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Abstract. The hierarchy of properties as overviewed by Manna and Pnueli
[18] relates language, topology, w-automata, and linear temporal logic
classifications of properties. We provide new characterisations of this hi-
erarchy in terms of automata with Biichi, co-Biichi, and Streett accep-
tance condition and in terms of XF7F and ITFTL hierarchies. Afterwards,
we analyse the complexity of the model checking problem for particular
classes of the hierarchy and thanks to the new characterisations we iden-
tify those linear time temporal properties for which the model checking
problem can be solved more efficiently than in the general case.

1 Introduction

Model checking has become a popular technique for formal verification of reac-
tive systems. The model checking process has several phases — the major ones
being modelling of the system, specification of desired properties of the sys-
tem, and the actual process of automatic verification. Each of these phases has
its specific difficulties. In this paper we study linear temporal properties and
algorithms for the automatic verification of these properties.

Reactive systems maintain an ongoing interaction with their environment
and thus produce computations — infinite sequences of states. When analysing
the behaviour of such a system we are interested in some finite set AP of ob-
servable propositions about states. Hence, we can view a computation of the
system as an infinite word over 24¥. In general, we define a temporal property
as a language of infinite words. A reactive system S is said to have a property
P if all possible computations of S belong to P.

The problem of proper and correct specification of properties the system
ought to satisfy led to a careful study of theoretical aspects of properties. Manna
and Pnueli [18] have proposed a classification of temporal properties into a
hierarchy. They characterise the classes of the hierarchy through four views:
a language-theoretic view, a topological view, a temporal logic view, and an
automata view. The fact that the hierarchy can be defined in many different
ways shows the robustness of this hierarchy.
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Model checking theory is devoted to the development of efficient algorithms
for the automatic verification of properties of reactive systems. A very success-
ful approach to verifying properties expressed as linear temporal logic (LTL)
formulas makes use of automata over infinite words. Here the problem of veri-
tying a property reduces to the problem whether a given automaton recognises
a non-empty language (so called non-emptiness check). The complexity of the
non-emptiness check depends on the type of the automaton. Bloem, Ravi, and
Somenzi [1] have studied two specialised types of automata, called weak and
terminal, for which the non-emptiness check can be performed more efficiently
than in the general case.

Our contribution Our aim is to classify temporal properties specifiable by lin-
ear temporal logic formulas with respect to the complexity of their verifica-
tion. To this end we provide a classification of temporal properties through two
new views. First, we characterise properties in terms of automata over infinite
words (w-automata) with Biichi, co-Btichi, and Streett acceptance condition and
in terms of weak and terminal automata. Weak and terminal automata are used
in the verification process and are checked for non-emptiness.

For the second characterisation we introduce a new hierarchy (called Until-
Release hierarchy) of LTL formulas based on alternation depth of temporal op-
erators Until and Release. We provide a relationship between the Until-Release
hierarchy and the hierarchy by Manna and Pnueli [18].

Our new classification provides us with an exact relationship between the
type of a formula and the type of an automaton, which is checked for non-
emptiness in the model checking process of the formula.

In the second part of the paper we enquire into particular automata and
analyse the complexity of their non-emptiness check in connection with both
explicit and implicit representation of automata. This gives us an exact rela-
tionship between types of properties and the complexity of their verification.
Finally, we discuss the possibility of exact determination of the type of a for-
mula.

Due to space limitations complete proofs (and some formal definitions) are
omitted and can be found in the full version of the paper [3].

Related work The previous work on verification, which takes into account a
classification of properties, is partly devoted to the proof-based approach to
verification [4]. Papers on specialised model checking algorithms either cover
only part of the hierarchy or have a heuristic nature. Vardi and Kupferman [15]
study the model checking of safety properties. Schneider [19] is concerned with
a translation of persistence properties into weak automata. Bloem and Somenzi
study heuristics for the translation of a formula into weak (terminal) automa-
ton [21] and suggest specialised algorithms for the non-emptiness problem [1].
Our work covers all types of properties and brings out the correspondence be-
tween the type and the complexity of non-emptiness check.



2 Hierarchy of Temporal Properties

The hierarchy studied by Manna and Pnueli [18] classifies properties into six
classes: guarantee, safety, obligation, persistence, recurrence, and reactivity proper-
ties.

Definition 1 (Language-theoretic view [18]).
Let P C X¥ be a property over X.

— P is a safety property if there exists a language of finite words L C X* such that
for every w € P all finite prefixes of w belong to L.

— P is a guarantee property if there exists a language of finite words L C X* such
that for every w € P there exists a finite prefix of w which belongs to L.

— Pisan obligation property if P can be expressed as a positive boolean combination
of safety and guarantee properties.

— P is arecurrence property if there exists a language of finite words L C X* such
that for every w € P infinitely many prefixes of w belong to L.

— P is a persistence property if there exists a language of finite words L C X* such
that for every w € P all but finitely many prefixes of w belong to L.

— P is a reactivity property if P can be expressed as a positive boolean combination
of recurrence and persistence properties.

In what follows, the abbreviation xk-property stands for a property of one
of the six above mentioned types. Inclusions, which relate the corresponding
classes into a hierarchy, are depicted in Fig. 1. Classes which are higher up
strictly contain classes which are lower down.

2.1 Automata View

Manna and Pnueli [18] have defined the hierarchy of properties in terms of
deterministic Streett predicate automata. Automata for considered classes of
properties differ in restrictions on their transition functions and acceptance con-
ditions. In this section we provide a new characterisation of the hierarchy in
terms of deterministic w-automata which uses only restrictions on acceptance
conditions (the transition function is always the same). We find this characteri-
sation more uniform and believe that it provides better insight into the hierar-
chy. On top of that we study other widely used types of w-automata and show
that each of them exactly corresponds to one class in the hierarchy.

An w-automaton is a tuple A = (X, Q, qo, d, @), where X' is a finite alphabet,
(QQ is a finite set of states, gg € () is an initial state, § is a transition function, and
a is an acceptance condition. The transition function determines four types of
automata: deterministic, nondeterministic, universal, and alternating. A nondeter-
ministic automaton has a transition function of the type § : @ x ¥ — 29. A
run 7 of such an automaton on an infinite word w = w(0)w(1) ... over X is a
sequence of states m = rg,r1,... such that 7o = qo and r;41 € d(r;, w(i)) for
each i > 0. A nondeterministic automaton accepts a word w if there exists an
accepting run (see below) on w. Universal automata are defined in the same



way, the only difference is that the universal automaton accepts a word w if all
runs on w are accepting. Deterministic automata are such that |6(¢,a)| = 1 for
all ¢ € Q,a € ¥ (there is a unique run on each word). Alternating automata
form a generalisation of nondeterministic and universal automata.

General automata
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Fig.1. Relations between classes of the hierarchy and their different characterisations.
Classes which are higher up properly contain classes which are lower down. Classes
on the same level are dual with respect to complementation, while the classes obligation
and reactivity can be obtained by boolean combinations of properties from classes lower
down

For a run m we define the infinity set, Inf (), to be the set of all states that
appear infinitely often in 7 and the occurrence set, Occ(7), to be the set of states
that appear at least once in 7. Acceptance conditions « are defined with respect
to infinity set as follows:

- Biichi condition & C ) : a run = is accepting iff Inf(7) N« #
— co-Biichi condition a C @ : a run 7 is accepting iff Inf (7)) Na = ()
— Streett condition @ = {(G1,R1),...,(Gn,Ry)},Gi,R; C @ :arun 7 is ac-
cepting iff Vi : (Inf (7)) NG; # 0 = Inf(m) N R; # ()
For every acceptance condition we can define its “occurrence” version [17,
23] if Oce(m) substitues for Inf(w) (also called Staiger-Wagner acceptance). Ac-
cording to the acceptance condition we denote w-automata as Biichi and oc-

curence Biichi automata respectively and so on. A property P is defined to be



Table 1. The expressivity — each of 24 possible inter-combinations of the transition func-
tion and acceptance condition corresponds to one of the six hierarchy classes

Occurrence
Biichi co-Biichi  Streett | Biichi co-Biichi  Streett
Deterministic recurrence persistence reactivity | quarantee safety obligation
Nondeterministic| reactivity —persistence reactivity | persistence safety persistence
Universal recurrence reactivity — reactivity | guarantee recurrence recurrence
Alternating reactivity reactivity  reactivity | persistence recurrence reactivity

specifiable by automata if there is an w-automaton A which accepts a word w if
and only if w € P.

Theorem 1. Let P be a property specifiable by automata. Then P is a guarantee, safety,
obligation, persistence, recurrence, or reactivity property if and only if it is specifiable
by a deterministic occurrence Biichi, occurrence co-Biichi, occurrence Streett, co-Biichi,
Biichi, or Streett automaton respectively (see Table 1).

Proof. For each class from the hierarchy a k-automaton is defined in [18] by
posing specific restrictions on transition functions and acceptance conditions
of deterministic Streett predicate automata. Using an adjustment of accepting
conditions and a copy construction one can effectively transform s-automata
to above mentioned automaton and vice versa. (Details can be found in the full
version of the paper [3].) O

To make the picture complete we have examined other types of automata
as well (see Table 1). For every possible combination of transition function and
acceptance condition the class of specifiable properties exactly coincides with
one class in the hierarchy. Results for infinite occurrence acceptance conditions
follow from [16]. Universal occurrence Biichi and nondeterministic occurrence
co-Biichi automata can be determinised through the power set construction and
thus they recognise the same classes as their deterministic counterparts. The
other results for occurrence acceptance condition follow from [17].

2.2 Linear Temporal Logic View

In this section we characterise the hierarchy of properties through a new hier-
archy of LTL formulas based on an alternation depth.

The set of LTL formulas is defined inductively starting from a countable
set AP of atomic propositions, Boolean operators, and the temporal operators
X (Next), U (Until) and R (Release):

Wi=q|-W | UV | UAY|XP|PUP|URE

LTL formulas are interpreted in the standard way on infinite words over the
alphabet 247 A property P is defined to be specifiable by LTL if there is an LTL
formula ¢ such that w |= ¢ if and only if w € P.



In recent years, considerable effort has been devoted to the study of LTL
hierarchies which were defined with respect to the number of nested tempo-
ral operators Until, Since, and Next ([10,22,14]). These hierarchies provide in-
teresting characterizations of LTL definable languages. However, they do not
seem to have a direct connection to the model checking problem. We propose
a new hierarchy which is based on alternation depth instead of nested depth,
and establish its connection with the hierarchy of properties. In the next Sec-
tion we demonstrate that this classification directly reflects the hardness of the
verification problem for particular properties.

Let us define hierarchies X" and 11", which reflect alternations of Un-
til and Release operators in formulas. We use the X'/ II notation since the way
the hierarchy is defined strongly resembles the quantifier alternation hierarchy
of first-order logic formulas or fixpoints alternation hierarchy of p-calculus for-
mulas.

Definition 2.

The class SETE = ITETL is the least set containing all atomic propositions and closed
under the application of boolean and Next operators.

The class X"\ is the least set containing IT1/""" and closed under the application of
conjunction, disjunction, Next and Until operators.

The class ITM1" is the least set containing X" and closed under the application of
conjunction, disjunction, Next and Release operators.

The following theorem shows that the type of a property and alternation
depth of its specification are closely related.

Theorem 2. A property that is specifiable by LTL is a guarantee (safety, persistence,
recurrence respectively) property if and only if it is specifiable by a formula from the
class X1 (T, X ETE 11T vespectively) (see Fig. 1).

Proof. The proof makes use of the classification of LTL formulas by Chang,
Manna, and Pnueli [4]. Here every k-property is syntactically characterised
with the help of a k-formula. We can transform any guarantee (safety, persis-
tence, recurrence respectively) formula into an equivalent 7% (I1FTE, ITL,
I1ETE respectively) formula.

Theorem 3. A property is specifiable by LTL if and only if it is specifiable by a positive
boolean combination of X5"" and I1;"" formulas. Therefore both X" and IT}™"
hierarchies collapse in the sense that every LTL formula is specifiable both by a X"
and ITETY formula.

3 Model Checking and Hierarchy of Properties

The model checking problem is to determine for a given reactive system K
and a temporal formula ¢ whether the system satisfies the formula. A com-
mon approach to model checking of finite state systems and LTL formulas is to



construct an automaton A, for the negation of the property and to model the
system as an automaton K. The product automaton K x A, is then checked for
non-emptiness. The product automaton is a nondeterministic Biichi automaton.
For the formal definition of the problem and detailed description of the algo-
rithm we refer to [5].

Our aim is to analyse the complexity of the non-emptiness check depending
on the type of the verified property. As the complexity of the non-emptiness
check is determined by attributes of an automaton, the question is whether for
different types of formulas one can construct different types of automata. We
give a comprehensive answer to this question in this section. In the next sec-
tion we demonstrate how the complexity of the non-emptiness check varies
depending on the type of automata.

To classify nondeterministic Biichi automata we adopt the criteria proposed
by Bloem, Ravi, and Somenzi [1]. They differentiate general, weak, and termi-
nal automata according to the following restrictions posed on their transition
functions:

- general: no restrictions

- weak: there exists a partition of the set () into components (); and an ordering
< on these sets, such that foreach g € Q;,p € Q;,if Ja € ¥ : ¢ € 6(p, a) then
Q; < Qj. Moreover for each @;, @Q; N a = {, in which case Q; is a rejecting
component, or (); C «, in which case ; is an accepting component.

- terminal: for each ¢ € a,a € ¥ it holds §(q,a) # 0 and 6(q,a) C «.

Each transition of a weak automaton leads to a state in either the same or
lower component. Consequently each run of a weak automaton gets eventu-
ally trapped within one component. The run is accepting iff this component
is accepting. The transition function of a terminal automaton is even more re-
stricted — once a run of a terminal automaton reaches an accepting state the run
is accepting regardless of the suffix. Terminal and weak automata are jointly
called specialised automata. It shows up that the classes of properties specifiable
by weak and terminal automata coincide with classes of the hierarchy.

Theorem 4. A property P specifiable by automata is a guarantee (persistence) prop-
erty if and only if it is specifiable by a terminal (weak) automaton.

Theorem 4 raises a natural question whether and how effectively one can
construct for a given guarantee (persistence) formula the corresponding ter-
minal (weak) automaton. A construction of an automaton for an LTL formula
was first proposed by Wolper, Vardi, and Sistla [24]. This basic construction
has been improved in several papers ([12,21,9]) where various heuristics have
been used to produce automaton as small and as “weak” as possible. Although
these heuristics are quite sophisticated, they do not provide any insight into the
relation between the formula and the “weakness” of the resulting automaton.
Constructions for special types of properties can be found in [19, 15].

We present a new modification of the original construction which yields for
a formula from the class Y17 and Y17T a specialised automaton.



Theorem 5. For every SETE (DLTL) formula ¢ we can construct a terminal (weak)
automaton accepting the property defined by .

Proof. States of the automaton are sets of subformulas of the formula ¢. The
transition function is constructed in such a way that the following invariant is
valid: if the automaton is in a state S then the remaining suffix of the word
should satisfy all formulas in S. The acceptance condition is used to enforce
the fulfillment of Until operators. For X{*"" and X;"" formulas the acceptance
condition can be simplified thanks to the special structure of alternation of Until

and Release operators in the formula. O

4 Non-Emptiness Algorithms

In the previous section we showed that we can effectively construct specialised
automata for formulas from lower classes of the hierarchy. Since the verified
system K can be modelled as an automaton without acceptance conditions, the
type of the product automaton is determined entirely by the type of the automa-
ton A, that is even the product automaton is specialised. In this section we
revise both explicit and symbolic non-emptiness algorithms for different types
of automata.

General Automata

For general automata the non-emptiness check is equivalent to the reacha-
bility of an accepting cycle (i.e. cycle cointaining an accepting state). The most
efficient explicit algorithm is the nested depth-first search (DFS) algorithm [6,
13]. With the symbolic representation one has to use nested fixpoint computa-
tion (e.g. Emerson-Lei algorithm) with a quadratic number of symbolic steps
(for an overview of symbolic algorithms see [11]).

Weak Automata

States of a weak automaton are partitioned into components and therefore
states from each cycle are either all accepting (the cycle is fully accepting) or all
non-accepting. The non-emptiness problem is equivalent to the reachability of
a fully accepting cycle. The explicit algorithm has to use only a single DFS [8]
in this case. With the symbolic representation single fixpoint computation [1]
with a linear number of steps is sufficient.

Terminal Automata

Once a terminal automaton reaches an accepting state, it accepts the whole
word. Thus the non-emptiness of a terminal automaton can be decided by a
simple reachability analysis.

With the symbolic representation there is even asymptotical difference be-
tween the algorithms for general and specilized cases. All explicit algorithms
have linear time complexity, but the use of specialized algorithms still brings
several benefits. Time and space optimalizations, “Guided search” heuristics [8],
and the partial-order reduction [13] can be employed more directly for special-
ized algorithms. Algorithms for specialized automata can be more effectively
transformed to distributed ones [2].



These benefits were already experimentally demonstrated. Edelkamp, La-
fuente, and Leue [8] extended the explicit model checker SPIN by a non-empti-
ness algorithm which to a certain extent takes the type of an automaton into
consideration. Bloem, Ravi, and Somenzi [1] performed experiments with sym-
bolic algorithms and in [2] experiments with distributed algorithms are pre-
sented.

5 Conclusions

The paper provides a new classification of temporal properties through deter-
ministic w-automata and through the Until-Release hierarchy. It provides effec-
tive transformation of the X7 (X F7T) formula into terminal (weak) automa-
ton and it argues that the non-emptiness problem for these automata can be
solved more efficiently.

It is decidable whether given formula specifies property of type « [3]. In a
case that it is guarantee (persistence) formula it is possible to transform it into
an equivalent ST (XLTL) formula. Thus the new classifications provide us
with exact relationship between the type of a formula and the type of the non-
emptiness problem.

The determination of the type of a formula and the transformation are rather
expensive (even deciding whether a given formula specifies a safety property
is PSPACE-complete [20]). However, formulas are usually quite short and it
is typical to make many tests for one fixed formula. In such a case, the work
needed for determining the type of the formula is amortised over its verifica-
tion.

Moreover, most of the practically used formulas are simple. We have stud-
ied the Specification Patterns System [7] that is a collection of the most often
verified properties. It shows up that most of the properties can be easily trans-
formed into terminal (41%) or weak (54%) automata. We conclude that model
checkers should take the type of the property into account and use the special-
ized non-emptiness algoritms as often as possible.
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