Distributed LTL Model Checking Based on
Negative Cycle Detection*

Lubos Brim, Ivana Cerna, Pavel Kréal, and Radek Peldnek

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{brim, cerna,xkrcal ,xpelanek}@fi.muni.cz

Abstract. This paper addresses the state explosion problem in au-
tomata based LTL model checking. To deal with large space require-
ments we turn to use a distributed approach. All the known methods
for automata based model checking are based on depth first traversal of
the state space which is difficult to parallelise as the ordering in which
vertices are visited plays an important role. We come up with entirely
different approach which is dependent on locating cycles with negative
length in a directed graph with real number length of edges. Our method
allows reasonable distribution and the experimental results confirm its
usefulness for distributed model checking.

1 Introduction

Model checking is a very successful technique for verifying concurrent systems
and many verification tools were proposed in the last two decades. These tools
verify a desired behavioural property of a reactive system over a given model
through exhaustive enumeration of all the states reachable by the system and
the behaviours that traverse through them. As a matter of fact, the main lim-
iting factor in applications of such tools to practical verification problems is
the real computational power available (time and especially memory). There-
fore verification of complex concurrent systems requires techniques to avoid the
state-explosion problem [9]. Several sequential methods (partial order reductions,
on-the-fly search) to overcome this barrier have been proposed and successfully
implemented in automatic verification tools. Recently, some attempts to use
multiprocessors and networks of workstations have been undertaken.

In [23] the authors describe a parallel version of the verifier Mury. The table
of all reached states is partitioned over the nodes of the parallel machine and
the explicit state enumeration is performed in parallel. A similar approach to
distributed reachability analysis has been taken in [18]. A distributed version
of the UPPAAL model checker based on the same idea as parallel Murp has
been reported in [3]. Yet another distributed reachability algorithm has been
proposed in [1], but has not been implemented. We stress that all mentioned

* This work has been partially supported by the Grant Agency of Czech Republic
grants No. 201/00/1023 and 201/00/0400.

algorithms solve only the reachability problem and do not admit the complete
linear time model checking. A distributed version of the LTL model checker
SPIN [16] based on nested depth first search approach has been explored in [2].
Other recent papers attempt to use distributed environment of workstations for
parallel symbolic model checking. [15] presents a parallel reachability analysis
algorithm based on BDDs while in [4] distributed symbolic method has been
applied to check safety RCTL properties. Papers [14, 5] significantly extend the
scope of properties that can be verified by presenting distributed symbolic model
checking for p-calculus and alternation free u-calculus.

In automata based LTL model checking the verification problem is repre-
sented as the emptiness problem of a Biichi automaton which turns out to be
equivalent to finding a cycle reachable from an initial state and containing an
accepting state in the graph corresponding to the Biichi automaton. The best
known algorithm for finding cycles in directed graphs is the Tarjan’s depth first
search algorithm (DFS) [24]. The practical limitation of this algorithm is the
amount of the randomly accessed memory which the algorithm requires. A space
efficient alternative to Tarjan’s algorithm (so called nested DFS) allowing to
optimise the amount of randomly accessed memory exists (see i.e. [17]) and is
implemented in SPIN verification tool [16]. However, even this optimisation does
not solve the state space explosion problem sufficiently.

A very natural way how to overcome the memory limitation is to distribute
the given graph onto several processors (computers) and to perform a distributed
computation. As depth first search is P-complete, promising parallel DFS-based
algorithms are unlikely to exist [21]. A completely different approach to dis-
tributed emptiness problem is needed. This paper demonstrates the methodol-
ogy of reducing the automata based LTL model checking problem to the negative
cycle detection problem. The problem is to find a negative length cycle in a di-
rected graph whose edges have real number lengths.

The problem of negative cycles is closely related to the single-source short-
est path (SSSP) problem. For this problem effective PRAM algorithms working
with adjacency matrix representation of graphs are known, see i.e. [22]. However,
the adjacency matrix representation is not compatible with other space-saving
techniques like on-the-fly search. Other algorithms (for excellent survey see [8]),
which are based on relaxation of graph’s edges, are inherently sequential and
their parallel versions are known only for special settings of the problem. For
general digraphs with non-negative edge lengths parallel algorithms are pre-
sented in [19,20,12]. For special cases of graphs, like planar digraphs [25,13],
graphs with separator decomposition [10] or graphs with small tree-width [7]
more efficient algorithms are known. Yet none of these algorithms is applicable
on directed graphs with potential negative cycles.

We present a scalable distributed algorithm for the negative cycle problem
and thus for automata based model checking of LTL formulas. Our method
parallelises the model checking problem on a network of processors with disjoint
memory that communicate via message passing.

The paper is organised as follows. We first review automata based LTL model
checking and define the corresponding graph theoretic problem (Section 2). Its
reduction to the negative cycle problem is outlined in Section 3. A distributed
algorithm for the negative cycle problem is given in Section 4. Section 5 sum-
marises the experimental results achieved.

2 Automata Based LTL Model Checking

Automata based approach to model checking of linear temporal logic formulas
is a very elegant method developed by Vardi and Wolper [26]. The essence of
using automata for model checking is that both the modelled system and the
specification the system is supposed to fulfil are represented in the same way —
as Biichi automata.

Definition 1. A Biichi automaton is a tuple A = (X, S, s, p, F), where

— X is a finite alphabet

— S is a finite set of states

— s € S is the initial state

— p: 8 x X — 2% is a transition relation
— F C S is a set of accepting states

A run of A over an infinite word w = ajas ... is a sequence Sg, 81, - - . such that
foralli>1:s; € p(si—1,a;). A run sg, s1,... over w is accepting iff so = s
and {t | t = s; infinitely often} N F # 0. A word w is accepted by A if there is
an accepting run over w. The set of words accepted by A is denoted by L(A).

States of the modelled finite-state system M are identified with the states
of a Biichi automaton Aj; where all the states are accepting. Then, the set of
behaviours of the system is the language L(Aps). On the other hand, for each
LTL formula ¢ one can construct a Biichi automaton A, that accepts exactly the
set of runs satisfying the formula . Hence for the system M and LTL formula
¢ the verification problem is to verify whether L(Ass) C L(A,) or equivalently
whether L(Ay)NL(A-,) is empty. Moreover one can build an automaton A for
L(Apy) N L(A-,) having | M | 20U¢D states. We need to check this automaton
for emptiness [26].

Let A = (X,5,s,p, F) be a given automaton. Consider the directed graph
Ga = (S, E4) such that E4 = {(u,v) | v € p(u,a),a € X}. The following
assertion can be easily verified [26].

Theorem 1. Let A be a Biichi automaton. Then L(A) is non-empty iff Ga has
a cycle that is reachable from the initial state s and contains some accepting
state.

Detection of a reachable accepting cycle in a graph corresponding to a Biichi
automaton is thus at the heart of most automata based model checkers. The
depth first search strategy (DFS) provides a suitable time efficient approach.
However, in large applications graphs are often too massive to fit completely

inside the computer’s internal memory. The resulting input/output paging be-
tween fast internal memory and slower external memory (such as disks) is then
a major performance bottleneck.

In order to overcome problems with the limited size of randomly accessed
memory we suggest to divide the graph onto several processors. The simplest
solution is to run some DF'S based algorithm on those processors. Instead of pag-
ing, computation is handed over to a processor owning related data i.e. paging
is substituted by communication. As communication among processors is rather
time consuming this approach could end up with algorithms which are compar-
atively slow (this finding is supported by experiments presented in Section 5).

Our methodology is based on the reduction of the Biichi automaton emptiness
problem to a problem of detecting a negative cycle in an directed graph as is
illustrated in the following section.

3 Negative Cycles

The negative cycle problem is a well-studied problem in connection with the
single-source shortest path (SSSP) problem. We are given a triple (G, s,1), where
G = (V,E) is a directed graph with n vertices and m edges, [: E — Ris a
length function mapping edges to real-valued lengths, and s € V is the source
vertex. The length of path p =< vo,v1,...,v; > is the sum of the lengths of
its constituent edges, I(p) = Zle l(vi—1,v;). We define the shortest path length
from s to v by d(s,v) = min{l(p) | pis a path from s to v} if there is such a
path and §(s,v) = oo otherwise. A shortest path from vertex s to vertex v is
then defined as any path p with length I(p) = (s, v). If the graph G contains no
cycle ¢ with negative length [(c) (negative cycle) that is reachable from source
vertex s, then for all v € V the shortest path length remains well-defined and
the graph is called feasible. If there is a negative cycle reachable from s, shortest
paths are not well-defined as no path from s to a vertex on the cycle can be a
shortest path. If there is a negative cycle on some path from s to v, we define
d(s,v) = —oo.

The SSSP problem is to decide whether, for a given triple (G, s,1), the graph
G is feasible and if it is then to compute shortest paths from the source vertex
s to all vertices v € V. The negative cycle problem is to decide whether G is
feasible.

The connection between the negative cycle problem and the Biichi automaton
emptiness problem is the following. A Biichi automaton corresponds to a directed
graph G 4 as defined in Section 2. Let us assign lengths to its edges in such a
way that all edges out-coming from vertices corresponding to accepting states
have length -1 and all others have length 0. With this length assignment, negative
cycles simply coincide with accepting cycles and the problem of Biichi automaton
emptiness reduces to the negative cycle problem.

Theorem 2. Let A be a Biichi automaton. Let GA = (G a,s,1) where l: E4 —
{0,—1} is the length function such that l(u,v) = —1 iff u € F. Then L(A) is
non-empty iff G2 has a negative cycle reachable from s.

4 Distributed Negative Cycle Detection Algorithm

The general sequential method for solving the SSSP problem is the scanning
method [11, 8]. For every vertex v, the method maintains its distance label d(v),
parent vertex p(v) and status S(v) € {unreached, labelled, scanned}. The sub-
graph G, of G induced by edges (p(v),v) for all v such that p(v) # nil, is
called the parent graph. Initially for every vertex v, d(v) = oo, p(v) = nil and
S(v) = wunreached. The method starts by setting d(s) = 0, p(s) = nil and
S(s) = labelled. At every step, the method selects a labelled vertex v and ap-
plies to it a scanning operation. During scanning a vertex v, every edge (v, u)
outcoming from v is relazed which means that if d(u) > d(v) + (v, u) then d(u)
is set to d(v) + (v, u) and p(u) is set to v. The status of v is changed to scanned
while the status of u is changed to labelled. If all vertices are either scanned or
unreached then d gives the shortest path lengths and G, is the graph of shortest
paths.

Different strategies for selecting a labelled vertex to be scanned next lead to
different algorithms. Our strategy comes out from the Bellman-Ford-Moore [8]
algorithm which uses FIFO strategy to select a labelled vertex. The next vertex
to be scanned is removed from the head of the queue; a vertex that becomes
labelled is added to the tail of the queue if it is not already on the queue.

For graphs where negative cycles could exit the scanning method must be
modified to recognise the unfeasibility of the graph. As in the case of scanning
various strategies are used to detect negative cycles [8]. However, not all of them
are suitable for our purposes — they are either uncompetitive (as for example
time-out strategy) or they are not suitable for distribution (such as the admissi-
ble graph search which uses hardly parallelizable DFS or the level-based strategy
which employs global data structures). For our distributed algorithm we have
used the walk to root strategy.

The walk to root strategy is based on the fact that any cycle in G} is a
negative cycle. Suppose the relaxation operation applies to an edge (v,u) (i.e.
d(u) > d(v) +I(v,u)) and the parent graph G, is acyclic. This operation creates
a cycle in G, if and only if u is an ancestor of v in the current tree. This can
be detected by following the parent pointers from v to s. If the vertex u lies
on this path then there is a negative cycle; otherwise the relaxation operation
does not create a cycle. However, the walk to root method increases the cost
of applying the relaxation operation to an edge to O(n) since the cost of the
search is O(n). Therefore the walk to root is performed only after the underlying
relaxation algorithm performs {2(n) work. The running time of walk to root is
thus amortised over the relaxation time and overall time complexity is increased
only by a constant factor. To preserve the termination of the strategy we will
change and explain its behaviour afterwards.

The negative cycle detection algorithm NC we are proposing works in a
distributed environment (no global information is directly accessible) where all
processors communicate via message passing. We suppose that the set of ver-
tices of the inspected graph is divided into disjoint subsets. The distribution is
determined by the function owner which assigns every vertex v to a processor a.

For every vertex v processor owner(v) knows its adjacency list. The distribu-
tion can be realized on-the-fly. Each processor a is responsible for its own part
G® = (Va, E,) of the graph G determined by the owned subset of vertices. Good
partition of vertices among processors is important because it has direct impact
on communication complexity and thus on run-time of the program. We do not
discuss it here because it is itself quite a difficult problem and depends on the
concrete application.

The main idea of the distributed algorithm NC' can be summarised as fol-
lows. The distributed computation is initiated by the process Manager which
performs the necessary initialisations. All processors participating in the algo-
rithm execute the same program. Each processor performs repeatedly the basic
scanning operation on all its vertices with labelled status (procedure MAIN).
Such vertices are maintained in the processor’s local queue Q¢. To process a
vertex v which belongs to a different processor a message is sent to the owner
of v. In each iteration it first processes messages received from other processors.
Several types of messages could arrive:

— a request to update parameters of a vertex u. The procedure UPDATE
compares the current value d(u) with the received one. If needed, parameters
are updated and the vertex u is placed into the queue.

— a request to continue in a walk, satisfied by executing the WTR procedure.

— a request to continue in removing marks, satisfied by executing the REM
procedure.

Pseudo-Code of the Distributed Algorithm NC

1 proc MAIN() {running on each processor a}
2 stamp := 0;

3 if o = Manager then Q“ = {s}; d(s) :=0; p(s) := nil else Q* :=0 fi
4 while not finished do process_messages; v := pop(Q®); SCAN (v) od
5 end

1 proc SCAN (v)

2 foreach (v,u) € E do

3 if owner(u) = «

4 then UPDATE(u, v, d(v) + l(v,u))

5 else send_message(owner(u), “start UPDATE(u,v,d(v) + l(v,u))”) fi od
6 end

1 proc UPDATE (u,v,t)

2 if d(u) > t then if walk(u) # [nil, nil]

3 then if owner(v) = a

4 then push(Q*,v)

5 else send_message(owner(v), “do push(Q,v)”) fi
6 else d(u) :=t; p(u) :=v;

7 if WTR_amortization then WTR([u, stamp], u);

8 stamp + + fi;

9 if u ¢ Q* then push(Q*,u) ififi

10 end

1 proc WTR([origin,stamp], at) {Walk To Root}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

© 0 N G W~

N~
~ o

12
13

done := false;
while —done do
if owner(at) = a
then
if walk(at) = [origin, stamp| —
send_message(M anager, “negative cycle found”);
terminate
O (at = source) V (walk(at) > [origin, stamp]) —
if origin € V,
then REM ([origin, stamp], origin)
else send_message(owner(origin),
“start REM ([origin, stamp), origin))” fi
done := true;
O (walk(at) = [nil, nil]) V (walk(at) < [origin, stamp]) —
walk(at) := [origin, stamp];
at := p(at)
i
else
send_message(owner(at), “start WTR([origin, stamp), at)”);
done := true
fi
od
end
proc REM ([origin, stamp], at) {Remove Marks}
done := false;
while —done do
if owner(at) = a
then if walk(at) = [origin, stamp]
then walk(at) := [nil, nil];
at := p(at)
else
done := true fi

else send_message(owner(at), start REM ([origin, stamp], at));

od

end

done := true fi

The SCAN procedure scans a vertex v. Every edge (v, u) outcoming from v is

relaxed which means that if d(u) > d(v) +1(v, u) then d(u) is set to d(v) +1(v,)
and p(u) is set to v. If the vertex u lies on a walk to root path its parameters
are not changed and the vertex v is placed back into the queue.

The WTR procedure is responsible for the negative cycle detection. The

procedure follows the parent pointers starting from the state where the procedure
has been invoked (origin). It is initiated after relaxation of an edge and according
to a suitable amortisation strategy (WTR_amortisation condition becomes true
every n-th time it is called). In the distributed environment it may be the case

that even if the vertex v does not lie on any cycle, the parent graph can contain
a cycle created in the meantime by some other processor. It can happen that
WTR initiated from v reaches such a cycle and never finishes. The amortisation
brings about this problem as well. To fix it each processor maintains a counter of
started WTR procedures. WTR marks (variable walk) each vertex through which
it proceeds by the name of the vertex where the walk has been initiated (origin)
and the current value of the processor counter (stamp). A cycle is detected
whenever a vertex with the actual origin and stamp is reached.

Moreover, it can happen that more than one WTR procedure is active at a
time. In such a situation the concurrent walks could overwrite its own marks
preventing thus detection of a cycle. It is sufficient to complete only one of them
— if there is a cycle it will be detected. To decide which walk should continue let
us suppose that a total linear ordering on vertices is given. A walk with lower
origin is stopped.

There are four possible situations that can happen during the walk:

— the procedure reaches the source vertex s (line 9). A negative cycle has not
been detected and the REM procedure is started.

— the procedure reaches a vertex marked with the same origin and the same
stamp (line 6). This indicates that a negative cycle has been recognised. The
cycle can be easily reconstructed by following parent edges. If necessary,
the path connecting the cycle with the source vertex can be found using a
suitable reachability algorithm.

— the procedure reaches a non-marked vertex, a vertex already marked with
lower origin or a vertex marked with the same origin but lower stamp
(line 15). The vertex is marked with [origin, stamp] and the walk follows
the parent edge.

— the procedure reaches a vertex already marked with higher origin (line 9).
The walk is stopped and the REM procedure is started.

Whenever WTR has to continue in a non-local vertex a request to the vertex
owner is sent and the local walk is finished.

The purpose of the REM procedure is to remove marks introduced by the
WTR procedure. These marks could otherwise obstruct some possible future
runs of WTR through marked vertices. Marks to be removed are found with the
help of parent edges (this is why the updating of a marked vertex is postponed
(line 2 of UPDATE)). The REM procedure follows the path in the parent graph
starting from the origin in a similar way as WTR does. It finishes when it
reaches a source vertex or a vertex marked with different origin. However, this
does not guarantee that all marks are removed at that very moment. Note that
these marks will be removed by some other REM procedure eventually. The
correctness of cycle detection is guaranteed as for the cycle detection the equality
of both origin and stamp is required.

The distributed algorithm terminates when either all queues of all processors
are empty and there are no pending messages or when a negative cycle has been
detected. The Manager process is used to detect termination and to finish the
algorithm by sending a termination signal to all the processors.

Theorem 3 (Correctness and Complexity).

If G has no negative cycle reachable from the source s, then the algorithm termi-
nates, d(v) = (s, v) for all vertices v € V, and the parent graph G, is a shortest
path tree rooted at s. Otherwise the existence of a negative cycle is reported.

If G is distributed over P processors each of which owns O(n/P) vertices, then
the worst case computation complezity is O(n3/P).

For detailed proof of the correctness and the complexity analysis see [6].

5 Experiments

We have implemented the algorithm proposed in Section 4. The implementation
has been done in C++ and the experiments have been performed on a cluster
of eight 366 MHz Pentium PC Linux workstations with 128 Mbytes of RAM
each interconnected with a fast 100Mbps Ethernet and using Message Passing
Interface (MPI) library.

In the implementation of the NC algorithm we have employed the following
optimisation scheme. For more efficient communication between processors we
do not send separate messages. The messages are sent in packets of pre-specified
size. The optimal size of a packet depends on the network connection and the un-
derlying communication structure. In our case we have achieved the best results
for packets of size about 100 single messages.

As far as we know there is no other distributed algorithm for negative cycle
problem (see Section 1). Therefore our objective was to compare the performance
of the NC' algorithm with algorithms used in LTL model checkers. For compari-
son we have used very effective nested depth first search (NDFS) algorithm [17]
used in SPIN verification tool [16]. In its distributed version the graph is divided
over processors like in the NC algorithm. Only one processor, namely the one
owning the actual vertex in the NDFS search, is executing the nested search at
a time. The network is in fact running the sequential algorithm with extended
memory. The worst case space complexity of NDFS is asymptotically the same
as the one of our algorithm NC. The worst case time complexity of NDFS is
linear in the number of vertices and edges.

We performed several sets of tests on different instances in order to verify how
fast is the algorithm in practice, i.e. beyond its theoretical characterisation. Our
experiments were performed on two kinds of systems given by random graphs and
generated graphs. Graphs were generated using a simple specification language
and an LTL formula. In both cases we tested graphs with and without cycles to
model faulty and correct behaviour of systems. As our real example we tested
the parametrised Dining Philosophers problem. Each instance is characterised by
the number of vertices and the number of cross-edges. The number of cross-edges
significantly influences the overall performance of distributed algorithms.

For each experiment we report the average time in minutes and the number
of sent messages (communication) as the main metrics. Table 1 summarises the
achieved results.

The experiments lead basically to the following conclusions:

— NC algorithm is comparable with the NDF'S one on all graphs.
— NC algorithm is significantly better on graphs without negative cycles.

NDFS NC
Vertices | Cross—edges Time |Messages Time | Messages
Generated, without cycle
40398 34854 1:01 79376 0:11 809
71040 1301094 31:13| 3008902 0:48 1108
696932 1044739 27:02| 2387220 1:31 14029
736400 5331790 126:46| 12316618 5:17 48577
777488 870204 21:36| 1887252 2:02 13872
1859160 1879786 49:04| 4226714 6:00 25396
Generated, with cycle
18699 22449 0:06 22 0:05 68
33400 2073288 0:37 30824 0:24 555
46956 83110 0:05 108 0:09 702
448875 1863905 0:51 21106 0:56 3435
Random, without cycle
4000 353247 14:03] 1390262 0:17 17868
5000 839679 31:48| 3151724 0:32 2489
80000 522327 30:11| 2042212 1:39 87002
60000 1111411 57:19| 4131210 4:08 98686
947200 5781959 184:23| 13338462 9:49 47030
Random, with cycle
18000 1169438]] 1:20] 104822]] 0:09] 862
Philosophers
(12) 94578 42154 2:06 168616 0:13 756
(14) 608185 269923 16:11| 1079692 1:40 4500

Table 1. Summary of experimental results

Experiments show that in spite of worse theoretical worst time complexity of
NC algorithm its behaviour in practice can outperform the theoretically better
NDFS one. This is due to the number of communications which has essential
impact on the resulting time. In NC' algorithm the messages can be grouped into
packets and sent together. It is a general experience that the time needed for
delivering t single messages is much higher than the time needed for delivering
those messages grouped into one packet. On the other hand, NDFS algorithm
does not admit such a grouping. Another disadvantage of NDFS is that during
the passing of messages all the processors are idle, while in NC' algorithm the
computation can continue immediately after sending a message. Last but not
least, in NDFS all but one processor are idle whereas in NC' all can compute
concurrently. We notice that all mentioned advantages of NC' algorithm demon-
strate themselves especially for systems without cycles where the whole graph
has to be searched. This is in fact the desired property of our algorithm as the

state explosion demonstrates itself just in these cases. Both algorithms perform
equally well on graphs with cycles.

We have accomplished yet another set of tests in order to validate the scala-
bility of the NC algorithm. The tests confirm that it scales well, i.e. the overall
time needed for treating a graph is decreasing as the number of involved proces-
sors is increased.

6 Conclusions

Parallel and distributed algorithms for reachability analysis and model checking
have recently been investigated as a possible method to handle large state spaces.
The core problem of automata based model checking is the detection of reachable
accepting cycles in the state space. The classical depth first strategy provides
a suitable approach to cycle detection in a sequential case. However, the depth
first search approach is difficult to distribute.

The paper proposes a novel approach to the cycle detection problem in a
distributed environment. The main idea is to transform the accepting cycle de-
tection problem to the single-source shortest path problem in graphs with real
number edge lengths — negative cycle problem. We have proposed a scalable
distributed algorithm to solve this problem and we have performed a series of
experiments to evaluate its performance.

The performance of the algorithm was compared with a distributed DFS
based algorithm. The experimental results show that the distributed algorithm
based on negative cycle detection significantly outperforms the DFS based one
due to higher degree of asynchronous parallelism which allows to optimise nec-
essary communication. DFS based algorithms rely on strict synchronisation.

In the future we aim to embed the algorithm in a suitable automata based
verification tool (e.g. SPIN) to be able to test its applicability to a non-trivial
series of real systems. Furthermore, we intend to explore various heuristics and
implementation techniques to optimise its performance.

References

1. S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed reachability analysis
for protocol verification environments. In Discrete Event Systems: Models and
Application, volume 103 of LNCS, pages 40-56. Springer, 1987.

2. J. Barnat, L. Brim, and J. St#ibrnd. Distributed LTL Model-Checking in SPIN.
In Proc. SPIN 2001, volume 2057 of LNCS, pages 200-216. Springer, 2001.

3. G.Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed timed model check-
ing — how the search order matters. In Proc. CAV 2000, volume 1855 of LNCS,
pages 216—231. Springer, 2000.

4. S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable distributed
on-the-fly symbolic model checking. In Proc. FMCAD 2000, 2000.

5. B. Bollig, M. Leucker, and M Weber. Parallel model checking for the alternation
free mu-calculus. In Proc. TACAS 2001, volume 2031 of LNCS, pages 543-558.
Springer, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

L. Brim, I. Cerni, P. Kr&sl, and R. Pelsnek. Distributed shortest
path for directed graphs with negative edge lengths. Technical Re-
port FIMU-RS-2001-01, Faculty of Informatics, Masaryk University Brno,
http://www.fi.muni.cz/informatics/reports/, 2001.

S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small
treewidth. In Proc. ESA 1995, volume 979 of LNCS, pages 31-45. Springer, 1995.
B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. Math-
ematical Programming, (85):277-311, 1999.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the state
explosion problem in model checking. In Informatics - 10 Years Back. 10 Years
Ahead, volume 2000 of LNCS, pages 176-194. Springer, 2001.

E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decompo-
sition. Journal of Algorithms, 21(2):331-357, 1996.

T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT, 1990.

A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s
shortest path algorithm. In Proc. MFCS 1998, volume 1450 of LNCS, pages 722—
731. Springer, 1998.

P. Spirakis D. Kavvadias, G. Pantziou and C. Zaroliagis. Efficient sequential and
parallel algorithms for the negative cycle problem. In Proc. ISAAC 1994, volume
834 of LNCS, pages 270-278. Springer, 1994.

O. Grumberg, T. Heyman, and A. Schuster. Distributed model checking for mu-
calculus. In Proc. 18th Conference on Computer-Aided Verification CAV01, LNCS.
Springer, 2001.

T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in
parallel reachability analysis of very large circuits. In Proc. CAV 2000, volume
1855 of LNCS, pages 20-35. Springer, 2000.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
The Spin Verification System, pages 23—32. American Mathematical Society, 1996.
F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc.
SPIN 1999, number 1680 in LNCS. Springer, 1999.

U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In Proc.
EUROPAR 2000. LNCS, 2000.

K. Ramarao and S. Venkatesan. On finding and updating shortest paths distribu-
tively. Journal of Algorithms, 13:235-257, 1992.

J.H. Reif. Depth-first search is inherrently sequential. Information Processing
Letters, 20(5):229-234, 1985.

S.H. Roosta. Parallel processing and parallel algorithms. Springer, 2000.

U. Stern and D.L. Dill. Parallelizing the Mury verifier. In Proc. CAV 1997, volume
1254 of LNCS, pages 256—267. Springer, 1997.

R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
computing, pages 146-160, 1972.

J. Traff and C.D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. In Proc. IRREGULAR-3 1996, volume
1117 of LNCS, pages 183-194S. Springer, 1996.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. LICS 1986, pages 332-344. Computer Society Press, 1986.

