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Abstract. ! In Continuous Speech Recognition (CSR) systems, acous-
tic and Language Models (LM) must be integrated. To get optimum CSR
performances, it is well-known that heuristic factors must be optimised.
Due to its great effect on final CSR performances, the exponential scaling
factor applied to LM probabilities is the most important. LM probabil-
ities are obtained after applying a smoothing technique. The use of the
scaling factor implies a redistribution of the smoothed LM probabilities,
i.e., a new smoothing is obtained. In this work, the relationship between
the amount of smoothing of LMs and the new smoothing achieved by
the scaling factor is studied. High and low smoothed LMs, using well-
known discounting techniques, were integrated into the CSR system. The
experimental evaluation was carried out on two Spanish speech applica-
tion tasks with very different levels of difficulty. The strong relationship
observed between the two redistributions of the LM probabilities was in-
dependent of the task. When the adequate value of the scaling factor was
applied, not very different optimum CSR performances were obtained in
spite of the great differences between perplexity values. ...

1 Introduction

In Continuous Speech Recognition (CSR) systems a Language Model (LM) is
required to represent the syntactic constraints of the language. But there are
a high number of sequences of words that do not appear in training and could
appear in tests. Thus, a certain mass of probability must be subtracted from the
seen combinations and redistributed among the unseen ones, i.e., a smoothing
technique must be applied [1] [2]

The test set perplexity is typically used to evaluate the quality of the LM [1]
[2]. Perplexity can be interpreted as the (geometric) average branching factor of
the language according to the model. It is a function of both the language and
the model. It is supposed that the ”"best” models get the "lowest” Word Error
Rates (WER) of the CSR system. But there are plenty of contraexamples in
literature [3]. The ability of the test set perplexity to predict the real behavior
of a smoothing technique when working in a CSR system could be questioned
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because it does not take into account the relationship with acoustic models. Sev-
eral attempts have been made to devise metrics that are better correlated with
the application error rate than perplexity [4]. But for now perplexity remains the
main metric for practical language model construction [3]. In fact, the quality of
the model must ultimately be measured by its effect on the specific application
for which it was designed, namely by its effect on the system error rate. However,
error rates are typically non-linear and poorly understood functions of language
models [3]. In this work we try to clarify how the smoothing technique applied
to the LM works in the CSR system and to show its real impact on final system
error rates.

Integration of language and acoustic models is invariably based on the well-
known Bayes’ rule. However, it is well known that the best performance of a
CSR system is obtained when LM probabilities in the Bayes’ rule are modified
by introducing an exponential scaling factor [5]. This factor can be understood
as a new redistribution of the smoothed LM probabilities. As a consequence,
LMs are smoothed twice: first by means of the smoothing technique and then
by the exponential scaling parameter. The aim of this work is to establish a re-
lationship between the amount of smoothing given by the smoothing technique
and the amount of smoothing achieved by the exponential scaling factor (see
Section 2).

Thus, different amounts of smoothing need to be applied to LMs. Two differ-
ent well-stablished smoothing techniques leading to high and low-smoothed LM
respectively, have therefore been evaluated (see Section 3). The relationship
between the amount of smoothing given by the smoothing technique and the
amount of smoothing achieved by the exponential scaling factor is studied in
terms of both classical test set perplexity and CSR performance. CSR perfor-
mance was evaluated in terms of both, the obtained WER and involved compu-
tational cost (see Section 4). Experimental evaluation was carried out over two
Spanish databases of very different difficulty recorded by two consortia of Span-
ish research groups to work in understanding and dialogue systems respectively.
Finally, some concluding remarks are given in Section 5.

2 Introducing the LM in the CSR system

Within a CSR system there are several heuristic parameters that must be ad-
justed to obtain optimum performances, such as the beam-search factor to reduce
the computational cost, etc. But, the most important, due to its great effect on
final CSR performance, may be the exponential scaling factor a applied over
LM probabilities in Bayes’ rule [5]. In Bayes’ rule, the recognizer must find the
word sequence (2 that satisfies:

N = argmgxP(Q)aP(A/Q) (1)

where P(2) is the probability that the word sequence 2 = wjws...w|q| from
some previously established finite vocabulary ¥ = {w;}, j = 1...|X], will be
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uttered and P(A/(2) is the probability of the sequence of acoustic observations
A = aya3...a)4) for a given sequence of words {2. Probabilities P(A/f2) are repre-
sented by acoustic models, usually Hidden Markov Models (HMM). The a priori
probabilities P(f2) are given by the LM.

From a theorical point of view, the scaling parameter « is needed because acous-
tic and LM probability distributions are not real but approximations [5]. The two
probability distributions are estimated independently using different stochastic
models that represent different knowledge sources. Moreover, the parameters of
the acoustic and language models are estimated on the basis of speech and text
data corpora, respectively. Each corpora was designed with different purposes,
and they have therefore different vocabulary, size, complexity, etc. Thus, a bal-
ance parameter o needs to be applied to lessen these effects and then obtain
good system performances.

In practice, acoustic and LM have very different ranges of values. The accu-
mulated probabilities at the end of each partial sequence of words (2 in the
Viterbi trellis is a combination of acoustic P(A/f2) and language P({2) prob-
abilities. Acoustic probabilities are usually smaller than language probabilities
and are applied many more times. The gap among accumulated probabilities is
therefore usually bigger than the gap among LM probabilities. The immediate
consequence is that LM probabilities are irrelevant in most situations for de-
ciding the best path to choice?[6]. However, when LM probabilities are raised
to a power o > 1: (P(£2))?, all of them are attenuated, but this attenuation is
higher for lower probability values. A bigger gap is therefore obtained between
high and low probabilities and then LM probabilities are now more relevant to
decide the next word combination. There is a maximum value of a from which
LM probabilities are overvalued.

It is important to notice that the smoothing technique clearly defines the LM
probability distributions and thus, the ”a priori” gap among probabilities. So
that, the relationship between the smoothing technique and the exponential
scaling factor applied over LM probabilities must be stablished.

3 High and low smoothed LMs.

The purpose of this work was not to achieve an exhaustive comparison of smooth-
ing techniques like others authors did [1] [2]. The main goal was to observe the
relationship between the amount of smoothing given by the smoothing technique
and the amount of smoothing achieved by the scaling exponential factor. Thus,
two well-known back-off smoothing techniques [7] involving very different amount
of discounting have been chosen. Witten-Bell (WBd) and Add-One (AOd) dis-
counting have been used to obtain high and low smoothed LMs respectively. In
high-smoothed LMs the probability reserved by the smoothing technique for the
unseen events is bigger than in low-smoothed LM. As a consequence the gap be-
tween LM probabilities in high-smoothed LMs is smaller than in low-smoothed

2 This phenomenon is also related to the problem of the negligible impact that tran-
sition probabilities have in acoustic models.
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models.

The amount of discounting performed by Witten-Bell and Add-one techniques

does not need to be adjusted by any additional parameter, like in other well-

know techniques, such as Kneser-Ney, linear, etc [1] [2]. In both cases the amount

of discounting is fixed and fully defined by the technique.

Ifth= (wf:(lnfl)) is a history representing a sequence of n — 1 words, N(w;/h) is

the number of times that word w; appears after history h, N(h) = >  N(w;/h)
N g R0

and B(w;/h*) is the probability distribution of a more general model (h* rep-

resents a history of words of length less than h), the smoothed LM probability

P(w;/h) is calculated as:

(1 — X)X N(wi/h) # 0

P(w;/h) = N(w;/h) B(wi/h* ) _ 2
(wi/h) ( v;/ PRI Z(w /B(u))j/h*) N(w;/h)y=0 (2
N /%0 N(Z;”/jh/)=0

(1 — X) represents the discount factor, that is, the amount of probability to be
subtracted and then redistributed among unseen events. The discount factor
(1-A) can have very different formulations [1] [2] [8]. In fact, we have given ad-
equate values to (1-A) to obtain high and low-smoothed LMs using Witten-Bell
and Add-One discounting respectively. Those discounting are fully explained in
the following paragraphs.

High-smoothing: Witten-Bell discounting:
In Witten-Bell, the discount (1 — A\) depends fundamentally on the number of
different events T' following the history h. That is:

L-A= ST (3)

It is widely used since it leads to low text set perplexities when compared to other
classical back-off methods [8]. However, a dependence was found [2] between per-
plexity and the size of the training of the LMs when Witten-Bell discounting was
used.

In this case a quite important mass of probability is assigned to unseen events
(high-smoothing) and the gap between seen and unseen probabilities is reduced.
Combinations of words unseen in training can have a relative high probability
in test.

Low-smoothing: add-one discounting:
This is a very simple discounting method, adding one to all the counts. It was
calculated as:

l_A:Ni(h)—i—l (4)
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This method does not usually perform well and thus is not commonly used by
itself. Usually it is applied as part of more complicate methods 2 [1].

Since 1 < T, using add-one discounting a smaller mass of probability is re-
distributed among unseen events (low-smoothing) than using Witten-Bell dis-
counting. The gap among LM probabilities is therefore bigger using Add-One
discounting.

3.1 LM evaluation in perplexity

Topics related to the obtaining of LMs, such as smoothing techniques, are usually
evaluated in terms of perplexity. The test set Perplexity (PP) is based on the
mean log probability that a LM assigns to a test set wF of size L. It is thus
based exclusively on the probability of words which actually occur in the test as
follows:

L
—1 > log(P(wi/wi™t))
PP=P) Vt=e = (5)

The test set perplexity measures the branching factor associated to a task,
which depends on the number of different words in the text. Low perplexity
values are obtained when high probabilities are assigned to the test set events
by the LM being evaluated. When the test set includes a high number of un-
seen combinations of n words, the probability P(w;/wi™') mainly depends on
the smoothing technique. In such a case, P(w;/w’™") is lower for low-smoothed
LMs and, as a consequence bad Perplexity values will be obtained. Thus, high-
smoothed techniques lead to good perplexity values when evaluated over test-set
including a high number of unseen events. However, this good LM behavior is
not always confirmed by the CSR system performance which also includes the
acoustic models [4].

4 Experimental evaluation.

In this section the relationship between the two redistributions of the LM prob-
abilities, i.e., the application of the smoothing technique and the scaling factor,
is experimentally established. The experimental evaluation was carried out with
two Spanish databases of very different levels of difficulty: Bdgeo and Info_Tren.
Bdgeo is a task-oriented Spanish speech corpus [9] consisting of 82000 words and
a vocabulary of 1208 words. This corpus represents a set of queries to a Spanish
geography database. This is a specific task designed to test integrated systems
(acoustic, syntactic and semantic modelling) in automatic speech understanding.
The training corpus consisted of 9150 sentences. The test set consisted of 600
sentences. Recording was carried out by 12 speakers in laboratory environments

3 This technique is applied in Katz’s discounting when all events at one state g are
seen more than r times [1]
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at 16Kz.

Info_Tren database has recently been recorded as part of a project to develop a
dialogue system. Info_tren is a very difficult task of spontaneous Spanish speech
dialogues with a vocabulary of around 2000 words plus 15 different acoustic types
of disfluencies such as noises, filled pauses, lengthenings, etc. [10]. The task con-
sisted of 227 Spanish dialogues on train information. They were recorded at
8KHz across telephone lines, applying the well known Wizard of Oz mechanism.
The training corpus consisted of 191 dialogues uttered by 63 different speakers
(1349 user turns resulting in 16500 words plus 5000 disfluencies). The test set
consisted of 36 dialogues corresponding to 12 different speakers (308 user turns
including 4000 words plus around 500 disfluencies). Info_tren is the first sponta-
neous dialog database recorded by Castilian Spanish speakers.

High and low-smoothed n-gram LMs with n = 2...4 were obtained, using
Witten-Bell (WBd) and Add-One (AOd) discounting respectively. Table 1 shows
the perplexity (PP) results obtained. LMs associated to the Info_Tren database
included the disfluencies as part of the vocabulary and there was a quite con-
siderable mismatching between training and test [10]. As a consequence, the
Perplexity values associated with this task are quite high.

For both tasks, the best (lowest) PP values were obtained using high-smoothed
LMs (WBd). Nevertheless, differences among high and low-smoothed models be-
havior were more important for Info_Tren task. In this task the number of word
sequences appearing in the test set but not appearing in the training set is higher
than in Bdgeo task. Higher PP values are obtained using low-smoothed LMs,
since they assign lower backoff probabilities than high-smoothed LMs to those
sequences. For the Bdgeo task, the best PP values were obtained with 4-grams
using both high and low-smoothed LMs. However, for the Info_Tren task the
best PP results were reached with 3-grams (trigrams) by high-smoothed LMs
and with 2-grams (bigrams) by low-smoothed LM were used.

The LMs in Table 1 were integrated into a Spanish CSR system. Uttered sen-
tences were decoded by the time-synchronous Viterbi algorithm with a fixed
beam-search to reduce the computational cost. A chain of Hidden Markov mod-
els were used to represent the acoustic model of the word phonetic chain. Differ-
ent exponential scaling parameters on LM probabilities were applied (a=1...7).
Table 2 shows the CSR performances obtained: the Word Error Rate (WER)
and the Average number of Active Nodes (AAN) (including both acoustic and
LM nodes) needed to decode a sentence. Optimum performances are emphatised
and underlined.

When no scaling factor was applied (o = 1) low-smoothed LMs got better per-
formances for both databases. As mentioned above, low-smoothed LMs lead to a
bigger gap among LM probabilities than high-smoothed models. Thus, LM prob-
abilities are more significant in the Viterbi trellis and, as a consequence, WER
are lower than the obtained when using high-smoothed LMs. Computational
cost (ANN) is also lower for low-smoothed LMs because, for a fixed beam-search
factor, when differences among probabilities are increased, the number of paths
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Table 1. Perplexity (PP) evaluation of n-grams LMs with n = 1...4 for Bdgeo and
Info_Tren tasks. Witten-Bell (WBd), Add-One (AOd) discounting were evaluated.

n Bdgeo Info_Tren
high smoothing|low smoothing|high smoothing|low smoothing
WBd AOd WBd AOd
2 13.1 13.89 36.84 57.22
3 7.53 8.30 34.88 69.87
4 7.17 7.72 36.37 77.33

Table 2. %WER evaluation of n-grams LMs of Table 1 with n = 2...4 for Bdgeo and
Info_Tren tasks. Witten-Bell (WBd), Add-One (AOd) discounting were evaluated.

n |a Bdgeo Info_Tren
high smoothing|low smoothing|high smoothing|[low smoothing
WBd AOd WBd AOd

WER[ AAN [WER] AAN [WER[ AAN [WER] AAN
1141.62| 3964 |33.29| 2209 |61.69| 3260 |[56.75| 2610
2(25.80| 2588 |[21.60| 1207 |50.23| 2594 |47.15| 1827
3/20.22| 1508 |17.33| 684 [43.83| 1912 |42.13| 1199
n=2|4|16.99 764 |14.98| 416 |41.08| 1291 (39.89| 760
5(15.80| 380 15.20 258 [39.60| 799 [40.75] 484
6(15.95 218 15.93| 173 [40.32 467 42.30| 335
7|17.01 143 18.14| 126 |41.75 294 43.92| 245
1/38,85| 5189 28,3 | 2935 [58,69| 6400 |55,60| 5172
221,86 2984 |16,49| 1325 |48,72| 4668 |45,21| 3233
3/15,35| 1529 12,5 633 |42,14| 3172 |41,50| 1876
n=3|4|11,74 702 |10,98| 339 |38,72| 1978 (39.36| 1060
5/10,82| 328 11,04 193 [38,01| 1135 [40,24] 610
6]10.85 179 13,08 | 123 [38,41 631 43,13 | 386
7]113.04 114 15,67 88 41,58 378 47,41 269
1[38.50| 5374 |28.59| 3058 [58.80| 6480 [55.20| 5380
2/21.86| 3053 |16.03| 1356 |48.90| 4720 |45.00| 3410
3(14.44| 1544 |11.91| 640 |[42.25| 3286 |41.04| 2237
n=4|4|10.92 704 10.89| 339 |38.83| 2229 |39.10| 1250
5(10.24 328 [10.67| 190 |[37.84| 1269 [41.24| 708
6(10.22| 177 [13.44| 120 |[38.63 702 43.70| 436
7[12.48 113 16.46 85 42.31 415 48.26 | 296

to keep in the lattice are reduced.

As it was mentioned in Section 2, the gap among LM probabilities is bigger

for low-smoothed LMs than for high-smoothed ones. The scaling factor « in-
creases this gap. As a consequence, low-smoothed LMs need lower values of « to
get the best CSR performance (see Section 2). In any case, differences between
optimum system WER obtained by low and high-smoothing techniques are not
very significant.
For Bdgeo task, the best performances were obtained using 4-grams as it was pre-
dicted by perplexity. However, for Info_Tren task, optimum performances were
also obtained with 4-grams for both low and high smoothed LM in spite of the
perplexity predictions. In fact, for Info_Tren task, perplexity increases strongly
with n, specially using low-smoothed LMs, but WER, decreases with n. The re-
sults obtained corroborate that PP is not the most adequate measurement of
the smoothing technique.
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It has been experimentally established that there is a strong dependence be-
tween the smoothing technique and the value of the scaling parameter o needed
to get the best performance of the system (which in many cases is perplexity
independent).

5 Concluding remarks.

When smoothed LMs are integrated into the CSR system there are several heuris-
tic parameters that must be taken into account. Due to its great effect on final
CSR performances, the exponential scaling factor applied to LM probabilities is
one of the most important. This factor increases the gap between LM probabil-
ities to make them more competitive with acoustic probabilities in the Viterbi
trellis. In this work, the relationship between the smoothing technique and the
scaling factor is established. Low and high smoothed LMs have been evaluated in
two Spanish tasks of very different difficulty. Similar optimum CSR performances
could obtained applying the adequate value of the scaling factor in each case.
Low-smoothed LM reach their optimum CSR performances with lower values
of the scaling factor than high smoothed LMs because they have an ”a priori”
bigger gap among LM probabilities. Experiments showed that an increase of the
test set perplexity of a LM does not always mean degradation in the model per-
formance, which depends fundamentally on empirical factors.
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