ� j).Thus the total size of the produ
t automaton AK;� is O(kKk � k�k2) for adet-RegCTL formula � and O(kKk � 2O(k�k)) for a general RegCTL formula.The depth of AK;� is O(k�k). We note that AK;� 
an be 
omputed on-the-
yin time linear with respe
t to its size.Theorem 4.2 [8℄ The 1-letter nonemptiness problem for hesitant alternatingword automata is de
idable in linear running time.Theorem 4.3 [8℄ The 1-letter nonemptiness problem for hesitant alternatingword automata of size n and depth m is de
idable in spa
e O(m:log2n).Applying these theorems we have that the model 
he
king problem forRegCTL is in PSPACE. The model 
he
king problem for det-RegCTL is inP (it 
an be done in time O(kKk:k�k2). As the model 
he
king of CTL isP-
omplete we have that model 
he
king of det-RegCTL is P-
omplete too.The main limiting fa
tor of model 
he
king algorithms in pra
ti
e is thehuge size of the Kripke stru
ture. Therefore it is useful to 
onsider the pro-gram 
omplexity as the 
omplexity in terms of the size of the input Kripkestru
ture (assuming the size of the formula is �xed). It follows from The-orem 4.3 and its proof that the program 
omplexity of model 
he
king ofRegCTL is in NLOGSPACE. As the program 
omplexity of model 
he
kingCTL is NLOGSPACE-
omplete [8℄ we have that RegCTL program 
omplexityof model 
he
king is NLOGSPACE-
omplete too.5 Distributed RegCTL Model Che
kingThe distributed algorithm is based on a 
hara
terisation of the model 
he
kingproblem in terms of two-person games due to Stirling [10℄. This approa
hhas been used in [4℄ for model 
he
king of alternation-free �-
al
ulus andformulated as 
olouring of game graphs. As it is noted in [4℄, the pro
edure
an also be understood as a parallel pro
edure for 
he
king the emptiness of1-letter simple weak alternating word automata.The produ
t automaton AK;� we have 
onstru
ted in Se
tion 3 is a 1-letter weak alternating word automaton. We propose an algorithm for trans-lating it into a simple automaton. Our algorithm is a modi�
ation of theone from [8℄ and is more appropriate for the use in the distributed on-the-
y setting. Consequently we 
an apply the lo
al distributed model 
he
kingalgorithms from [4℄ to the logi
 RegCTL .De�nition 5.1 A formula in B+(X) is simple if it is either atomi
 or hasthe form x � y, where � 2 f^;_g and x; y 2 X. An alternating automaton issimple if all its transitions are simple.Let AK;� = hfag;W � Q� ; Æ; hw0; q0i;W � F� i be the weak produ
t au-tomaton from Se
tion 4. Let W � Q1; : : : ;W � Qm be the weak partition of12



Br�azdil, �Cern�aits states su
h that W � Q1 � : : : � W � Qm is an extension of the partialorder to a total order. Our aim is to translate AK;� to a simple automatonAsK;� = hfag; Qs; Æs; hw0; q0i; F si. We de�ne Qs indu
tively as follows:� For every q 2 W �Q� , we have q 2 Qs� For every q 2 W �Q� with Æ(q; a) = �1 � �2, we have �1; �2 2 Qs� For every �1 � �2 2 Qs, we have �1; �2 2 QsThus a state in Qs is either q 2 W �Q� or a stri
t subformula of a transitionin Æ. The transition fun
tion Æs is:� Æs(q; a) = Æ(q; a) for q 2 W �Q�� Æs(�1 � �2; a) = �1 � �2We 
laim that the new automaton is weak as well. The partition of Qs intoQs1; : : : ; Qsm is as follows. A state q 2 Qs is in Qsi i� either q 2 W � Qi orq = � and i = maxfj j r o

urs in � and r 2 W � Qjg. The new a

eptan
e
ondition is F s = SQsi where W �Qi � W � F� . The weakness of AsK;� 
anbe easily seen from the de�nition of the partition. The fa
t L(AK;�) 6= ; i�L(AsK;�) 6= ; 
an be argumented in the same way as in [8℄.We note that the simple version of the produ
t automaton 
an be 
omputedon-the-
y from the formula and the Kripke stru
ture. The size of the simpleprodu
t automaton is asymptoti
ally the same as the size of the original one.The important fa
t is that the partition of the states of the simple automaton
an be 
omputed on-the-
y as well using only the knowledge of the partitionof A� .All in all, we have transformed the model 
he
king problem of RegCTLinto the emptiness problem of 1-letter simple weak alternating word automata.These automata are in a straightforward manner (as noted in [4℄) related togames and therefore we 
an use distributed algorithms from [4℄ for 
he
kingthe emptiness of this kind of automata.6 Con
lusionsWe studied an extension of bran
hing time logi
 CTL with regular expressions.The resulting logi
 RegCTL is more expressive as the previous extension ofCTL with regular expressions. The model 
he
king problem for RegCTL is inPSPACE, but a large family of RegCTL formulas (in
luding e.g. whole RCTL)
an be 
he
ked in P. Moreover, the adopted automata-theoreti
 approa
h tomodel 
he
king of RegCTL leads to an e�e
tive distribution.The exa
t 
omplexity of RegCTL model 
he
king remains an open ques-tion. Another interesting question would be whether RegCTL formulas 
anbe more su

in
t than their CTL 
ounterparts.
13
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