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Received: 3 June 1997

Summary. We present an exact characterization of those transition sys-
tems which can be equivalently (up to bisimilarity) defined by the syntax of
normed BPAτ and normed BPPτ processes. We give such a characterization
for the subclasses of normed BPA and normed BPP processes as well.

Next we demonstrate the decidability of the problem whether for a given
normedBPAτ processΔ there is some unspecified normedBPPτ processΔ�

such thatΔ andΔ� are bisimilar. The algorithm is polynomial. Furthermore,
we show that if the answer to the previous question is positive, then (an ex-
ample of) the process Δ� is effectively constructible. Analogous algorithms
are provided for normed BPPτ processes. Simplified versions of the men-
tioned algorithms which work for normed BPA and normed BPP are given
too. As a simple consequence we obtain the decidability of bisimilarity in
the union of normed BPAτ and normed BPPτ processes.

1 Introduction

The semantics of concurrent processes is often understood in terms of la-
belled transition systems. The ‘sameness’ of two processes is then formally
defined as an equivalence over the class of transition systems. There are var-
ious approaches to this problem, and many ‘behavioural’ equivalences have
been proposed in the literature (see e.g. [17] for an overview). Bisimulation
equivalence (bisimilarity), due to Park [15] and Milner [14], seems to be
of special importance as its accompanying theory has been developed very
intensively.

� The first two authors are supported by the Grant Agency of the Czech Republic, Grant
No. 201/97/0456. The third author is supported by a PostDoc grant GA ČRNo. 201/98/P046.
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Bearing in mind bisimulation we study the relationship between the
classes of transition systems which are generated by normed BPAτ [2] and
normed BPPτ [6] processes. We also examine such a relationship between
their respective proper subclasses formed by normed BPA and normed BPP
processes.

BPA processes can be seen as simple sequential programs (they are
equippedwith a binary sequential operator). This class of processes has been
intensively studied by many researchers. Baeten, Bergstra, and Klop proved
in [1] that bisimilarity is decidable for normed BPA processes. Within the
classical language theory this class corresponds to context-free grammars
without irredundant nonterminals and without �-rules. Their proof is based
on isolating a complex periodicity in transition graphs of these processes.

Much simpler proofs of this result were later given in [4], [12], and [9],
utilizing algebraic properties of this class. Hirshfeld, Jerrum, and Moller
demonstrated in [10] that the problem is decidable in polynomial time. The
decidability result was later extended to the whole class of BPA processes
by Christensen, Hüttel, and Stirling in [8].

If the binary sequential operator is replaced by the parallel one, the
class of BPP processes is obtained. Hence, BPP can be seen as a class
of simple parallel programs. Christensen, Hirshfeld, and Moller proved in
[7] that bisimilarity is decidable for BPP processes. A polynomial decision
algorithm for normed BPP processes was presented in [11] by Hirshfeld,
Jerrum, and Moller.

If the operator of parallel compositiondoes not specify justmerge, but it is
enriched to define also an internal synchronous communication between two
BPP processes resulting in a special action τ , one obtains the class of BPPτ

processes [6]. In order to compare this class with its sequential counterpart
we employ the class of BPAτ processes [2]. Bisimilarity remains decidable
in these process classes.

An interesting problem is, what is the exact relationship between BPAτ

and BPPτ processes, i.e. what is the relationship between sequencing and
parallelism.We answer this question for normed subclasses of the processes
just mentioned. Moreover, we also show how the obtained results can be ap-
plied to normed BPA and normed BPP processes (some of these specialized
results have been independently achieved by Blanco in [3] – see Sect. 5 for
a more detailed discussion).

Our paper is organized as follows. First we introduce basic definitions
and recall some known results which are employed in subsequent proofs.
An exact characterization of those behaviours (transition systems) which
can be equivalently (up to bisimilarity) described by the syntax of normed
BPPτ and normed BPAτ processes is given in Sect. 3. Next we show that
if we restrict ourselves to normed BPA and normed BPP processes, a quite
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simple and (hopefully) nice characterization of those behaviours which are
common to these subclasses is obtained. In Sect. 4 we demonstrate decid-
ability of the problem whether for a given normed BPAτ , BPPτ , BPA, or
BPP process Δ there is some unspecified bisimilar BPPτ , BPAτ , BPP, or
BPA process Δ�, respectively. These algorithms are polynomial. We also
show that if the answer to the previous question is positive, then the pro-
cessΔ� is effectively constructible. Hence, as an important consequence we
also obtain decidability of bisimulation equivalence in the union of normed
BPAτ and normed BPPτ processes.

2 Definitions

2.1 BPA and BPP processes

Let Λ = {a� b� c� . . .} be a countably infinite set of atomic actions such that
for every a ∈ Λ there is its corresponding dual action awith the convention
that a = a. Let Act = Λ ∪ {τ} where τ �∈ Λ is a special (silent) action.
Let Var = {X�Y� Z� . . .} be a countably infinite set of variables such that
Var ∩ Act = ∅. The classes of BPA, BPP, BPAτ , and BPPτ expressions are
defined by the following abstract syntax equations:

EBPA ::= � | b | X | bEBPA | EBPA.EBPA | EBPA + EBPA

EBPP ::= � | b | X | bEBPP | EBPP�EBPP | EBPP + EBPP

EBPAτ ::= � | a | X | aEBPAτ | EBPAτ .EBPAτ | EBPAτ + EBPAτ

EBPPτ ::= � | a | X | aEBPPτ | EBPPτ |EBPPτ | EBPPτ + EBPPτ

Here ‘b’ ranges over Λ, ‘a’ ranges over Act, and ‘X’ ranges over Var.
Intuitively, ‘�’ models a successfully terminated process, ‘b’ is an observable
computational step, ‘τ ’ is an internal (not observable) computational step, ‘.’
is sequencing, ‘�’, ‘|’ are parallel compositions, and ‘+’ is a nondeterministic
choice.

In the rest of this paperwe do not distinguish between expressions related
by structural congruence which is the smallest congruence relation over
process expressions such that the following laws hold:

– associativity and ‘�’ as a unit for ‘.’, ‘�’, ‘|’, and ‘+’
– commutativity for ‘�’, ‘|’, and ‘+’
– a� = a

As usual, we restrict our attention to guarded expressions. A process ex-
pression E is guarded if every variable occurrence in E is within the scope
of an atomic action.
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Table 1. SOS rules

aE
a
→ E

E
a
→ E�

E.F
a
→ E�.F

E
a
→ E�

E + F
a
→ E�

F
a
→ F �

E + F
a
→ F �

E
a
→ E�

E�F
a
→ E��F

F
a
→ F �

E�F
a
→ E�F �

E
a
→ E�

E�F
a
→ E��F

F
a
→ F �

E�F
a
→ E�F �

E
b
→ E� F

b
→ F �

E�F
τ
→ E��F �

�b �= τ) E
a
→ E�

X
a
→ E�

�X
def
= E ∈ Δ)

A guarded BPA, BPP, BPAτ , or BPPτ process is defined by a finite family
Δ of recursive process equations

Δ = {Xi
def

= Ei | 1 ≤ i ≤ n}

whereXi are distinct elements of Var andEi are guarded BPA, BPP, BPAτ ,
or BPPτ expressions, containing variables of {X1� . . . � Xn}. The set of
variables which appear in Δ is denoted by Var�Δ).

The variableX1 plays a special role (X1 is sometimes called the leading
variable) – it is a root of a labelled transition system, defined by the process
Δ and the rules of Table 1.

Nodes of the transition system generated by Δ are BPA, BPP, BPAτ , or
BPPτ expressions, which are often called states of Δ, or just ‘states’ when

Δ is understood from the context. We also extend the notation E
a
→ F to

elements of Act∗ in an obvious way (we often write E →∗ F instead of

E
w
→ F if w ∈ Act∗ is irrelevant). Given two states E�F , we say that F is

reachable from E, if E →∗ F . States of Δ which are reachable from X1

are said to be reachable.

Remark 1 Processes are often identified with their leading variables. Fur-
thermore, if we assume a fixed process Δ, we can view any process ex-
pression E (not necessarily guarded) whose variables are defined in Δ as
a process – if we denote this process by Δ�, then the leading equation of

Δ� is X
def

= E� where X �∈ Var�Δ) and E� is a process expression obtained
fromE by substituting each variable inE with the right-hand side of its cor-
responding defining equation in Δ (E� must be guarded now). Moreover,
defining equations of Δ are added to Δ�. All notions originally defined for
processes can also be used for process expressions in this sense.

2.1.1 Bisimulation The equivalence between process expressions (states)
we are interested in here is bisimilarity [15], defined as follows:
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Definition 1 A binary relationR over process expressions is a bisimulation
if whenever �E�F ) ∈ R then for each a ∈ Act

– if E
a
→ E�, then F

a
→ F � for some F � such that �E�� F �) ∈ R

– if F
a
→ F �, then E

a
→ E� for some E� such that �E�� F �) ∈ R

ProcessesΔ andΔ� are bisimilar, writtenΔ ∼ Δ�, if their leading variables
are related by some bisimulation.

2.1.2 Normedprocesses Important subclasses ofBPA,BPP,BPAτ , andBPPτ

processes can be obtained by an extra restriction of normedness. A variable

X ∈ Var�Δ) is normed if there is w ∈ Act∗ such that X
w
→ �. In that case

we define the norm of X , written |X|, to be the length of the shortest such
w. In case of BPPτ processes we also require that no τ action which appears
inw is a result of communication on dual actions in the sense of operational
semantics given in Table 1. This is necessary if we want the norm to be
additive over the ‘|’ operator (τ may still occur in w, as it can also be used
as an action prefix). A process Δ is normed if all variables of Var�Δ) are
normed. The norm of Δ is then defined to be the norm of X1.

Remark 2 As normed processes are intensively studied in this paper, we
emphasize some properties of the norm:

– Note the norm of a normed process is easy to compute by the following
rules: |a| = 1, |E+F | = min{|E|� |F |}, |E.F | = |E|+ |F |, |E�F | =

|E| + |F |, |E|F | = |E| + |F |, and if Xi
def

= Ei and |Ei| = n, then
|Xi| = n.

– Bisimilar processes must have the same norm.

In the rest of this paperwe denote the normed subclasses ofBPA,BPP,BPAτ ,
and BPPτ processes by nBPA, nBPP, nBPAτ , and nBPPτ , respectively.

2.1.3 Greibach normal form AnyBPA,BPP,BPAτ , andBPPτ processΔ can
be effectively presented in a special normal formwhich is called 3-Greibach
normal form by analogy with CF grammars (see [1] and [6]). Before the
definition we need to introduce the set Var�Δ)∗ of all finite sequences of
variables from Var�Δ), and the set Var�Δ)⊗ of all finite multisets over
Var�Δ). Each multiset α of Var�Δ)⊗ denotes a BPP (or BPPτ ) expression
which can be obtained by combining elements of α in parallel using the ‘�’
operator (or the ‘|’ operator).

Definition 2 A BPA (or BPAτ ) process Δ is said to be in Greibach normal
form (GNF) if all its equations are of the form

X
def

=

n�

j=1

ajαj
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where n ∈ �, aj ∈ Λ (or aj ∈ Act), and αj ∈ Var�Δ)∗. We also require
that for every Y ∈ Var�Δ) there is a reachable state of the form Y.β. If
length�αj) ≤ 2 for each j� 1 ≤ j ≤ n, then Δ is said to be in 3-GNF.

Definition 3 A BPP (or BPPτ ) process Δ is said to be in Greibach normal
form (GNF) if all its equations are of the form

X
def

=
n�

j=1

ajαj

where n ∈ �, aj ∈ Λ (or aj ∈ Act), and αj ∈ Var�Δ)⊗. We also require
that every Y ∈ Var�Δ) appears in some reachable state. If card�αj) ≤ 2
for each j� 1 ≤ j ≤ n, then Δ is said to be in 3-GNF.

From now on we assume that all BPA, BPP, BPAτ , and BPPτ processes we
work with are presented in GNF. This justifies also the assumption that all
reachable states of a BPA or BPAτ process Δ are elements of Var�Δ)∗, and
all reachable states of a BPP or BPPτ processΔ� are elements of Var�Δ�)⊗.

Remark 3 In the rest of this paper we let Greek letters α� β� . . . range over
reachable states of a BPA, BPP, BPAτ , or BPPτ process. Occasionally we
also use the notation αi with the following meaning:

αi = α.α · · · .α� �� �
i

if α is a state of some BPA or BPAτ process

αi = α�α · · · �α
� �� �

i

if α is a state of some BPP process

αi = α|α · · · |α
� �� �

i

if α is a state of some BPPτ process

2.2 Regular processes

In this paper some proofs make use of the fact that regularity of nBPA,
nBPP, nBPAτ , and nBPPτ processes is decidable in polynomial time. The
following definition explains what is meant by the notion of regularity and
introduces standard normal form for regular processes.

Definition 4 A process Δ is regular if there is a process Δ� with finitely
many states such that Δ ∼ Δ�. A regular process Δ is said to be in normal
form if all its equations are of the form

X
def

=

n�

j=1

aj [Xj ]

where n ∈ �, aj ∈ Act, and Xj ∈ Var�Δ) (square brackets indicate an
optional occurrence).
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It is easy to see that a process is regular iff it can reach only finitely many
states up to bisimilarity. In [14] it is shown that regular processes can be
represented in the normal form just defined. Thus a process Δ is regular
iff there is a regular process Δ� in normal form such that Δ ∼ Δ�. Now
we present several propositions which concern regularity of nBPA, nBPP,
nBPAτ , and nBPPτ processes. Proofs can be found in [13].

Proposition 1 Let Δ be a nBPA, nBPP, nBPAτ , or nBPPτ process. The
problem whetherΔ is regular is decidable in polynomial time. Moreover, if
Δ is regular then a regular process Δ� in normal form such that Δ ∼ Δ� is
effectively constructible.

Definition 5 LetΔ be a nBPA, nBPP, nBPAτ , or nBPPτ process. A variable
Y ∈ Var�Δ) is growing if Y →∗ Y.α, Y →∗ Y �α, Y →∗ Y.α, or Y →∗

Y |α, respectively, where α is a nonempty state of Δ.

Proposition 2 A nBPA, nBPP, nBPAτ , or nBPPτ process Δ is non-regular
iff Var�Δ) contains a growing variable.

3 A Characterization of nBPA� ∩ nBPP�

In this section we give an exact characterization of those normed processes
which can be equivalently defined in BPAτ and BPPτ syntax.

Definition 6 The semantical intersection of nBPAτ and nBPPτ processes is
defined as follows:

nBPAτ ∩ nBPPτ = {Δ ∈ nBPAτ � | ∃Δ� ∈ nBPPτ such that Δ ∼ Δ�} ∪

{Δ ∈ nBPPτ � | ∃Δ� ∈ nBPAτ such that Δ ∼ Δ�}

The class nBPAτ ∩ nBPPτ is clearly nonempty as each normed finite-state
process belongs to nBPAτ ∩ nBPPτ . However, nBPAτ ∩ nBPPτ contains
also processes with infinitely many states – consider the following process:

X
def

= a�X|X) + a(1)

X is a nBPPτ process with infinitely many states. If the ‘|’ operator is
replaced by the ‘.’ operator, we obtain a bisimilar nBPAτ process:

X
def

= a�X.X) + a(2)

Clearly X ∼ X because transition systems generated by those processes
are even isomorphic (see the picture below).

•
a ��

a

��

◦
a ��

a
�� ◦

a ��

a
�� ◦

a
��

◦
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Now we slightly modify the process X .

X
def

= a�X|X) + a + a(3)

Although the process (3) does not differ from the process (1) too much, it
is not hard to prove that there is no nBPAτ process bisimilar to (3).

Now we prove that every nBPPτ process of nBPAτ ∩ nBPPτ can be
represented in a special normal form, denoted INFBPP (Intersection Normal
Form for nBPPτ processes). In order to define INFBPP, we need to introduce
the notion of a reduced process:

Definition 7 LetΔ be a nBPAτ or nBPPτ process. We say thatΔ is reduced
if all its variables are pairwise non-bisimilar.

As bisimilarity is decidable for nBPAτ and nBPPτ processes in polynomial
time [10,11], every nBPAτ and nBPPτ process can be effectively trans-
formed to a bisimilar reduced process in polynomial time.

Definition 8 Let Δ be a reduced nBPPτ process.

1. A variable Z ∈ Var�Δ) is simple if all the summands in the defining
equation forZ are of the formaZi, wherea ∈ Act and i ∈ �0.Moreover,
at least one of those summands must be of the form aZk, where a ∈ Act

and k ≥ 2. Finally, the defining equation for Z must not contain two
summands of the form b� b, where b ∈ Λ.

2. The process Δ is said to be in INFBPP if the following condition holds:
wheneveraα is a summand inadefining equationofΔ such that length�α)
≥ 2, then α = Zi for some simple variable Z and i ≥ 2.

Note that if Z is a simple variable, then |Z| = 1 because Z could not be
normed otherwise.

Example 1 Note the process (1) is INFBPP, while the processes (3) is not.
Conditions of INFBPP are also satisfied by the following process:

X
def

= aY + b�Z|Z) + b + b

Y
def

= cY + bX + a�Z|Z|Z)

Z
def

= a�Z|Z) + a�Z|Z|Z) + b + a

Remark 4 The set of all reachable states of a process Δ in INFBPP looks as
follows:

Var�Δ) ∪ {Zi | Z ∈ Var�Δ) is a simple variable and i ∈ �0}

Proposition 3 Each process Δ in INFBPP belongs to nBPAτ ∩ nBPPτ .
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Proof. We show that a bisimilar nBPAτ process Δ is even effectively con-
structible. First we need to define the notion of a closed simple variable –
a simple variable Z ∈ Var�Δ) is closed if the following condition holds: if
the defining equation for Z contains two summands of the form bZi� bZj ,
then it also contains a summand τZi�j−1 (the case i = j = 0 is impossible
by Definition 8).

The set Var�Δ) looks as follows: for each V ∈ Var�Δ) we fix a fresh
variable V . Moreover, for each simple non-closed variable Z ∈ Var�Δ) we
also fix a fresh variable ZC. Now we can start to transformΔ toΔ. For each
equation Y

def

=
�n

i=1
aiαi of Δ we add the equation Y

def

=
�n

i=1
� �aiαi) to

Δ, where � is defined as follows:

1. � �ai) = ai

2. � �aiV ) = aiV for each V ∈ Var�Δ).
3. If αi = Zj where j ≥ 2 and Z ∈ Var�Δ) is a closed simple variable,

then � �aiZ
j) = aiZ

j
.

4. Ifαi = Zj where j ≥ 2 andZ ∈ Var�Δ) is a non-closed simple variable,

then � �aiZ
j) = aiZC

j−1
.Z.

The defining equation for ZC is constructed using the following rules:

1. If aZi is a summand in the defining equation for Z, then aZC

i
is a

summand in the defining equation for ZC in Δ.

2. If bZi, bZj are summands in the defining equation for Z, then τZC

i�j−1

is a summand in the defining equation for ZC in Δ.

The fact Δ ∼ Δ is easy to check. ��

Example 2 If we apply the transformation algorithm to the process of Ex-
ample 1, we obtain the following bisimilar nBPAτ process:

X
def

= aY + b�ZC.Z) + b + b

Y
def

= cY + bX + a�ZC.ZC.Z)

Z
def

= a�ZC.Z) + a�ZC.ZC.Z) + b + a

ZC

def

= a�ZC.ZC) + a�ZC.ZC.ZC) + b + a + τ�ZC.ZC.ZC.ZC) + τZC

Now we prove that every nBPPτ process of nBPAτ ∩ nBPPτ is bisimilar to
a process in INFBPP. Several auxiliary definitions and lemmas are needed:

Definition 9 Let Δ be a nBPPτ process. For each growing variable Y ∈
Var�Δ) we define the set Assoc�Y ) ⊆ Var�Δ) in the following way:

Assoc�Y ) = {P ∈ Var�Δ)� Y →∗ P} ∪

{P ∈ Var�Δ)� P |Y is a reachable state of Δ}

A variable L ∈ Var�Δ) is lonely if L �∈ Assoc�Y ) for any growing variable
Y ∈ Var�Δ).
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Lemma 1 Let Δ be a reduced nBPPτ process which belongs to nBPAτ

∩ nBPPτ . Let Y ∈ Var�Δ) be a growing variable. Then there is exactly one
variable ZY ∈ Var�Δ) such that the following conditions hold:

– ZY is non-regular and |ZY | = 1.

– If P ∈ Assoc�Y ), then ZY is reachable from P and P ∼ Z
�P �
Y .

– If aα is a summand in the defining equation for ZY inΔ, then α ∼ Z
�α�
Y .

Proof. As Y is growing, Y →∗ Y |β where β ∈ Var�Δ)⊗, β �= ∅. As Δ is
normed and in GNF, there is ZY ∈ Var�Δ), |ZY | = 1, such that β →∗ ZY .
Hence Y →∗ Y |βi →∗ Y |Zi

Y for every i ∈ � (note that ZY is reachable
from Y ). From this and the definition of Assoc set we can easily conclude
that if P ∈ Assoc�Y ) then the state P |Zi

Y is reachable for every i ∈ �.
As Δ ∈ nBPAτ ∩ nBPPτ , there is a nBPAτ process Δ� in GNF such

that Δ ∼ Δ�. Let n = |P |, m = max{|A|� A ∈ Var�Δ�)}. The state
P |Zn�m

Y is a reachable state of Δ and therefore there is γ ∈ Var�Δ�)∗

such that P |Zn�m
Y ∼ γ. Bisimilar states must have the same norm, hence

γ is a sequence of at least n + 1 variables – γ = A1.A2 . . . An�1.δ where

δ ∈ Var�Δ�)∗. As |P | = n, P
s
→ � for some s ∈ Act∗ with length�s) = n,

hence P |Zn�m
Y

s
→ Zn�m

Y . The state A1.A2 . . . An�1.δ must be able to match
the norm reducing sequence of actions s. As length�s) = n, at most the
first n variables of A1.A2 . . . An�1.δ can contribute to the sequence s, i.e.

A1.A2 . . . An�1.δ
s
→ η.An�1.δ where η ∈ Var�Δ�)∗. As Δ� is normed,

η.An�1.δ
t

→ An�1.δ for some t ∈ Act∗ with length�t) = |η|. The state
Zn�m

Y can match the sequence t only by removing length�t) copies of ZY .

P |Zn�m
Y ∼ A1 . . . An�1.δ�

�
�s

�
�
�s

Zn�m
Y ∼ η.An�1.δ�
�
�t

�
�
�t

Z
n�m−�η�
Y ∼ An�1.δ

Now let k = length�s) + length�t) (i.e. k = |A1 . . . An|). Clearly k ≤ n.m

and as |ZY | = 1, P |Zn�m
Y

p
→ P |Zn�m−k

Y where length�p) = k. The state

A1.A2 . . . An�1.δ can match the sequence p only by A1.A2 . . . An�1.δ
p
→

An�1.δ. By transitivity of ∼ we now obtain P |Zn�m−k
Y ∼ Z

n�m−�η�
Y , hence

P ∼ Z
�P �
Y .

As the variable Y is non-regular and Y ∼ Z
�Y �
Y , the variable ZY is also

non-regular. Moreover, ZY is a unique variable with the property P ∼ Z
�P �
Y

for every P ∈ Assoc�Y ), because Δ is reduced.
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A similar argument can be used to prove that ZY is reachable from each

P ∈ Assoc�Y ). As P is normed, P →∗ P � where |P �| = 1. As P ∼ Z
�P �
Y ,

P � ∼ ZY and hence P � = ZY .
It remains to check that if aα is a summand of the defining equation for

ZY , then α ∼ Z
�α�
Y . But each variable V ∈ α belongs to Assoc�Y ) (because

Y →∗ ZY →∗ V ) and thus V ∼ Z
�V �
Y . Hence α ∼ Z

�α�
Y . ��

Remark 5 The symbol ZY always denotes the unique variable of Lemma 1
in the rest of this paper.

Lemma 2 LetΔ ∈ nBPAτ ∩ nBPPτ be a reduced nBPPτ process. LetA|B
be a reachable state of Δ such that A ∈ Assoc�Y ) and B ∈ Assoc�Q).
Then ZY = ZQ.

Proof. As Δ is reduced, it suffices to prove that ZY ∼ ZQ. As A ∈
Assoc�Y ), we have A →∗ ZY due to Lemma 1. Similarly, B →∗ ZQ

thus ZY |ZQ is a reachable state of Δ. As ZQ is non-regular, it can reach a
state of an arbitrary norm – for every i ∈ � there is αi ∈ Var�Δ)⊗ such
that ZQ →∗ αi and |αi| = i. Clearly αi ∼ Zi

Q because each variable of αi

belongs to Assoc�Q). Hence ZY |αi ∼ ZY |Zi
Q.

As Δ ∈ nBPAτ ∩ nBPPτ , there is a bisimilar nBPAτ process Δ�. Let
m = max{|V |� V ∈ Var�Δ�)}. ZY |αm is a reachable state of Δ and
therefore there is γ ∈ Var�Δ�)∗ such that ZY |αm ∼ γ and hence also
ZY |Zm

Q ∼ γ. Moreover, γ is a sequence of at least two variables.
Now we can use a similar construction as in the proof of Lemma 1 and

conclude that ZY |Zj
Q ∼ Z

j�1

Q for some j ∈ �. This implies ZY ∼ ZQ.
��

Lemma 3 LetΔ ∈ nBPAτ ∩ nBPPτ be a reduced nBPPτ process. Let L|A
be a reachable state ofΔ such thatL is a lonely variable. ThenA is a regular
process (see Remark 1).

Proof. Let us assume that A is not regular. Then A →∗ Y , where Y ∈
Var�Δ) is a growing variable (see Proposition 2). But then L|A →∗ L|Y ,
thus L ∈ Assoc�Y ) and we have a contradiction. ��

Proposition 4 Let Δ be a nBPPτ process of nBPAτ ∩ nBPPτ . Then there
is a process Δ� in INFBPP such that Δ ∼ Δ�.

Proof. Wecanassume (w.l.o.g.) thatΔ is reduced and in 3-GNF.Theprocess

Δ� canbeobtainedby the following transformation ofΔ: IfX
def

=
�m

j=1
ajαj

is a defining equation ofΔ, thenX
def

=
�m

j=1
� �ajαj) is added toΔ�, where

� is defined as follows:

– if card�αj) ≤ 1 then � �ajαj) = ajαj

– if card�αj) = 2 (i.e. αj = A|B), then there are three possibilities:
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1. A ∈ Assoc�Y ) and B ∈ Assoc�Q). Then A ∼ Z
�A�
Y and B ∼ Z

�B�
Q

(see Lemma 1). As A|B is a reachable state, we can conclude (with

a help of Lemma 2) that ZY = ZQ, hence A|B ∼ Z
�A���B�
Y . Thus

� �a�A|B)) = a�Z
�A���B�
Y ).

2. A ∈ Assoc�Y ) and B is lonely. Then A ∼ Z
�A�
Y and as ZY is not

regular,A is not regular either. As the stateA|B is reachable andB is
lonely, it contradicts Lemma 3. Hence this case is in fact impossible
(as well as the symmetric case whenA is lonely andB ∈ Assoc�Q)).

3. A andB are lonely. ThenA andB are regular (due to Lemma 3) and
therefore the state A|B is also regular. Each regular process can be
represented in normal form (see Definition 4). LetΔA�B be a regular
process in normal form which is bisimilar to A|B. We can assume
(w.l.o.g.) that Var�ΔA�B) ∩ Var�Δ�) = ∅. � adds all equations of
ΔA�B to Δ� and � �a�A|B)) = aN where N is the leading variable
of ΔA�B .

The transformation � preserves bisimilarity – hence Δ ∼ Δ�. It remains to
check that Δ� is indeed in INFBPP. Clearly each summand of each defining
equation inΔ� is of the formwhich is admitted by INFBPP. IfaZ

j is a summand
of a defining equation inΔ� such that j ≥ 2, thenZ = ZY for some growing
variableY ∈ Var�Δ). Letaα be a summand in the original defining equation
for ZY in Δ. We need to show that each such summand must have been

transformed into aZ
�α�
Y by � . But it is obvious as each variable of α belongs

to Assoc�Y ). If α is composed of a single variable V , then V = ZY because
V ∼ ZY (due to Lemma 1) and Δ is reduced. Moreover, at least one
summand in the defining equation for ZY in Δ� is of the form aZ l

Y where
l ≥ 2, because ZY would be regular otherwise. To complete the proof we
need to show that the defining equation for ZY in Δ� cannot contain two
summands of the form b� b. Assume the converse. AsΔ� ∈ nBPAτ ∩ nBPPτ ,
there is a nBPAτ process Δ2 such that Δ� ∼ Δ2. As Zi

Y is a reachable state
of Δ� for every i ∈ �0 (see Remark 4), there is αi ∈ Var�Δ2)

∗ such
that Zi

Y ∼ αi for every i. Moreover, we can assume (w.l.o.g.) that each
αi is of maximal length, i.e. if αi ∼ β for some β ∈ Var�Δ2)

∗, then
length�αi) ≥ length�β). Let k be the minimal number with the property
length�αk) ≥ 2. Clearly length�αk) = 2, because otherwise we could
easily obtain a contradiction with the minimality of k. Hence αk = P.Q

for some P�Q ∈ Var�Δ2). As Zk
Y

b
→ Zk−1

Y , we also have P.Q
b

→ γ for
some γ ∼ αk−1. By definitions of αi and k, γ must be composed of a single
variable. The only such state reachable from P.Q in one step is Q, hence
αk−1 ∼ Q. As the defining equation for ZY contains two summands b� b,

we also have a transition Zk
Y

τ
→ Zk−2

Y . But P.Q cannot reach a state which
is bisimilar to αk−2 in one step, because αk−2 is (again by definitions of αi
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and k) composed of at most one variable which must be different from Q

because αk−1 �∼ αk−2. Hence αk �∼ Zk
Y and we have a contradiction. ��

Propositions 3 and 4 give us the classification of nBPAτ ∩ nBPPτ in
terms of nBPPτ syntax.

Theorem 1 The class nBPAτ ∩ nBPPτ contains exactly (up to bisimilarity)
nBPPτ processes in INFBPP.

The class nBPAτ ∩ nBPPτ can also be characterized using nBPAτ syntax.
To do this, we introduce a special normal form for nBPAτ processes:

Definition 10 Let Δ be a reduced nBPAτ process in GNF.

1. Let X�Y ∈ Var�Δ) be non-regular variables. We say that Y is a com-
munication closure (C-closure) of X if the following conditions hold:
– All summands in the defining equation forX are either of the form a

where a ∈ Act, or a�Y i.X) where a ∈ Act and i ∈ �0. Moreover,
at least one summand is of the form a�Y k.X) where k ≥ 1.

– All summands in the defining equation for Y are of the form aY i,
where a ∈ Act and i ∈ �0.

– aY i is a summand in the defining equation for Y iff one of the fol-
lowing conditions holds:
(a) i = 0 and a is a summand in the defining equation for X .
(b) i ≥ 1 and a�Y i−1.X) is a summand in the defining equation for

X .
(c) a = τ and there are two summands of the form bα1� bα2 in the

defining equation forX such that i = length�α1)+length�α2)−
1 (note that this condition ensures that defining equations for
X�Y do not contain two summands of the form b� b).

2. The process Δ is said to be in INFBPA if whenever aα is a summand in
a defining equation of Δ such that length�α) ≥ 2, then α = Y i.X

for some i ∈ � and X�Y ∈ Var�Δ) such that Y is a C-closure of X .
Note that X�Y need not be different – variables which are C-closures
of themselves may exist.

Note that if Y is a C-closure ofX , then |Y | = |X| = 1. Another interesting
property of X and Y is presented in the remark below.

Remark 6 It is easy to check that if Y is a C-closure of X , then Y i.X ∼

X
i�1

where X is a nBPPτ process composed of a single variable whose
defining equation is obtained from the defining equation forX by substitut-
ing ‘.’ by ‘|’ and replacing each occurrence of X and Y by X .

Theorem 2 The class nBPAτ ∩ nBPPτ contains exactly (up to bisimilarity)
nBPAτ processes in INFBPA.
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Proof. Each nBPAτ process in INFBPA belongs to nBPAτ ∩ nBPPτ , as a
bisimilar nBPPτ process is easily constructible by an algorithm which is
‘inverse’ to the algorithm presented in the proof of Proposition 3 (see Re-
mark 6). The fact that for each nBPAτ process of nBPAτ ∩ nBPPτ there is
a bisimilar nBPAτ process in INFBPA follows directly from Proposition 3 and
Proposition 4 (note that the algorithm presented in the proof of Proposition 3
returns a nBPAτ process which is almost in INFBPA– the only ‘problem’ is
that it can contain different bisimilar variables and hence it is not reduced
in general). ��

Our results can be applied to nBPA and nBPP processes as well. So far
we have investigated the intersection of nBPAτ and nBPPτ . It was desir-
able to work with this unrestricted syntax, because we could also examine
the problem when the ‘real’ communications of a nBPPτ process can be
simulated by a sequential nBPAτ process. However, the characterization of
nBPA ∩ nBPP is much simpler and therefore we present it explicitly.

Definition 11 Let Δ be a reduced nBPA (or nBPP) process in GNF.

1. A variableZ ∈ Var�Δ) is simple if all summands in the defining equation
for Z are of the form aZi, where a ∈ Act and i ∈ �0. Moreover, at least
one of those summands must be of the form aZk where a ∈ Act and
k ≥ 2.

2. The process Δ is said to be in INF if whenever aα is a summand in a
defining equation of Δ such that length�α) ≥ 2 (or card�α) ≥ 2), then
α = Zi for some simple variable Z and i ≥ 2.

Note that nBPA (or nBPP) processes in INF have a nice property – a bisimilar
nBPP (or nBPA) process can be obtained just by replacing the ‘.’ operator
by the ‘�’ operator (or by replacing the ‘�’ operator by the ‘.’ operator).

Theorem 3 The class nBPA ∩ nBPP contains exactly (up to bisimilarity)
nBPA (or nBPP) processes in INF.

4 Deciding whether ∆ � nBPA� ∩ nBPP�

In this section we prove that the problem whether a given nBPAτ or nBPPτ

processΔ belongs to nBPAτ ∩ nBPPτ is decidable in polynomial time. The
technique is essentially similar in both cases – we check if each summand of
each defining equation ofΔwhose form is not admitted by INFBPA (or INFBPP)
can be in principal transformed so that requirements of INFBPA (or INFBPP) are
satisfied. We also show that if a nBPAτ (or nBPPτ ) process Δ belongs to
nBPAτ ∩ nBPPτ , then a bisimilar process in INFBPA (or INFBPP) is effectively
constructible. Simplified versions of the mentioned algorithms which work
for nBPA and nBPP processes are presented as well.
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Definition 12 Let Δ be a nBPAτ or nBPPτ process in GNF.

– The set S�Δ) ⊆ Var�Δ) is composed of all variables V such that |V | =
1, V is non-regular and if aα is a summand in the defining equation for
V in Δ, then α ∼ V �α�.

– The set R�Δ) ⊆ Var�Δ) contains all regular variables of Δ.
– The set G�Δ) ⊆ Var�Δ) contains all growing variables of Δ.

The sets S�Δ), R�Δ), and G�Δ) can be constructed in polynomial time
because bisimilarity and regularity are decidable for nBPAτ and nBPPτ

processes in polynomial time (see [10], [11], and Proposition 1).
If Δ is a nBPAτ (or nBPPτ ) process of nBPAτ ∩ nBPPτ , then there is

Δ� in INFBPA (or INFBPP) such that Δ ∼ Δ�. In case of nBPPτ processes the
set S�Δ) contains in fact variables which can be (potentially) bisimilar to
simple variables of Δ�. In case of nBPAτ processes the set S�Δ) contains
variables which can be bisimilar to C-closures of variables from Var�Δ�).

Correctness of our algorithm which decides the membership to nBPAτ

∩ nBPPτ for nBPPτ processes is shown by the following three lemmas.

Lemma 4 Let Δ be a reduced nBPPτ process in 3-GNF and let a�A|B)
be a summand in a defining equation of Δ such that A is regular and B is
non-regular. Then Δ �∈ nBPAτ ∩ nBPPτ .

Proof. Assume there is a nBPPτ processΔ� in INFBPP such thatΔ ∼ Δ�. Let
n = max{|Y |� Y ∈ Var�Δ�)}. AsB is non-regular, it can reach a state of an
arbitrary norm – let B →∗ β where |β| > n. Then A|β is a reachable state
of Δ and thus A|β ∼ β� for some reachable state β� of Δ�. As |A|β | > n,
we can conclude that β� = Z � A�β � where Z ∈ Var�Δ�) is a simple variable
(see Remark 4). Hence A ∼ Z �A� and as each simple variable is growing
(see Definition 8), it contradicts regularity of A. ��

Lemma 5 Let Δ be a reduced nBPPτ process in 3-GNF which belongs
to nBPAτ ∩ nBPPτ . Let a�A|B) be a summand in a defining equation of
Δ such that A and B are non-regular. Then there is exactly one variable
Z ∈ S�Δ) such that A|B ∼ Z � A�B �.

Proof. Let Δ� be a nBPPτ process in INFBPP such that Δ ∼ Δ�. Let n =
max{|Y |� Y ∈ Var�Δ�)}. Using the same argument as in the proof of
Lemma 4 we obtain A ∼ P �A�, B ∼ Q�B� where P�Q ∈ Var�Δ�) are
simple variables. We show that P = Q. Let A →∗ α where |α| > n. Then
clearly α ∼ P �α� and as α|B is a reachable state ofΔ, α|B ∼ R�α�B� where
R ∈ Var�Δ�) is a simple variable. To sum up, we have α|B ∼ P �α�|Q�B� ∼
R� α�B �. Hence P ∼ R ∼ Q and thus P = R = Q because Δ� is reduced.
As e.g.P is a reachable state ofΔ�, there is a reachable state γ ofΔ such that
P ∼ γ. As |P | = 1, we can conclude γ = Z for some Z ∈ Var�Δ) which
clearly belongs to S�Δ). Moreover, Z is unique because Δ is reduced. ��
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Lemma 6 Let Δ be a nBPPτ process in GNF and let X ∈ S�Δ). If the
defining equation for X contains two summands of the form b� b, then Δ �∈
nBPAτ ∩ nBPPτ .

Proof. Assume there is a nBPPτ process Δ� in INFBPP such that Δ ∼ Δ�.
Using the same kind of argument as in the proof of Lemma 4 we obtain
X ∼ Z for some simple variable Z ∈ Var�Δ�). As the defining equation
for X contains two summands of the form b� b and X ∼ Z, the defining
equation for Z must contain those summands too – hence Z is not simple
and we have a contradiction. ��

The (constructive) algorithm which decides the membership to nBPAτ ∩
nBPPτ for nBPPτ processes is presented in Fig. 1. Steps which are executed
only by the constructive algorithm are placed within framed boxes – if we
omit this code, we obtain a non-constructive polynomial algorithm. The ab-
breviation “NFR�Δ)” stands for theNormalForm of theRegular processΔ,
which can be effectively constructed (see Proposition 1). We always assume
that NFR�Δ) contains fresh variables which are not contained in any other
process we are working with. When the command return is executed, the
algorithm halts and returns the value which follows immediately after the
keyword return.

The constructive algorithm is not polynomial because the construction of
NFR is not polynomial – a regular nBPPτ process in 3-GNFwithn variables
can generally reach exponentially many pairwise non-bisimilar states and
each of these states requires its own ‘fresh’ variable.

Our algorithm for nBPPτ processes works for pure nBPP processes as
well. It suffices to replace the ‘|’ operatorwith the ‘�’ operator in our descrip-
tion. As there are no communications in nBPP, the notion of dual action is
no longer sensible – hence the second step of our algorithm can be removed
in case of nBPP processes.

Now we provide an analogous algorithm for nBPAτ processes. We start
with some auxiliary definitions and lemmas.

Definition 13 Let Δ be a nBPAτ process. For each Y ∈ S�Δ) we define
the set CL�Y ), composed of all X ∈ Var�Δ) which satisfy the following
conditions:

– If aα is a summand in the defining equation forX such that length�α) ≥
1, then α ∼ Y �α�−1.X .

– The defining equation for Y contains a summand bisimilar to aY k, k ∈
�0, iff one of the following conditions holds:
1. k = 0 and the defining equation for X contains a summand ‘a’.
2. k > 0 and the defining equation forX contains a summand which is

bisimilar to a�Y k−1.X).
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Algorithm: A constructive test of the membership to nBPAτ ∩ nBPPτ for nBPPτ

processes.

Input: A reduced nBPPτ process Δ in 3-GNF.

Output: YES and Δ� in INFBPP such that Δ ∼ Δ� if Δ ∈ nBPAτ ∩ nBPPτ ,

NO otherwise.

1. Construct the sets S�Δ), R�Δ) and G�Δ).

2. if there is X ∈ S�Δ) whose def. equation contains two summands of the form b� b

then
return NO;

endif

3. if G�Δ) = ∅ then

Δ� :=NFR(Δ) ;

return YES and Δ� ;
endif

4. Δ� := Δ ;

5. for each summand of the form a�A�B) in defining equations of Δ do

if A� B ∈ R�Δ) then

Construct NFR(A�B) ;

Replace the summand a�A�B) with aN in Δ�, where N is the

leading variable of NFR(A�B) ;

Δ� := Δ�∪NFR(A�B) ;

endif

if (A ∈ R�Δ) and B �∈ R�Δ)) or (A �∈ R�Δ) and B ∈ R�Δ)) then
return NO;

endif

if A� B �∈ R�Δ) then
if there exists Z ∈ S�Δ) such that A�B ∼ Z� A�B �

then Replace the summand a�A�B) with a�Z� A�B �) in Δ� ;

else return NO;
endif

endif

endfor

6. return YES and Δ� ;

Fig. 1.An algorithm which (constructively) decides the membership to nBPAτ ∩ nBPPτ for
nBPPτ processes
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3. a = τ and the defining equation for X contains two summands of
the form bα1, bα2 such that k = length�α1) + length�α2) − 1.

It is easy to see that the set CL�Y ) can be constructed in polynomial time
for every Y ∈ S�Δ). The following lemma is due to D. Caucal (see [4]):

Lemma 7 Let Δ�Δ� be nBPAτ processes in GNF and let α� β ∈ Var�Δ)∗,
α�� β� ∈ Var�Δ�)∗ such that β ∼ β� and α.β ∼ α�.β�. Then α ∼ α�.

Lemma 8 LetΔ�Δ� be nBPAτ processes. LetA1� . . . � Ak ∈ Var�Δ),X�Y

∈ Var�Δ�) such that |X| = |Y | = 1 and A1. · · · .Ak ∼ Y l.X where
l = |A1. · · · .Ak|−1. ThenAk ∼ Y �Ak�−1.X andAi ∼ Y �Ai� for 1 ≤ i < k.

Proof. Clearly Ak ∼ Y �Ak�−1.X . Hence A1. · · · .Ak−1 ∼ Y �A1�···�Ak−1�

(due to Lemma 7). The fact Ai ∼ Y �Ai� for 1 ≤ i < k can be proved by
induction on k. If k = 2 then A1 ∼ Y �A1� and our lemma holds. If k > 2,
then clearlyAk−1 ∼ Y �Ak−1� and due to Lemma 7 we haveA1. · · · .Ak−2 ∼
Y �A1�···�Ak−2�. Now we can use the induction hypothesis and conclude that
Ai ∼ Y �Ai� for 1 ≤ i < �k − 2). ��

Lemma 9 Let Δ be a reduced nBPAτ process in 3-GNF which belongs to
nBPAτ ∩ nBPPτ . Let Q.α be a reachable state of Δ such that Q ∈ G�Δ),
α �= �. Then there are unique variables Y ∈ S�Δ), X ∈ CL�Y ) such that
Q.α ∼ Y �Q�α�−1.X .

Proof. As Δ ∈ nBPAτ ∩ nBPPτ , there is a nBPAτ process Δ� in INFBPA

such that Δ ∼ Δ�. Let n = max{|A|� A ∈ Var�Δ�)}. As Q is growing,
Q →∗ Q.γ where γ �= �. Hence the state Q.γn.α is a reachable state of
Δ and therefore there is a reachable state δ of Δ� such that Q.γn.α ∼ δ.
As |Q.γn.α| > n, we can conclude δ = R�Q�γn�α�−1.S, where R is a C-
closure of S (see Definition 10). HenceQ.γn.α ∼ R�Q�γn�α�−1.S and due to
Lemma 8 we have α ∼ R�α�−1.S and Q ∼ R�Q�, thus Q.α ∼ R�Q�α�−1.S.
Now it suffices to show that there are Y ∈ S�Δ), X ∈ CL�Y ) such that

Y ∼ R and X ∼ S. As Δ is normed, Q
s
→ Y where |Y | = 1 and s is

a norm-decreasing sequence of actions. Then Q.α
s
→ Y.α and as Q.α ∼

R�Q�α�−1.S, the state R�Q�α�−1.S must be able to match the sequence s and
enter a state bisimilar to Y.α. As s is norm-decreasing and |R| = 1, the only
such state is R�Y�α�−1.S. Hence Y.α ∼ R�Y�α�−1.S and due to Lemma 8 we
have Y ∼ R. The fact Y ∈ S�Δ) follows directly from Definition 10. As S
is a reachable state of Δ�, there is a variable X ∈ S�Δ) such that X ∼ S.
Clearly X ∈ CL�Y ) (see Definition 10). The variables X�Y are unique
because Δ is reduced. ��

It is worth noting that the variables X�Y of the previous lemma need not
be different. To prove the correctness of our algorithm which decides the
membership to nBPAτ ∩ nBPPτ for nBPAτ processesweneed some lemmas
about summands.
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Lemma 10 Let Δ be a reduced nBPAτ process in 3-GNF and let a�A.B)
be a summand in a defining equation of Δ such that A is non-regular and
B is regular. Then Δ �∈ nBPAτ ∩ nBPPτ .

Proof. As a�A.B) is a summand in a defining equation of Δ and Δ is
normed and in GNF, there is a reachable state of the form A.B.β. As A is
non-regular, A →∗ Q.α where Q ∈ G�Δ). Hence Q.α.B.β is a reachable
state of Δ and due to Lemma 9 we have Q.α.B.β ∼ Y �Q�α�B�β�−1.X for
some Y ∈ S�Δ), X ∈ CL�Y ). With a help of Lemma 8 we obtain that
B ∼ Y �B� orB ∼ Y �B�−1.X (the latter possibility holds if β = �). AsX�Y

are non-regular, it contradicts regularity of B. ��

Lemma 11 Let Δ be a reduced nBPAτ process in 3-GNF. Let a�A.B) be
a summand in a defining equation of Δ such that A is regular and B is
non-regular. Then the summand a�A.B) can be replaced with aN where
N �∈ Var�Δ), and a finite number of new equations satisfying requirements
of INFBPA can be effectively added to Δ such that the resulting process Δ1 is
bisimilar to Δ.

Proof. As A is regular, the process ΔA := NFR�A) such that Var�Δ) ∩
Var�ΔA) = ∅ is effectively constructible. Now we slightly modify defining
equations of ΔA – each summand of the form a where a ∈ Act is replaced
withaB. The resulting systemof equations is in INFBPA. Ifweadd themodified
systemΔA toΔ and replace the summand a�A.B) with aN whereN is the
leading variable of ΔA, we obtain a process Δ1 which is clearly bisimilar
to Δ. ��

Lemma 12 LetΔ be a reduced nBPAτ process in 3-GNF and let a�A.B) be
a summand in a defining equation of Δ such that A and B are non-regular.
Then

1. If Δ ∈ nBPAτ ∩ nBPPτ , then there are unique variables Y ∈ S�Δ),
X ∈ CL�Y ) such that B ∼ Y �B�−1.X

2. Let B ∼ Y �B�−1.X for some Y ∈ S�Δ) and X ∈ CL�Y ). If there

is a sequence of transitions A = A0

a�→ A1.α1

a1→ A2.α2

a2→ · · ·
ak→

Ak.αk such that k ≥ 0, Ak ∈ G�Δ) and Ak.αk �∼ Y �Ak�αk�, then
Δ �∈ nBPAτ ∩ nBPPτ .

3. Let B ∼ Y �B�−1.X for some Y ∈ S�Δ) and X ∈ CL�Y ). If for each

sequence of transitions A = A0

a�→ A1.α1

a1→ A2.α2

a2→ · · ·
ak→ Ak.αk

such that Ak ∈ G�Δ) the state Ak.αk is bisimilar to Y �Ak�αk�, then the
summand a�A.B) can be replaced with aN where N �∈ Var�Δ) and a
finite number of new equations satisfying requirements of INFBPA can be
effectively added to Δ such that the resulting process Δ2 is bisimilar to
Δ.

Proof. 1. As A is non-regular, A →∗ Q.α where Q ∈ G�Δ). The proof
can be easily completed with a help of Lemma 8 and Lemma 9.
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2. This is a consequence of Lemma 8 and Lemma 9.

3. It suffices to realize that ifA = A0

a�→ A1.α1

a1→ A2.α2

a2→ · · ·
ak→ Ak.αk

is a sequence of transitions such that A0� . . . � Ak−1 �∈ G�Δ) and Ak ∈
G�Δ), then length�Ai.αi) ≤ card�Var�Δ)) for 0 ≤ i ≤ k − 1 (here
we use the assumption that Δ is in 3-GNF. Naturally, length�Ai.αi) is
bounded also in case of general GNF). As there are only finitely many
sequences of variables of this bounded length, we can introduce a fresh
variable for each of them. To construct the process Δ2, we use a similar
procedure as in the proof of Lemma 11. ��

An existence of a sequence A = A0

a�→ A1.α1

a1→ A2.α2

a2→ · · ·
ak→ Ak.αk

such that Ak ∈ G�Δ) and Ak.αk �∼ Y �Ak�αk� is decidable in polynomial
time, as demonstrated by the following lemma:

Lemma 13 LetΔ be a reduced nBPAτ process in 3-GNF. Let A ∈ Var�Δ)
be a non-regular variable and let Y ∈ S�Δ). The problem whether A can
reach a state of the form Q.α where Q ∈ G�Δ) and Q.α �∼ Y �Q�α� is
decidable in polynomial time.

Proof. We divide the set Var�Δ) into two disjoint subsets of successful and
unsuccessful variables. P ∈ Var�Δ) is unsuccessful if one of the following
conditions holds:

– P is growing and P �∼ Y �P �.
– The defining equation forP inΔ contains a summandof the forma�R.S)

where R is non-regular and S �∼ Y �S�.

A variable is successful if it is not unsuccessful. Furthermore, we define the
binary relation ‘⇒’ on Var�Δ): U ⇒ V iff U is successful and the defining
equation for U in Δ contains a summand which is of one of the following
forms:

– aV

– a�V.W ) where W ∈ Var�Δ)
– a�W.V ) where W ∈ Var�Δ) is regular

Let ‘⇒∗’ be the reflexive and transitive closure of ‘⇒’. It can be easily
proved that A can reach a state of the form Q.α where Q is growing and
Q.α �∼ Y �Q�α� iffA ⇒∗ T for some unsuccessful variable T . As the relation
‘⇒∗’ can be constructed in polynomial time, the proof is finished. ��

An algorithmwhich decides the membership to nBPAτ ∩ nBPPτ for nBPAτ

processes is presented in Fig. 2. We use the same notation as in the case of
nBPPτ .

In case of nBPA processes our algorithm must be slightly modified (and
simplified). This is a consequence of the fact that a nBPA processΔ belongs
to nBPA ∩ nBPP iff it can be represented in INF – and INF is a little different
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Algorithm: A constructive test of the membership to nBPAτ ∩ nBPPτ for nBPAτ

processes.

Input: A reduced nBPAτ process Δ in 3-GNF.

Output: YES and Δ� in INFBPA such that Δ ∼ Δ� if Δ ∈ nBPAτ ∩ nBPPτ ,

NO otherwise.

1. Construct the sets S�Δ), R�Δ), G�Δ) and for each Y ∈ S�Δ) construct the setCL�Y ).
2. if (G�Δ) = ∅) then

Δ� :=NFR(Δ) ;

return YES and Δ� ;
endif

3. Δ� := Δ ;

4. for each summand of the form a�A.B) in defining equations of Δ do

if A� B ∈ R�Δ) then

Construct NFR(A.B) ;

Replace the summand a�A.B) with aN in Δ�, where N is the

leading variable of NFR(A.B) ;

Δ� := Δ�∪NFR(A.B) ;

endif

if A �∈ R�Δ) and B ∈ R�Δ) then
return NO;

endif

if A ∈ R�Δ) and B �∈ R�Δ) then

Construct the process Δ1 of Lemma 11 ;

Δ� := Δ1 ;
endif

if A� B �∈ R�Δ) then
if there exists Y ∈ S�Δ)� X ∈ CL�Y ) such that B ∼ Y �B�−1.X

then ifA can reach a state Q.α where Q ∈ G�Δ) and Q.α �∼ Y �Q�α�

then return NO;

else Construct the process Δ2 of Lemma 12; Δ� := Δ2 ;

endif
else return NO;

endif
endif

endfor

5. return YES and Δ� ;

Fig. 2.An algorithm which (constructively) decides the membership to nBPAτ ∩ nBPPτ for
nBPAτ processes
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if A� B �∈ R�Δ) then
if there exists Z ∈ S�Δ) such that B ∼ Z�B�

then if A can reach a state Q.α where Q ∈ G�Δ) and Q.α �∼ Z�Q�α�

then return NO;

else Construct the process Δ2 of Lemma 14 ;

Δ� := Δ2 ;
endif

else return NO;
endif

endif

Fig. 3. The code for nBPA processes

from INFBPA (see Definitions 11 and 10). Lemma 10 and Lemma 11 are valid
also for nBPA processes. Instead of Lemma 12 we can prove the following
(in a similar way):

Lemma 14 LetΔ be a reduced nBPA process in 3-GNF and let a�A.B) be
a summand in a defining equation of Δ such that A and B are non-regular.
Then

1. If Δ ∈ nBPA ∩ nBPP then there is a unique variable Z ∈ S�Δ) such
that B ∼ Z �B�

2. Let B ∼ Z �B� for some Z ∈ S�Δ). If there is a sequence of transitions

A = A0

a�→ A1.α1

a1→ A2.α2

a2→ · · ·
ak→ Ak.αk such that k ≥ 0,

Ak ∈ G�Δ) and Ak.αk �∼ Z �Ak�αk�, then Δ �∈ nBPA ∩ nBPP.
3. Let B ∼ Z �B� for some Z ∈ S�Δ). If for each sequence of transitions

A = A0

a�→ A1.α1

a1→ A2.α2

a2→ · · ·
ak→ Ak.αk such that Ak ∈ G�Δ)

the state Ak.αk is bisimilar to Z �Ak�αk�, then the summand a�A.B) can
be replaced with aN where N �∈ Var�Δ) and a finite number of new
equations satisfying requirements of INF can be effectively added to Δ

such that the resulting process Δ2 is bisimilar to Δ.

Our algorithm for nBPA processes differs from the algorithm of Fig. 2 in
two things – the sets CL�Y ) for Y ∈ S�Δ) are not computed at all and the
last if statement in the loop of step 4 is replaced with the code of Fig. 3.
Now we can easily prove the following theorem:

Theorem 4 Bisimilarity is decidable in the union of nBPAτ and nBPPτ

processes.

Proof. Given two nBPAτ or nBPPτ processes, it is possible to check bisim-
ilarity using algorithms which were published in [10] and [11]. If we get a
nBPPτ process Δ1 and a nBPAτ process Δ2, then we run one of the con-
structive algorithms presented earlier. We can choose e.g. the first algorithm
with Δ1 on input. If it answers NO, then Δ1 �∼ Δ2. Otherwise we obtain
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a nBPPτ process Δ�
1 in INFBPP which is bisimilar to Δ1. Now it suffices to

check bisimilarity between two nBPAτ processes Δ�
1
and Δ2, where Δ�

1
is

obtained by running the algorithm presented in the proof of Proposition 3
with Δ�

1 on input. ��

Note that the corresponding statement holds for nBPA and nBPP processes
by specialization.

5 Related work and future research

The problem whether a given nBPP process belongs to nBPA ∩ nBPP has
been independently examined by Blanco in [3] where it is shown that given
a nBPP process, one can decide whether there is a bisimilar nBPA process.
Blanco’s approach is based on special properties of BPA transition graphs
(see [5]). A test whether a given nBPP graph has these properties is given in
thework. Consequently, this result does not allow for testingwhether a given
nBPA process belongs to the intersection. The generalization to nBPAτ and
nBPPτ classes is not considered.

Our result on the classificationof nBPA ∩ nBPPmight beof some interest
from the point of view of formal languages/automata theory as well. The
normal form INF for nBPA processes can be taken as a special type of CF
grammars which generate languages of the form R.�L1 ∪ . . . ∪Ln), where
R is regular and each Li�1 ≤ i ≤ n) can be generated by a CF grammar of
the formGi = �{Zi}� Σ� P� Zi) having just one nonterminal and rules of the
form Zi → aZk

i � k ≥ 0� a ∈ Σ. It is clear the languages of the mentioned
type R.�L1 ∪ . . .∪Ln) can be recognized by nondeterministic one-counter
automata. Hence our result on the classification of nBPA ∩ nBPP can be
considered as a refinement of the result achieved in [16] on the context-
freeness of languages generated by Petri nets, as BPP processes form a
proper subclass of Petri nets.

An obvious question is whether our results can be extended to classes
of all (not only normed) BPA and BPP processes. The class BPA ∩ BPP
contains also processes which cannot be presented in INF. As an example
we give the following BPP process:

X
def

= a�Y �X)

Y
def

= b

The process X cannot be presented in INF. However, it obviously belongs
to BPA ∩ BPP; a bisimilar BPA process looks as follows:

A
def

= a�B.A)

B
def

= a�B.B) + b
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Transition systems generated by X and A are even isomorphic:

•
a �� ◦

a ��

b
�� ◦

a ��

b
�� ◦

b
��

This indicates that the problem is actually more complicated. Techniques
whichwere used for normed processes cannot be applied – it seems however,
that a deeper study of the structure of BPA and BPP transition graphs could
help.
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