
Dependency Analyser Configurable by Measures

Tomáš Holan

Department of Software and Computer Science Education, Faculty of Mathematics
and Physics, Charles University, Prague, Czech Republic,

holan@ksvi.ms.mff.cuni.cz

Abstract. In this paper we present a dependency analyser able to com-
pute syntax recognition and analysis according to dependency grammars.
Analyser is able to deal with nonprojective constructions, it has means
to express the level of word-order freedom and its limitations. Level of
word-order freedom and level of robustness (correctness) of sentences
can be given as parameters of the analysis. Data and grammar definition
laguages are also presented.

1 Introduction

A syntactic analysis is a part of many tasks of computational linguistics like
e.g. machine translation, natural-language communication, grammar-checking
or full-text search.

One of the big problems of syntax analysis of natural languages is a complex-
ity of the computing and high number of results caused by ambiguity of natural
language words and/or ambiguity in syntaxe. This complexity grows even more
if we want to use some form of relaxation of language and to allow to analyse
sentences containing some errors.

Methods used to solve problem of complexity are disambiguation, pruning
or heuristics that less or more help to find the ”right” tree/derivation for the
sentence.

In our case where analysis is used as a part of grammar-checker or as a
testing/debugging tool supporting work on the grammar of natural language,
these methods are not acceptable because we need to get all trees/derivations of
the sentence that can be found.

So we use other means to decrease time and space complexity of analysis.
Those means are measures of word-order complexity ((non)projectivity),

measures of robustness (number of allowed errors) and the analyser comput-
ing syntax analysis limited by the given values of those measures.

2 Definitions

We will introduce concepts of D- and DR-trees, measures of (non)projectivity,
D-grammars and grammars with errors. We will proceed in a rather informal
way, exact definitions can be found e.g. in [12].



2 Tomáš Holan

2.1 Trees, measures

Dependency structure of the sentence is expresed by dependency tree (D-tree),
where edges oriented from leaves to the root show a dependencies between the
words. Nodes contain symbol, horizontal index (number of the word in the sen-
tence), vertical index (level, distance from the node to the root) and dominancy
index (horizontal index of the node this node depends on).

To demonstrate order of reduction or order of creation of dependencies we
use a DR-tree (delete-rewrite-tree), where any vertical edge mark a rewrition
of dominant symbol and any obligue edge corresponds to deletion of dependent
symbol during a reduction.

D- and DR-tres are related to each other by the concept of contraction. We
say that the D-tree T is the contraction of the DR-tree TT if obligue edges join
the same pairs of horizontal positions inside the sentence (corresponding nodes
have the same value of dominancy index).

For both D- and DR-trees we can define a Cov(u, T ) — coverage of a node u
in the tree T as a set of all horizontal indices of all the nodes from which a path
(bottom up, including empty path) leads to u.

If Cov(u, T ) = {i1, i2, . . . , im}, i1 < i2 < . . . < im−1 < im, we say that the
pair (ij , ij+1) forms a gap in Cov(u, T ), iff ij+1 − ij > 1.

Measure dNg(u, T ) we define as a number of gaps in the Cov(u, T ), dNg(T ) is
the maximum of dNg(u, T ) for all nodes u of the tree T . Value dNg(T ) we call the
measure of nonprojectivity of the dependecy tree T ; we say that dependency tree
T is projective if dNg(T ) = 0, in other case we say that tree T is nonprojective.

This definition of (non)projectivity gives us the same border between the sets
of projective and non-projective trees as other definitions based e.g. on crossing
of edges (see [1], [2]) but it is easy to evaluate during the process of bottom-up
analysis.

By the same way we define Ng(u, T ) as a number of gaps in coverage of the
node of DR-tree and Ng(T ) as the measure of nonprojectivity of DR-tree T . We
say that DR-tree T is projective iff Ng(T ) = 0.

2.2 Dependency grammars

In [9] we have introduced a class of formal grammars, Robust Free-Order De-
pendency Grammars (RFODG’s) as a formal foundation to the way we were
developing a grammar-checker for Czech, a natural language with a consider-
able level of word-order freedom. In this text we will call that grammars simply
dependency grammars (DG).

Dependency grammar (D-grammar) is a quadruple G = (T, N, St, P ) where
T is the set of terminals, N is the set of nonterminals, St ⊆ (T ∪ N) is the set
of starting symbols and P is the set of rewriting rules of two forms: A →X BC
and A → B, where A, B, C ∈ (T ∪ N) and X ∈ {L, R}. The letters L (R) in
the subscripts of the rules mean that the first (second) symbol on the right-hand



Dependency Analyser Configurable by Measures 3

Figure 1. Examples of projective (dNg=0) and non-projective (dNg=1) D-trees with
marked coverages of their nodes

side of the rule is considered dominant, and the other dependent. If a rule has
only one symbol on its right-hand side, we consider the symbol to be dominant.

The rule has the following meaning (for reduction): The dependent symbol
is deleted (if there is one on the right-hand side of the rule), and the dominant
one is rewritten (replaced) by the symbol standing on the left-hand side of the
rule. The rules A →L BC, A →R BC can be used for a reduction of a sentence
(sentential form) w for any of the occurrences of the symbols B, C in w, where
B precedes (not necessarily immediately) C in w. The rule A → B can during
reduction rewrite any occurrence of B in w.

We say that a DR-tree T is a DR-tree according to dependency grammar G
if the symbol of the root node belongs to the set of starting symbols of grammar
G and for every non-leave node it is possible to find rule of the grammar G
describing relation between the node and its daughters (dominant–vertical edge,
dependent–obligue edge, order of daughters (left-right)). In the case of DR-tree
according to any dependency grammar we can talk about rule assigned to the
edge.

We can refine the expressing power of D-gramars by introducing the local
limitations of non-projectivity:

The set of limitations of non-projectivity of symbols is a set
Cs = {[A, i]|A ∈ (N ∪ T ), i ≥ 0}. The pair GCs = (G,Cs) is called 1-DG gram-
mar. We say that DR-tree T is a DR-tree according to 1-DG (G, Cs) iff it is a
DR-tree according to D-grammar G and for every node u of T it holds that if A
is the symbol of node u and if [A, x] ∈ Cs, then Ng(u, T ) ≤ x.

1-DG grammars can describe all context-free languages without empty words
and also some non-context free languages, e.g. language {anbncn|n > 0}.

2.3 Grammars with Erorrs

For the purpose of searching of syntactic errors it could be possibble to use single
grammar to recognize correct sentences and other sentences mark as incorrect.



4 Tomáš Holan

We hope that we have to make difference between error in the sentence and error
in (or insufficience of) the grammar. Therefore we use two grammars, positive
grammar and extended grammar, to clasify sentences into three classes: correct
sentences i.e. recognised by positive grammar, incorrect sentences i.e. recognised
by extended grammar only (sentence contains some known errors like e.g. broken
disagreement condition) and unclassified sentences i.e. not recognised by any
grammar. The pair (positive grammar, extended grammar) is called grammar
with errors.

Rules of a positive grammar (positive rules) form subset of rules of extended
grammar, rules present in extended grammar only we call negative rules.

We define Ne(T ) measure of robustness (incorrectness) of a DR-tree accord-
ing to D-gramar as a number of applications of negative rules inside the tree T .
By the same way we can define dNe(T ), the measure of robustness of D-tree T .

Formalism used by our analyser for grammar definition allows to describe
positive and extended grammars both in one by placing tags ”error rule” into
the rule, it is used mostly in the case of (not) fulfilling of some constraints.

3 Analyser

There are many known dependency analysers and formalisms of expressing de-
pendency grammars, see e.g. [4], [5] or [7]. They are suitable for various languages
(mostly english) and for the various purposes.

Our approach differs in the way of expressing rules, in dealing with errorneous
and nonprojective sentences and mainly in posibilities to expres limitations of
analysis by measures.

Whole tool consists from three parts: data (sentence) definition language,
grammar definition language and configurable analyser.

3.1 Language for definition of sentences

It is a language for definition of input data — morphologically and lexically
processed sentences of natural language. Words can have only simple attributes
except one complex attribute for a valency frame. The language also allows an
efficient way of notation of morphological and lexical ambiguity.

Next example shows the (simplified) definition of the Czech word ”kvtiny”
(flowers) in the language for the definition of sentences.

kvetiny

LEXF: kvetina

WCL: noun

SYNTCL: noun

GENDER: fem

?

NUM: pl



Dependency Analyser Configurable by Measures 5

CASE: ? voc , acc , nom !

,

NUM: sg

CASE: gen

!

END

This example illustrates usage of the branching on the level of whole sets of
attributes (branchning after attribute GENDER) and also branching on the level
of values (values of the attribute CASE). Altogether this definition corresponds
to four unambiguous definitions. Question mark allways denotes beginning of
branching, commas separate variants and exclamation mark denotes the end of
branching. Branchings can be nested, the resulting set of descriptions is the set
of all possible combinations (cartesian product).

3.2 Language for definition of grammars

This language serves for definition of grammars with errors. Meta-rules of a
grammar are described as a sequences of commands checking the conditions of
applicability of the meta-rule and forming the instance of the meta-rule for given
right-hand side symbols. Variables used inside the metarule are: X for the left-
hand symbol of the rule, A,B for the first and second right-hand symbol of the
rule and P, temporary variable for an element of the frameset.

Head of a meta-rule can contain attributes declaring limitation of the meta-
rule to projective use only (PROJECTIVE), limitation of non-projectivity of the
meta-rule to closest dominant symbol (CLOSEST) or negative-only meta-rules
(NEGATIVE).

Commands forming meta-rules are

– hard-condition declaring the value of the attribute needed for application of
the meta-rule, e.g.
A.SYNTCL=noun

– soft-condition declaring the value of the attribute needed for application of
the positive meta-rule and name of the error in the case of breaking that
condition, e.g.
A.CASE ? B.CASE CaseDisagreement

– initialization declaring which of symbols A, B will be dominant and initial-
izing rewritted dominant symbol (left-hand side of the rule), e.g.
X := B

– assignment setting the value of the attribute of (rewrited) dominant symbol
(left hand side of the rule), e.g.
X.HasRightGenitive := yes

– selection from the frameset selects one element of the specified frameset into
variable P, rest of the rule continues separately for all elements of the frame-
set, e.g.
P in A.FRAMESET



6 Tomáš Holan

– deletion from the frameset deletes selected element from the specified frame-
set, e.g.
DELETE P from A.FRAMESET

– other statements — OK (successfull end), FAIL (unsuccesfull end), ERROR
name (place error sign).

– conditional statement if-then-else-endif allowing branching of the meta-rule,
e.g.

IF A.SYNTCL=noun THEN X.a := n
ELSE

IF A.SYNTCL=pronoun THEN X.a := p
ELSE FAIL

ENDIF
ENDIF

Following example presents the simplified definition of the meta-rule for ad-
joining the adjective as the left congruent attribute to the noun:

METARULE LeftCongruentAttribute

A.SYNTCL=ADJ

B.SYNTCL=NOUN

A.GENDER ? B.GENDER GenderDisagreement

A.CASE ? B.CASE CaseDisagreement

A.NUMBER ? B.NUMBER NumberDisagreement

X:=B

OK

END_METARULE

If interpretation of the metarule succeeds and all soft-conditions was fulfilled
then we get rule of the positive grammar. If any of soft conditions is not true
then interpretation of metarule continues but resulting rule will be negative rule
of extended grammar with appropriate error code.

The set of attributes and set of values are not fixed, author of grammar can
use her/his own attributes and values. Dictionaries of attributes and values are
created during loading of grammar and sentences.

3.3 Configurable analyser

Analyser provides computation of all DR- and D-trees for a given sentence ac-
cording to a given grammar fulfilling the limitations of the measures Ng, dNg
and Ne. Results are presented on different levels, from the list of items of parsing
to the sets of DR-trees or D-trees.

Output is a list of DR-trees and their shapes and list of D-trees and their
shapes. Those list are interpretted by the TreeView utility.

Analyser is based on bottom-up parsing, working with items presenting
(sub)trees. Item contains symbol and horizontal position of a root of the sub-
tree, its coverage and references to daughter items. Analyser tries to combine



Dependency Analyser Configurable by Measures 7

Figure 2. Example of output viewed by TreeView. It shows the tree selected from the
list of all trees (window on the right side).

two items i.e. it checks disjunctivity of their coverages, compute their union as a
coverage of new item, check if it fullfill given restrictions of nonprojectivity (mea-
sure Ng) and of robustness (measure Ne), then it tries to interpret metarules on
root symbols of items (by horizontal indices left (A) and right (B)), if metarule
succeed (OK) then it creates a new item.

For any new item created analyser checks whether there already exists an
item with the same symbol, horizontal position of a root and coverage. If it
exists then new item is marked as duplicite item and it will not be used for
creating of new items. Duplicite items are used later to find all trees for the
sentence.

4 Conclusion

The main aim of this contribution was to present dependency analyser config-
urable by measures.

Described analyser can analyse non-projective sentences, it can deal with
errors (extended grammar), it can use global limits of non-projectivity and cor-
rectness, given as a parameters of analysis. It can also use local limits of non-
projectivity of single metarules, it compute full set of trees, without pruning, as
it is needed during testing a natural language grammar.

The analyser was used for pilot implementation of a grammar-checker [8], as
a base of the robust analyser of Czech [11] and of a machine aided translation
tool [10] and also as a testing tool for the research on prepositional phrases in
Czech [13].



8 Tomáš Holan

References

1. Jürgen Kunze: Die Auslassbarkeit von Saltzteilen bei koordinativen Verbindungen
in Deutschen. Akademie-Verlag-Berlin, 1972

2. Ladislav Nebeský: A Projectivity Theorem. In: Prague Studies in Mathematical
Linguistics (3), Academia, Praha, 1972, pp. 165-169

3. Alexej V. Gladkij: Formalnyje gramatiki i jaziki. Nauka, Moskva, 1973
4. Martin Kay: Functional Unification Grammar: A formalism for machine trans-

lation.. In: Proceedings of the 10th International Conference on Computational
Linguistics, Stanford University, California, 1984, pp.75-78

5. Nicholas J. Haddock, Ewan Klein, Glyn Morrill: Categorial Grammar, Unifica-
tion Grammar and Parsing. Edinburgh University Centre for Cognitive Science,
Edinburgh 1987

6. Igor A. Mělčuk: Dependency Syntax: Theory and Practice. State University of
New York Press, 1988

7. Carl J. Pollard, Ivan A. Sag: Head-driven Phrase Structure Grammar. University
of Chicago Press, Chicago 1994

8. Tomáš Holan, Vladislav Kuboň, Martin Plátek: An Implementation of Syntactic
Analysis of Czech. ÚFAL MFF UK, Praha, 1996, Language Technologies for Slavic
Languages

9. Martin Plátek, Vladislav Kuboň, Tomáš Holan: Formal Tools for Separating Syn-
tactically Correct and Incorrect Structures (extended abstract to a poster). In:
Proceedings of the Conference IWPT’97, pp. 247-248, Massachusetts Institute of
Technology, Boston, MA, USA, 1997

10. Libor Lisý: Pracovńı prostřed́ı překladatele na poč́ıtači PC. Diploma thesis, MFF
UK, Praha, 1998

11. Vladislav Kuboň: A Robust Parser for Czech. Tech. report TR 1999-6, ÚFAL
MFF UK 1999

12. Tomáš Holan, Vladislav Kuboň, Karel Oliva, Martin Plátek: On Complexity of
Word Order. In: Les grammaires de dpendance - Traitement automatique des
langues Vol 41, No 1 (2000) (special issue on dependency grammars of the journal
Traitement automatique des langues, guest editor Sylvain Kahane), pp. 273-300.

13. Markéta Straňáková: Selected Types of Pg-Ambiguity: Processing Based on Anal-
ysis by Reduction. In: Proceedings of TSD’00, P.Sojka, I.Kopeček, K.Pala (Eds.),
Springer Verlag, LNAI 1902, pp.139-144, 2000


