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zAbstra
t. The hierar
hy of properties as overviewed byManna and Pnueli[18℄ relates language, topology, !-automata, and linear temporal logi

lassi�
ations of properties. We provide new 
hara
terisations of this hi-erar
hy in terms of automata with Bü
hi, 
o-Bü
hi, and Streett a

ep-tan
e 
ondition and in terms of �LTLi and �LTLi hierar
hies. Afterwards,we analyse the 
omplexity of the model 
he
king problem for parti
ular
lasses of the hierar
hy and thanks to the new 
hara
terisations we iden-tify those linear time temporal properties for whi
h the model 
he
kingproblem 
an be solved more ef�
iently than in the general 
ase.1 Introdu
tionModel 
he
king has be
ome a popular te
hnique for formal veri�
ation of rea
-tive systems. The model 
he
king pro
ess has several phases � the major onesbeing modelling of the system, spe
i�
ation of desired properties of the sys-tem, and the a
tual pro
ess of automati
 veri�
ation. Ea
h of these phases hasits spe
i�
 dif�
ulties. In this paper we study linear temporal properties andalgorithms for the automati
 veri�
ation of these properties.Rea
tive systems maintain an ongoing intera
tion with their environmentand thus produ
e 
omputations � in�nite sequen
es of states. When analysingthe behaviour of su
h a system we are interested in some �nite set AP of ob-servable propositions about states. Hen
e, we 
an view a 
omputation of thesystem as an in�nite word over 2AP . In general, we de�ne a temporal propertyas a language of in�nite words. A rea
tive system S is said to have a propertyP if all possible 
omputations of S belong to P .The problem of proper and 
orre
t spe
i�
ation of properties the systemought to satisfy led to a 
areful study of theoreti
al aspe
ts of properties.Mannaand Pnueli [18℄ have proposed a 
lassi�
ation of temporal properties into ahierar
hy. They 
hara
terise the 
lasses of the hierar
hy through four views:a language-theoreti
 view, a topologi
al view, a temporal logi
 view, and anautomata view. The fa
t that the hierar
hy 
an be de�ned in many differentways shows the robustness of this hierar
hy.? Supported by GA �CR grant no. 201/03/0509



Model 
he
king theory is devoted to the development of ef�
ient algorithmsfor the automati
 veri�
ation of properties of rea
tive systems. A very su

ess-ful approa
h to verifying properties expressed as linear temporal logi
 (LTL)formulas makes use of automata over in�nite words. Here the problem of veri-fying a property redu
es to the problemwhether a given automaton re
ognisesa non-empty language (so 
alled non-emptiness 
he
k). The 
omplexity of thenon-emptiness 
he
k depends on the type of the automaton. Bloem, Ravi, andSomenzi [1℄ have studied two spe
ialised types of automata, 
alled weak andterminal, for whi
h the non-emptiness 
he
k 
an be performed more ef�
ientlythan in the general 
ase.Our 
ontribution Our aim is to 
lassify temporal properties spe
i�able by lin-ear temporal logi
 formulas with respe
t to the 
omplexity of their veri�
a-tion. To this end we provide a 
lassi�
ation of temporal properties through twonew views. First, we 
hara
terise properties in terms of automata over in�nitewords (!-automata)with Bü
hi, 
o-Bü
hi, and Streett a

eptan
e 
ondition andin terms of weak and terminal automata.Weak and terminal automata are usedin the veri�
ation pro
ess and are 
he
ked for non-emptiness.For the se
ond 
hara
terisation we introdu
e a new hierar
hy (
alled Until-Release hierar
hy) of LTL formulas based on alternation depth of temporal op-erators Until and Release. We provide a relationship between the Until-Releasehierar
hy and the hierar
hy by Manna and Pnueli [18℄.Our new 
lassi�
ation provides us with an exa
t relationship between thetype of a formula and the type of an automaton, whi
h is 
he
ked for non-emptiness in the model 
he
king pro
ess of the formula.In the se
ond part of the paper we enquire into parti
ular automata andanalyse the 
omplexity of their non-emptiness 
he
k in 
onne
tion with bothexpli
it and impli
it representation of automata. This gives us an exa
t rela-tionship between types of properties and the 
omplexity of their veri�
ation.Finally, we dis
uss the possibility of exa
t determination of the type of a for-mula.Due to spa
e limitations 
omplete proofs (and some formal de�nitions) areomitted and 
an be found in the full version of the paper [3℄.Related work The previous work on veri�
ation, whi
h takes into a

ount a
lassi�
ation of properties, is partly devoted to the proof-based approa
h toveri�
ation [4℄. Papers on spe
ialised model 
he
king algorithms either 
overonly part of the hierar
hy or have a heuristi
 nature. Vardi and Kupferman [15℄study the model 
he
king of safety properties. S
hneider [19℄ is 
on
erned witha translation of persisten
e properties into weak automata. Bloem and Somenzistudy heuristi
s for the translation of a formula into weak (terminal) automa-ton [21℄ and suggest spe
ialised algorithms for the non-emptiness problem [1℄.Our work 
overs all types of properties and brings out the 
orresponden
e be-tween the type and the 
omplexity of non-emptiness 
he
k.



2 Hierar
hy of Temporal PropertiesThe hierar
hy studied by Manna and Pnueli [18℄ 
lassi�es properties into six
lasses: guarantee, safety, obligation, persisten
e, re
urren
e, and rea
tivity proper-ties.De�nition 1 (Language-theoreti
 view [18℄).Let P � �! be a property over �.� P is a safety property if there exists a language of �nite words L � �� su
h thatfor every w 2 P all �nite pre�xes of w belong to L.� P is a guarantee property if there exists a language of �nite words L � �� su
hthat for every w 2 P there exists a �nite pre�x of w whi
h belongs to L.� P is an obligation property if P 
an be expressed as a positive boolean 
ombinationof safety and guarantee properties.� P is a re
urren
e property if there exists a language of �nite words L � �� su
hthat for every w 2 P in�nitely many pre�xes of w belong to L.� P is a persisten
e property if there exists a language of �nite words L � �� su
hthat for every w 2 P all but �nitely many pre�xes of w belong to L.� P is a rea
tivity property if P 
an be expressed as a positive boolean 
ombinationof re
urren
e and persisten
e properties.In what follows, the abbreviation �-property stands for a property of oneof the six above mentioned types. In
lusions, whi
h relate the 
orresponding
lasses into a hierar
hy, are depi
ted in Fig. 1. Classes whi
h are higher upstri
tly 
ontain 
lasses whi
h are lower down.2.1 Automata ViewManna and Pnueli [18℄ have de�ned the hierar
hy of properties in terms ofdeterministi
 Streett predi
ate automata. Automata for 
onsidered 
lasses ofproperties differ in restri
tions on their transition fun
tions and a

eptan
e 
on-ditions. In this se
tion we provide a new 
hara
terisation of the hierar
hy interms of deterministi
 !-automata whi
h uses only restri
tions on a

eptan
e
onditions (the transition fun
tion is always the same). We �nd this 
hara
teri-sation more uniform and believe that it provides better insight into the hierar-
hy. On top of that we study other widely used types of !-automata and showthat ea
h of them exa
tly 
orresponds to one 
lass in the hierar
hy.An !-automaton is a tuple A = h�;Q; q0; Æ; �i, where � is a �nite alphabet,Q is a �nite set of states, q0 2 Q is an initial state, Æ is a transition fun
tion, and� is an a

eptan
e 
ondition. The transition fun
tion determines four types ofautomata: deterministi
, nondeterministi
, universal, and alternating. A nondeter-ministi
 automaton has a transition fun
tion of the type Æ : Q � � ! 2Q. Arun � of su
h an automaton on an in�nite word w = w(0)w(1) : : : over � is asequen
e of states � = r0; r1; : : : su
h that r0 = q0 and ri+1 2 Æ(ri; w(i)) forea
h i � 0. A nondeterministi
 automaton a

epts a word w if there exists ana

epting run (see below) on w. Universal automata are de�ned in the same



way, the only differen
e is that the universal automaton a

epts a word w if allruns on w are a

epting. Deterministi
 automata are su
h that jÆ(q; a)j = 1 forall q 2 Q; a 2 � (there is a unique run on ea
h word). Alternating automataform a generalisation of nondeterministi
 and universal automata.
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lasses of the hierar
hy and their different 
hara
terisations.Classes whi
h are higher up properly 
ontain 
lasses whi
h are lower down. Classeson the same level are dual with respe
t to 
omplementation, while the 
lasses obligationand rea
tivity 
an be obtained by boolean 
ombinations of properties from 
lasses lowerdownFor a run � we de�ne the in�nity set, Inf (�), to be the set of all states thatappear in�nitely often in � and the o

urren
e set, O

(�), to be the set of statesthat appear at least on
e in �. A

eptan
e 
onditions � are de�ned with respe
tto in�nity set as follows:� Bü
hi 
ondition � � Q : a run � is a

epting iff Inf (�) \ � 6= ;� 
o-Bü
hi 
ondition � � Q : a run � is a

epting iff Inf (�) \ � = ;� Streett 
ondition � = fhG1; R1i; : : : ; hGn; Rnig; Gi; Ri � Q : a run � is a
-
epting iff 8i : (Inf (�) \Gi 6= ; ) Inf (�) \ Ri 6= ;)For every a

eptan
e 
ondition we 
an de�ne its �o

urren
e� version [17,23℄ if O

(�) substitues for Inf (�) (also 
alled Staiger-Wagner a

eptan
e). A
-
ording to the a

eptan
e 
ondition we denote !-automata as Bü
hi and o
-
uren
e Bü
hi automata respe
tively and so on. A property P is de�ned to be



Table 1. The expressivity � ea
h of 24 possible inter-
ombinations of the transition fun
-tion and a

eptan
e 
ondition 
orresponds to one of the six hierar
hy 
lassesO

urren
eBü
hi 
o-Bü
hi Streett Bü
hi 
o-Bü
hi StreettDeterministi
 re
urren
e persisten
e rea
tivity guarantee safety obligationNondeterministi
 rea
tivity persisten
e rea
tivity persisten
e safety persisten
eUniversal re
urren
e rea
tivity rea
tivity guarantee re
urren
e re
urren
eAlternating rea
tivity rea
tivity rea
tivity persisten
e re
urren
e rea
tivityspe
i�able by automata if there is an !-automaton A whi
h a

epts a word w ifand only if w 2 P .Theorem 1. Let P be a property spe
i�able by automata. Then P is a guarantee, safety,obligation, persisten
e, re
urren
e, or rea
tivity property if and only if it is spe
i�ableby a deterministi
 o

urren
e Bü
hi, o

urren
e 
o-Bü
hi, o

urren
e Streett, 
o-Bü
hi,Bü
hi, or Streett automaton respe
tively (see Table 1).Proof. For ea
h 
lass from the hierar
hy a �-automaton is de�ned in [18℄ byposing spe
i�
 restri
tions on transition fun
tions and a

eptan
e 
onditionsof deterministi
 Streett predi
ate automata. Using an adjustment of a

epting
onditions and a 
opy 
onstru
tion one 
an effe
tively transform �-automatato above mentioned automaton and vi
e versa. (Details 
an be found in the fullversion of the paper [3℄.)To make the pi
ture 
omplete we have examined other types of automataas well (see Table 1). For every possible 
ombination of transition fun
tion anda

eptan
e 
ondition the 
lass of spe
i�able properties exa
tly 
oin
ides withone 
lass in the hierar
hy. Results for in�nite o

urren
e a

eptan
e 
onditionsfollow from [16℄. Universal o

urren
e Bü
hi and nondeterministi
 o

urren
e
o-Bü
hi automata 
an be determinised through the power set 
onstru
tion andthus they re
ognise the same 
lasses as their deterministi
 
ounterparts. Theother results for o

urren
e a

eptan
e 
ondition follow from [17℄.2.2 Linear Temporal Logi
 ViewIn this se
tion we 
hara
terise the hierar
hy of properties through a new hier-ar
hy of LTL formulas based on an alternation depth.The set of LTL formulas is de�ned indu
tively starting from a 
ountableset AP of atomi
 propositions, Boolean operators, and the temporal operatorsX (Next), U (Until) and R (Release):	 := a j :	 j 	 _ 	 j 	 ^ 	 j X	 j 	 U	 j 	 R	LTL formulas are interpreted in the standard way on in�nite words over thealphabet 2AP . A property P is de�ned to be spe
i�able by LTL if there is an LTLformula ' su
h that w j= ' if and only if w 2 P .



In re
ent years, 
onsiderable effort has been devoted to the study of LTLhierar
hies whi
h were de�ned with respe
t to the number of nested tempo-ral operators Until, Sin
e, and Next ([10, 22, 14℄). These hierar
hies provide in-teresting 
hara
terizations of LTL de�nable languages. However, they do notseem to have a dire
t 
onne
tion to the model 
he
king problem. We proposea new hierar
hy whi
h is based on alternation depth instead of nested depth,and establish its 
onne
tion with the hierar
hy of properties. In the next Se
-tion we demonstrate that this 
lassi�
ation dire
tly re�e
ts the hardness of theveri�
ation problem for parti
ular properties.Let us de�ne hierar
hies �LTLi and �LTLi , whi
h re�e
t alternations of Un-til and Release operators in formulas. We use the �/� notation sin
e the waythe hierar
hy is de�ned strongly resembles the quanti�er alternation hierar
hyof �rst-order logi
 formulas or �xpoints alternation hierar
hy of �-
al
ulus for-mulas.De�nition 2.The 
lass�LTL0 = �LTL0 is the least set 
ontaining all atomi
 propositions and 
losedunder the appli
ation of boolean and Next operators.The 
lass �LTLi+1 is the least set 
ontaining �LTLi and 
losed under the appli
ation of
onjun
tion, disjun
tion, Next and Until operators.The 
lass �LTLi+1 is the least set 
ontaining �LTLi and 
losed under the appli
ation of
onjun
tion, disjun
tion, Next and Release operators.The following theorem shows that the type of a property and alternationdepth of its spe
i�
ation are 
losely related.Theorem 2. A property that is spe
i�able by LTL is a guarantee (safety, persisten
e,re
urren
e respe
tively) property if and only if it is spe
i�able by a formula from the
lass �LTL1 (�LTL1 , �LTL2 , �LTL2 respe
tively) (see Fig. 1).Proof. The proof makes use of the 
lassi�
ation of LTL formulas by Chang,Manna, and Pnueli [4℄. Here every �-property is synta
ti
ally 
hara
terisedwith the help of a �-formula. We 
an transform any guarantee (safety, persis-ten
e, re
urren
e respe
tively) formula into an equivalent �LTL1 (�LTL1 , �LTL2 ,�LTL2 respe
tively) formula.Theorem 3. A property is spe
i�able by LTL if and only if it is spe
i�able by a positiveboolean 
ombination of �LTL2 and �LTL2 formulas. Therefore both �LTLi and �LTLihierar
hies 
ollapse in the sense that every LTL formula is spe
i�able both by a �LTL3and�LTL3 formula.3 Model Che
king and Hierar
hy of PropertiesThe model 
he
king problem is to determine for a given rea
tive system Kand a temporal formula ' whether the system satis�es the formula. A 
om-mon approa
h to model 
he
king of �nite state systems and LTL formulas is to




onstru
t an automaton A:' for the negation of the property and to model thesystem as an automatonK. The produ
t automatonK�A:' is then 
he
ked fornon-emptiness. The produ
t automaton is a nondeterministi
 Bü
hi automaton.For the formal de�nition of the problem and detailed des
ription of the algo-rithm we refer to [5℄.Our aim is to analyse the 
omplexity of the non-emptiness 
he
k dependingon the type of the veri�ed property. As the 
omplexity of the non-emptiness
he
k is determined by attributes of an automaton, the question is whether fordifferent types of formulas one 
an 
onstru
t different types of automata. Wegive a 
omprehensive answer to this question in this se
tion. In the next se
-tion we demonstrate how the 
omplexity of the non-emptiness 
he
k variesdepending on the type of automata.To 
lassify nondeterministi
 Bü
hi automata we adopt the 
riteria proposedby Bloem, Ravi, and Somenzi [1℄. They differentiate general, weak, and termi-nal automata a

ording to the following restri
tions posed on their transitionfun
tions:- general: no restri
tions- weak: there exists a partition of the set Q into 
omponents Qi and an ordering� on these sets, su
h that for ea
h q 2 Qi; p 2 Qj , if 9a 2 � : q 2 Æ(p; a) thenQi � Qj . Moreover for ea
h Qi, Qi \ � = ;, in whi
h 
ase Qi is a reje
ting
omponent, or Qi � �, in whi
h 
ase Qi is an a

epting 
omponent.- terminal: for ea
h q 2 �; a 2 � it holds Æ(q; a) 6= ; and Æ(q; a) � �.Ea
h transition of a weak automaton leads to a state in either the same orlower 
omponent. Consequently ea
h run of a weak automaton gets eventu-ally trapped within one 
omponent. The run is a

epting iff this 
omponentis a

epting. The transition fun
tion of a terminal automaton is even more re-stri
ted � on
e a run of a terminal automaton rea
hes an a

epting state the runis a

epting regardless of the suf�x. Terminal and weak automata are jointly
alled spe
ialised automata. It shows up that the 
lasses of properties spe
i�ableby weak and terminal automata 
oin
ide with 
lasses of the hierar
hy.Theorem 4. A property P spe
i�able by automata is a guarantee (persisten
e) prop-erty if and only if it is spe
i�able by a terminal (weak) automaton.Theorem 4 raises a natural question whether and how effe
tively one 
an
onstru
t for a given guarantee (persisten
e) formula the 
orresponding ter-minal (weak) automaton. A 
onstru
tion of an automaton for an LTL formulawas �rst proposed by Wolper, Vardi, and Sistla [24℄. This basi
 
onstru
tionhas been improved in several papers ([12, 21, 9℄) where various heuristi
s havebeen used to produ
e automaton as small and as �weak� as possible. Althoughthese heuristi
s are quite sophisti
ated, they do not provide any insight into therelation between the formula and the �weakness� of the resulting automaton.Constru
tions for spe
ial types of properties 
an be found in [19, 15℄.We present a new modi�
ation of the original 
onstru
tion whi
h yields fora formula from the 
lass �LTL1 and �LTL2 a spe
ialised automaton.



Theorem 5. For every �LTL1 (�LTL2 ) formula ' we 
an 
onstru
t a terminal (weak)automaton a

epting the property de�ned by '.Proof. States of the automaton are sets of subformulas of the formula '. Thetransition fun
tion is 
onstru
ted in su
h a way that the following invariant isvalid: if the automaton is in a state S then the remaining suf�x of the wordshould satisfy all formulas in S. The a

eptan
e 
ondition is used to enfor
ethe ful�llment of Until operators. For �LTL1 and �LTL2 formulas the a

eptan
e
ondition 
an be simpli�ed thanks to the spe
ial stru
ture of alternation of Untiland Release operators in the formula.4 Non-Emptiness AlgorithmsIn the previous se
tion we showed that we 
an effe
tively 
onstru
t spe
ialisedautomata for formulas from lower 
lasses of the hierar
hy. Sin
e the veri�edsystemK 
an be modelled as an automaton without a

eptan
e 
onditions, thetype of the produ
t automaton is determined entirely by the type of the automa-ton A:', that is even the produ
t automaton is spe
ialised. In this se
tion werevise both expli
it and symboli
 non-emptiness algorithms for different typesof automata.General AutomataFor general automata the non-emptiness 
he
k is equivalent to the rea
ha-bility of an a

epting 
y
le (i.e. 
y
le 
ointaining an a

epting state). The mostef�
ient expli
it algorithm is the nested depth-�rst sear
h (DFS) algorithm [6,13℄. With the symboli
 representation one has to use nested �xpoint 
omputa-tion (e.g. Emerson-Lei algorithm) with a quadrati
 number of symboli
 steps(for an overview of symboli
 algorithms see [11℄).Weak AutomataStates of a weak automaton are partitioned into 
omponents and thereforestates from ea
h 
y
le are either all a

epting (the 
y
le is fully a

epting) or allnon-a

epting. The non-emptiness problem is equivalent to the rea
hability ofa fully a

epting 
y
le. The expli
it algorithm has to use only a single DFS [8℄in this 
ase. With the symboli
 representation single �xpoint 
omputation [1℄with a linear number of steps is suf�
ient.Terminal AutomataOn
e a terminal automaton rea
hes an a

epting state, it a

epts the wholeword. Thus the non-emptiness of a terminal automaton 
an be de
ided by asimple rea
hability analysis.With the symboli
 representation there is even asymptoti
al differen
e be-tween the algorithms for general and spe
ilized 
ases. All expli
it algorithmshave linear time 
omplexity, but the use of spe
ialized algorithms still bringsseveral bene�ts. Time and spa
e optimalizations, �Guided sear
h� heuristi
s [8℄,and the partial-order redu
tion [13℄ 
an be employed more dire
tly for spe
ial-ized algorithms. Algorithms for spe
ialized automata 
an be more effe
tivelytransformed to distributed ones [2℄.



These bene�ts were already experimentally demonstrated. Edelkamp, La-fuente, and Leue [8℄ extended the expli
it model 
he
ker SPIN by a non-empti-ness algorithm whi
h to a 
ertain extent takes the type of an automaton into
onsideration. Bloem, Ravi, and Somenzi [1℄ performed experiments with sym-boli
 algorithms and in [2℄ experiments with distributed algorithms are pre-sented.5 Con
lusionsThe paper provides a new 
lassi�
ation of temporal properties through deter-ministi
 !-automata and through the Until-Release hierar
hy. It provides effe
-tive transformation of the �LTL1 (�LTL2 ) formula into terminal (weak) automa-ton and it argues that the non-emptiness problem for these automata 
an besolved more ef�
iently.It is de
idable whether given formula spe
i�es property of type � [3℄. In a
ase that it is guarantee (persisten
e) formula it is possible to transform it intoan equivalent �LTL1 (�LTL2 ) formula. Thus the new 
lassi�
ations provide uswith exa
t relationship between the type of a formula and the type of the non-emptiness problem.The determination of the type of a formula and the transformation are ratherexpensive (even de
iding whether a given formula spe
i�es a safety propertyis PSPACE-
omplete [20℄). However, formulas are usually quite short and itis typi
al to make many tests for one �xed formula. In su
h a 
ase, the workneeded for determining the type of the formula is amortised over its veri�
a-tion.Moreover, most of the pra
ti
ally used formulas are simple. We have stud-ied the Spe
i�
ation Patterns System [7℄ that is a 
olle
tion of the most oftenveri�ed properties. It shows up that most of the properties 
an be easily trans-formed into terminal (41%) or weak (54%) automata. We 
on
lude that model
he
kers should take the type of the property into a

ount and use the spe
ial-ized non-emptiness algoritms as often as possible.Referen
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hi automata. In Pro
. CONCUR,volume 1877 of LNCS, pages 153�167. Springer, 2000.10. K. Etessami and T. Wilke. An Until hierar
hy for temporal logi
. In Pro
. IEEE Sym-posium on Logi
 in Computer S
ien
e, pages 108�117. Computer So
iety Press, 1996.11. K. Fisler, R. Fraer, G. Kamhi Y. Vardi, and Zijiang Yang. Is there a best symboli

y
le-dete
tion algorithm? In Pro
. Tools and Algorithms for Constru
tion and Analysisof Systems, volume 2031 of LNCS, pages 420�434. Springer, 2001.12. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-�y automati
 veri�-
ation of linear temporal logi
. In Pro
. Proto
ol Spe
i�
ation Testing and Veri�
ation,pages 3�18. Chapman & Hall, 1995.13. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth �rst sear
h. In Pro
.SPIN Workshop, pages 23�32. Ameri
an Mathemati
al So
iety, 1996.14. A. Ku�
era and J. Strej�
ek. The stuttering prin
iple revisited: On the expressivenessof nested X and U operators in the logi
 LTL. In Pro
. Computer S
ien
e Logi
, volume2471 of LNCS, pages 276�291. Springer, 2002.15. O. Kupferman andM. Y. Vardi. Model 
he
king of safety properties. Formal Methodsin System Design, 19(3):291�314, 2001.16. C. Löding. Methods for the transformation of omega-automata: Complexity and
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