
Rule Parser for Arabic Stemmer

Imad A. Al sughaiyer
Tel: 481-3217, fax: 481-3764

imad@kacst.edu.sa

Ibrahim A. Al kharashi
Tel: 481-3273, fax: 481-3764

kharashi@kacst.edu.sa

Computer and Electronics Research Institute
King Abdulaziz City for Science and Technology

P. O. Box 6086, Riyadh 11442, Saudi Arabia

ABSTRACT

Arabic language exhibits a complex but very
regular morphological structure that greatly affect its
automation. Current available morphological analysis
techniques for the Arabic language are based on
heavy computational processes and/or the existence of
large amount of associated data. Utilizing existed
morphological techniques greatly degrade the
efficiency of some natural language applications such
as information retrieval system.

This paper proposed a new Arabic morphological

analysis technique. The technique is based on the
pattern similarity of words derived from different
roots. Unique patterns are extended and coded as
rules that encode morphological characteristics. The
technique does not require either complex
computation or associated data yet adjustable to
maintain enough accuracy. This technique utilizes a
very simple parser to scan coded rules and decompose
a given Arabic word into its morphological
components.

This paper provides an introduction to Arabic

language and its morphological characteristic
followed by an overview of currently available
morphological techniques. Explanation of the
developed stemmer and its components including rule
set and parser were given. Experimental results and
the work conclusion were provided at the end.

Keywords: Natural Language Processing; Arabic

language; Stemmers

1. INTRODUCTION
Morphological analysis techniques are

computational processes that analyze natural words
by considering their internal morphological structures.

Stemming algorithms, on the other hand, are
processes that gather all words sharing the same stem
with some semantic relation. Stemming, as a term, is
widely used by researchers dealing with languages
with simple morphological systems while
morphological analysis, as a term, is widely used by
researchers in languages with complex morphological
system such as Arabic and Hebrew. The main
objective of the stemming algorithms and one
objective of morphological analysis techniques is to
remove all possible affixes and thus reduce the word
to its stem [1, 2].

The major difference between Arabic and most of
other languages resides mainly on its complicated,
very regular and rich morphological structure. Arabic
language is derivational while most of other
languages are concatenative. Most of Arabic words
are generated based on root-pattern structure. Arabic
word generation is highly affected by its
morphological characteristics [3, 4, 5]. Stems are
generated from roots using one or more patterns.
Suffixes, prefixes, and infixes can be added to a stem
to generate an Arabic word. A reverse process is used
to analyze Arabic words. Schematic diagram for
analysis and generation processes is shown in Figure
1.

Figure 1. Arabic system for generating/analyzing
words

Due to its non-concatenative nature, processing
Arabic language is not an easy task. Tens or
hundreds of words are generated using single root,
few patterns and few affixes based on root-pattern
schemes. Also, Arabic has a high degree of
ambiguity because of many reasons such as missing
of vowels and similarity between affixation letters
and stem or root letters.

2. ARABIC MORPHOLOGICAL

ANALYSIS TECHNIQUES
Arabic morphological analysis techniques are

classified into table lookup, linguistic and
combinatorial approaches [3, 6, 7]. Table lookup
approaches utilize huge list that stores all valid natural
Arabic words along with their morphological
decompositions. A given Arabic word is analyzed by
accessing the list and retrieving information
associated with that entry [8].

Linguistic approaches, on the other hand, simulate

the behavior of a linguist by considering Arabic
morphological system and deeply analyzing input
Arabic words accordingly to their morphological
components. In such approaches, prefix and suffix of
a given word are removed by comparing leading and
trailing characters with a list of known affixes.
Remaining part is either accepted as the required stem
or modified using deletion, addition, or substitution of
internal letters to generate the valid stem. The
resultant stem is transformed to Arabic root simply by
filtering process using valid list of patterns. Most of
the published works are mainly linguistic based [3, 9,
6, 10, 11, 12, 13, 14, 15, 16, 17, 18].

Finally, in combinatorial approaches all
combinations of letters of tested word are generated.
Resulting combinations are compared against lists of
Arabic valid roots. On a match, valid root, stem and
patterns are extracted. Otherwise other combinations
will be tested [7, 19, 20].

Two problems are facing table lookup approaches.
First, compiling huge list of all valid natural Arabic
words is impractical. Second, the storage overhead
for the list and access time are problematic.
Linguistic approaches require too many lists and
faced with the problem of wrongly removing
beginning and ending substring of the word as they
have similarity with valid prefix and suffix.
Combinatorial approaches are trail and error

processes and hence require heavy computational
processing. It should be noticed, however, that
ambiguity is a common symptom of any word-based
approach. Higher-level contextual processing is
usually the solution for such symptom.

To analyze Arabic words, some researchers

suggested to reach their roots [3] while others
suggested analyzing them to their stems only [4, 5].
Analyzing words to their roots is useful in linguistic
processing, while analyzing words to their stems is
preferred in some other applications such as
information retrieval-based systems.

3. RULE-BASED ARABIC STEMMER

This section introduces a new approach that
utilizes the apparent symmetry of generated natural
Arabic words. In this approach, a unique regular
expression-based rule is generated for group of
similar Arabic words as shown in Figure 2. Regular
expressions are compact patterns of characters or
simple keyword searching sets of symbols used to
match complex patterns in text strings. They are
powerful expressions that describe a pattern of text
rather than literal sub-string. They can be used in a
complex way for searching and matching patterns in
texts and databases, and once found, patterns are
modified, extracted, or replaced with different string.

Figure 2. Sample rule usage.

Rules are used to describe the internal

morphological structure of Arabic words and guide
the decomposition process of a given word to its basic
components i.e. stem, prefix and suffix. Rules are
written from right to left to match script writing
direction of Arabic language. Rule pattern may
contain up to three distinct parts. The first and last
parts describe affixation properties of the word while
the middle part controls the stem extraction process.
Pairs of angle brackets surround affixation parts.
Absence of prefix or suffix in the rule patterns is

sometimes denoted by empty angle brackets. This is
necessary in order to distinguish them from an angle-
bracketed part of the stem.

Rule complexity varies from very simple ones to

very complicated rules that deal with complex
morphological behaviors. Their syntax were
generated after deep analysis of a randomly selected
Arabic text and created with the following structure:

prefix-part stem-part suffix-part

where
prefix-part represents attached prefix, if any, and

can be drawn from a finite list of
prefixes.

stem-part represents stem structure and guide the
process of extracting its original form.

suffix-part represents attached suffix, if any, and
can be drawn from a finite list of
suffixes.

Rule patterns are constructed using the following

conventions:
<str> to match the string str and delete it if in

the stem part or consider it as
prefix/suffix if in the prefix/suffix part.

<s1^s2> to substitute s1 by s2 in stem and suffix
parts. This notation is also used for
insertion <^s2>.

< > An empty bracketed string to indicate
null prefix or suffix. This is necessary to
distinguish the prefix/suffix from the
start/end part of the stem part.

.n to match n number of characters where n
is an integer greater than one. Single
letter is denoted by single dot. Matched
characters are used to construct the stem.

Set of simple rules is created to handle words

already in stem forms, isolated articles, proper names
and foreign words. For example the rule “.4” matches
any word with four letters and pass it as a valid stem
with no further processing.

Other rules are used to treat words with

morphological structure ranging from very simple to
very complex. The rule “ ><>ة<^2.>ا<2.>و< ” matches
any six letters word with leading letter “و” followed
by any two letters, letter “ا” and ending with any two
letters. The letter “و” is extracted as prefix, letter “ا”

is deleted and the letter “ة” is inserted in order to
complete the stem creation process.

In the following pattern “ ><>ء^أي<3.>ي<>< ” the

“ >ء^أي< ” part is used to substitute the substring “أي”
with the letter “ء”. Leading and ending empty
bracketed parts denote the absence of both prefix and
suffix. Table 1. lists few rules extracted from a list of
about 1200 rules generated using the text collection.

Table 1. Sample Rules.
Resultant Applied Rule Word Prefix Stem Suffix

.3 على على
>ية<3.>ال< ية نار ال النارية

 تراب ال الأتربة ><>ة<.>ا<^2.>أ><ال<
.>ا^و<.>ت<>< مات تموت
>ه><ب< هـ ب به

><>ة<.>ؤا^ئ<.>أ><وال< فؤاد وال والأفئدة
>ها<.>ا<.>أ^آ<>< ها أمل آمالها
>ية<4.>ال< ية سرير ال السريرية

>ة^ات<3.>ولل< ات مسرة و وللمسرات
>هم><ائ<.>ي<^2. هم وزير وزرائهم

><>ة<.>ا<^2.>أ<>< جهاز أجهزة
.>و<2.>ال< رموزال رمز ال

5.>ب< زراعة ب بزراعة
>ة<6. ة متكامل متكاملة

.>ا^و<.>ي><وس< قال وس وسيقول
><>ية^ى<2.>وال< رؤية وال والرؤى

><>ية><اء<^2.>أ<>< وعاء أوعية

4. RULE PARSER

A very simple rule parser was developed to
perform the analysis to process and extract word
morphological components. The parser is used to
perform matching between input rule and a given
Arabic word. The matching process is achieved when
the parser successively analyze the input word and
decompose it, according to the parsed rule, to its valid
components.

The parser is divided into three distinct parts to

treat prefix, suffix and stem. Extracting
morphological parts of a given word is merely done
by interpreting the corresponding part of the rule.
Initially, the parser scans the suggested rule to
identify boundaries of each part. The angle-bracketed
substring at the beginning/end of the rule string
distinguishes prefix/suffix parts. The remaining
middle part of the rule is the stem part. Each part

guides the parser during the process of extracting
word morphological parts.

Prefix and suffix are extracted using simple string

matching process between the beginning/end of the
word and the string in the prefix/suffix part of the
rule. Suffix may contain a code that affect extracted
stem. Stem part is generated by sequential copying
from the middle of the word with the possibility of
going through insertion, deletion and/or substitution.
A simplified pseudo code of the parser is shown in
Listing 1.

A rule is said to be fired if it has the same length

as the length of the processed word. A match is
achieved if and only if a fired rule produces the
correct prefix, stem and suffix. A given word should
fire at least one rule and match only one rule.

Listing 1.
parser(word)

for every rule
if word length = rule length

identify rule prefix boundaries
identify rule stem boundaries
identify rule suffix boundaries
if rule prefix = word beginning

copy word beginning to prefix
else

match fail
end if
while rule stem

if dot
copy n symbols from the
word proper position to stem

end if
if angle-bracketed ^ expression

copy to the stem with substitution
end if

end while
if rule suffix = word end

copy word end to suffix
if ^ expression

append to stem
else

match fail
end if
if empty rule AND empty word

match succeed
else

match fail
end if

end if
end for

end parser

5. EXPERIMENT

Rule generation process is performed by
inspecting about 22,000 Arabic words. Words were
extracted from 100 short Arabic articles collected

randomly from the internet. Extracted words were
normalized by removing vowels, if any, and then
stored in binary file in the same order as the original
natural text. Since word order was preserved, it is
very easy to deduce the contextual meaning of the
word by listing few words before and few words after
the current word. Each word in the file was manually
investigated where stem, prefix and suffix were
manually generated and stored in the same file. The
stem in the work is defined as a singular, masculine
and past tense Arabic word without affixes.

The first part of the experiment was designed to
study rule growth in a natural text. In this part each
word passed to the parser for analysis. The parser has
access to list of accumulated rules. The parser tries to
fire rules in sequence. On a match, the word structure
will be updated with number of fired rules, the id of
matched rule and its sequence. On a mismatch, a new
rule should be created and appended to the rule list
then parser will be executed again.

The growth of rules is shown in Figure 3. It shows

very rapid growth at lower number of words and a
tendency to be stabilized as more words introduced.
The figure is also shows number of generated rules
for every thousand words. It clearly shows that
number of generated rules decreases as number of
words increases.

Figure 3. growth of generated rules

Order of rule firing plays an important role in the

efficiency of the stemmer. For a given word, it is
desirable to fire less number of rules and to maintain
firing order in such a way that first fired rule is the
matched one. Figure 4. shows the firing behavior of
the stemmer for the set of rules arranged according to
their generation order. Despite the uncontrolled list
of rules in terms of its order, the experiment revile
promising behavior. For a given word that fires a set
of rules, it is most likely that the first fired rule will be
achieve a match.

In order to optimize the stemmer performance the
curve in Figure 4. should show a sharp drop.
Although it is impractical to achieve such optimum
state, it is possible to have certain rule ordering that
produces the best performance for such rule set.

Figure 4. Average number of fired rules per 1000
words.

6. Conclusion
Available Arabic morphological analysis

techniques suffer from few problems including
slowness in processing and the need for prepared
data. This paper introduced a new Arabic stemmer
that requires neither prepared lists nor extensive
computations. This work showed the practicality,
simplicity and expandability of the proposed
stemmer.

Firing policies should thoroughly be studied to
enhance the accuracy and correctness of the proposed
system. Furthermore, coverage of the system should
be increased by introducing more rules. Rule
merging and cascaded firing are currently under
investigation.

7. References

[1] J. Lovins. Development of a stemming
algorithm. Mechanical Translation and
Computational Linguistics, No. 11, pages 22-
31, March 1968.

[2] J. Dawson. Suffix removal and word

conflation. ALLC Bulletin, 2(3): 33-46, 1974.

[3] N. Ali. Arabic Language and Computer.
Ta'reeb,1988. (in Arabic)

[4] A. Alsuwaynea. Information Retrieval in
Arabic language. King Fahad National
Library, 1995 (in Arabic).

[5] M. Al-Atram. Effectiveness of Natural

Language in Indexing and Retrieving Arabic
Documents. KACST, AR-8-47. 1990. (in
Arabic)

 [6] M. El-Affendi. An algebraic algorithm for

Arabic morphological analysis. The Arabian
Journal for Science and Engineering.
16(4B):605-611, Oct 1991.

[7] S. Al-Fadaghi and F. Al-Anzi. A new

algorithm to generate root-pattern forms.
Proceedings of the 11th National Computer
Conference, KFUPM, pages 391-400, March
1989.

[8] W. Frakes and R. Baeza-yates. Editors.

Information Retrieval: Data Structures &
Algorithms. Prentice hall, 1992.

[9] B. Thalouth and A Al-Dannan. A

comprehensive Arabic morphological
analyzer/generator. IBM Kuwait Scientific
Center, February 987.

[10] T. El-Sadany and M. Hashish. An Arabic

morphological system. IBM Systems Journal,
28(4):600-612, 1989.

[11] G. Kiraz. Computational analysis of Arabic

morphology. Computer Laboratory, University
of Cambridge, March 1995.

[12] N. Hegazi and A. Elsharkawi. Natural Arabic

language processing. Proceedings of the 9th
National Computer Conference, Vol. 2, Pages
(10-5-1)-(10-5-17), Riyadh. October 1986.

[13] Y. Hlal. Morphology and syntax of the Arabic

language. Proceedings of the Arab School of
Science and Technology, pages 201-207, 1990.

 [14] M. Gheith and T. El-Sadany. Arabic

morphological analyzer on a personal
computer. Proceedings of the 1st KSU
Symposium on Computer Arabization, pages
55-65, April 1987.

[15] A. Aluthman. A Morphological Analyzer for

Arabic. M. S. Thesis, KFUPM, Dhahran, 1990.

[16] K. Beesley. Finite state morphological analysis

and generation of Arabic at Xerox research:
status and plans in 2001. 2001.
http://www.elsnet.org/arabic2001/beesley.pdf

[17] M. Aref. Object-oriented approach for

morphological analysis. Proceedings of the
15th National Computer Conference. pages 5-
11, KFUPM, Dhahran 1997.

[18] M. Albawab and M. Altabban. Morphological

computer processing for Arabic. Arabian

Journal for Sciences, No. 32, pages 6-13, 1998.
(in Arabic)

[19] R. Al-shalabi. Design and implementation of an

Arabic morphological system to support natural
language processing. Ph. D. Dissertation.
Computer Science Department, Illinois Institute
of Technology. Chicago, 1996.

[20] M. El-Affindi. Performing Arabic

morphological search on the internet: a sliding
window approximate matching (SWAM)
algorithm and its performance. Dept. of
Computer Science. CCIS, KSU. Saudi Arabia.

