

ALFANUM SYSTEM FOR CONTINUOUS
SPEECH RECOGNITION

Darko Pekar, Radovan Obradović, Vlado Delić

School of Engineering, University of Novi Sad, Yugoslavia
e-mail: pekard@eunet.yu

Abstract

This paper shortly presents program package for continuous
speech recognition which is, so far, successful with small
and medium dictionaries. Package is very large because it
contains both modules for training and recognition. Each of
these modules consists of several submodules and variety of
classes and functions. It includes two libraries developed in
last two years by the same authors. Those are slib library for
digital signal processing [1] and general purpose an_misc
library. Program package is product of several years of
work on the automatic speech recognition topic, starting
from isolated words recognition, over connected words
recognition, to continuous speech recognition using
phoneme in context, which this system is based on. Since
the system is based on phoneme in context recognition, it
supports recognition of any set of words (grammar) which
needs to be recognized. Changing grammar requires no
additional training or speech database recording, but only
building of a new trellis, which takes few seconds. The
whole program is written in C++ programming language, it
is fully developed by the authors, which means that it does
not rely on any third party specialized library. Software is in
its largest part independent of the platform or the operating
system (except for the part which requires communication
with hardware).

INTRODUCTION
Because of the size of the package, this paper will be
divided into several parts, although even then there won't be
enough space to fully describe all aspects of the system
functioning. Tutorial will be given through the phases of
training and testing which should be followed in the process
of creating one ASR system. These phases comprise:
• creation and/or adjustment of the global ini file,
• feature extraction,
• label file creation,
• initial training,
• ML training,
• grammar setting,
• recognition.

1. GENERAL INFORMATION

1.1 Configuration (ini) file
In this text file user can define all the parameters which are
important both for training and recognition. It is not
classical ini file, it has somewhat different structure. List
and vector structures are supported, so we can define data
structure of arbitrary complexity. This is enabled by class

sobj as well as appropriate parser. Here is a short example
of how can data look like in ini file:

{
// features data
 samples_per_second = 16000.0,
 window_duration_ms = 30.0,
 frame_duration_ms = 10.0,

 derivatives_data =
 [
 { window_ms = 30.0, weight = 2.0 }
 { window_ms = 50.0, weight = 2.0 }
]
 cache_dynamic_features = 0 // false
}

There are three levels of parameters configuring. The first is
the default level. These values are defined in the source
code and are diplayed every time the program is started.
The second level is ini file in which we can override any
default value. The third level is command line in which we
can define new values, which will override those from the
previous levels. For example, if command line looks like
this:

csr test -cdf 1

switch -cdf enables setting variable
cache_dynamic_features to 1, even it has been set to 0 in
config file. Not all of the variables have the ability to be
altered from the command line (switches aren't provided),
only those for which it makes sense.

1.2 Feature extraction
Feature extraction is based on previously mentioned library
slib and its script version slib_scipt. Feature extractor is
given in textual form, where are described all the blocks
used for feature calculation. User can choose among wide
range of usually used features such as: cepstral coefficients,
(several kinds), energy and log energy, zero crossing rate,
pitch, degre of voicing, as well as derivatives of these static
features. So, features are not fixed in source code, and user
has oportunity to choose desired features. Since it is rather
complex to create whole script file for feature extraction,
several most used combinations are offered. User can use
those files or modify them to match his need.
Program supports so-called feature caching on hard disk. It
is well known that the process of feature extraction is rather
time consuming task, but when these features are once
calculated it is usually unnecessary to alter them during

training and testing. Therefore it is convenient to store
extracted features to disk and simply to load them in the
next iteration of training. This task is performed
automaticaly, but the user can turn it off. Features are
cached in directory which name is the function of extractor
name and its content. Every "wav" file has corresponding
cached ("mfc") file. Directory structure is the same as the
one of the speech database. We emphasise that the name of
this directory is function not only of the name of the used
extractor but also of its content (hash value is calculated), as
well as several other parameters which can influence
features shape, so it is impossible for program to load
cached features if user changed something in the way they
are calculated. All these files and directories are stored in
directory "cache", so that unnecessary files can be manualy
deleted.
It is interesting that the features are being saved on disk in
format which is compatible with HTK [4] parameter files.
This is done delibarately because of the two things. Firstly
we wanted to check how do our features function on the
system trained with HTK. We also wanted to see eventual
advantages or drawbacks of our algorithm for phoneme in
context training compared to HTK.
Delta features can be calculated in two ways. They can be
calculated directly, in extractor, using slib blocks, which is
prefered approach if we want to use our system in some on-
line recognition application (meaning that there isn't whole
file at disposal, but the samples gradually arrive). Second
approach is to calculate them afterwards in main program. If
the user wants this, he should define the number of
derivatives and each derivative window size in ini file. This
approach can save disk space if we are using caching,
because the files will be three times smaller (if two
derivatives are used). In the second case derivatives are
being calculated "on the fly", which is not time consuming.
Energy normalization can also be performed in two ways,
similar to derivatives calculation. If we need on-line
recognizer, slib blocks should be used, when normalization
is performed in so-called moving window (SMovingMax
and SMovingMin blocks) with some, configurable delay. If
we process signal in file, much better approach if file level
normalization. This is also specified in ini file.
Well known method for robust, channel independent,
cepstral coefficients is supported, so-called cepstral mean
subtraction [6]. It can also be performed "on the fly" or on
the file level.
After extraction features can be dividen into several data
streams. Which features would belong to which stream and
how many of them is going to be is totaly arbitrary, and is
given in ini file. For building continuous density HMM
systems, this facility is of limited use and by far the most
common case is that of a single data stream. However, when
building tied-mixture systems or when using vector
quantisation, a more uniform coverage of the acoustic space
is obtained by separating energy, deltas, etc., into separate
streams.
In the same structure as the data streams, feature weights
are given. This information is very important in initial
training and vector quantisation, but once the variances are
calculated it becomes irrelevant.

1.3 Model structure
Our system uses so-called semi continuous HMM [6]
approach, which means the following: certain phoneme in
context models don't have their, and only their, mixtures,
but there is mixture repository which contains all the
mixtures obtained in training, and every model has a list of
refereces to the belonging mixtures. This approach offers
great time savings during recognition, because the number
of mixtures to be calculated is greatly reduced (depending
on the grammar).

Figure 1.1: Model

Although the mixtures are shar
model has its own mixture weight
Each model's duration distribution
speech database is also calcula
during recognition is based
Furthermore, models contain ma
represent, as well as optional left
model has left context, then it c
context, in other words only after
goes for right context. Therefore
neither left nor right context then i
which can be used in any context
building, always is taken the best
with the widest context fitting the r
Due to perspicuity, we talked
although those are actually subpho
term "subphoneme" we can use
synonyms. For example, phoneme
subphonemes "A0", "A1" and "A2
its own model, with correspondin
that, in the lack of sufficient nu
training base, for example for left
left contexts are being made, and f
only the right ones. It is usual to m
middle subphonemes, since the ef
voicing equalization usually go ba
If there are enough observations,
Number of subphonemes for eac
configuration file.

1.4 Label files
Training procedure requires, be
recorded sequences, file containin
was said in that audio file and
between the speech units are. T
contains information about labels
file.

A

O

J

phonemes in context
(models)
mixtures repository
T
E
K
A
L

 structure

ed among models, each
s for all mixtures it uses.
 which was present in the
ted. Duration modeling

on this information.
rk of the phoneme they
and right contexts. If the
an be used only in that
 that phoneme. The same
if the model doesn't have
t is so-called monophone
. Of course, during trellis
model that exists, the one
equired.
about phonemes so far,
nemes. Other than using

 "state", since they are
 "A" can consist of three
". Each subphoneme has
g contexts. This enables
mber of observations in
subphonemes ("A0") only
or the right subphonemes
ake right contexts for the
fects of nasalization and
ckward, and not forward.
 triphones will be made.
h phoneme is defined in

sides audio files with
g information about what
 where the boundaries
herefore, since this file

, the usual name is label

One line in our label file should look like:

"pera.wav" "gender=male;" "_ Po Pe E R A
spk _ #" 0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.0

Three wholes can be seen:
1. The name of the audio file is given under quotes.
2. Class field. Can contain arbitrary number of data given

in key=value form. It can be used for speaker data,
information about file itself (quality etc.), about
whether the file was inspected etc.

3. Labels, i.e. pronunced phonemes. The programme does
not restrict this to be strictly phonemes. As can be seen
stop “P” is divided into closure and explosion. In the
same way, the whole word could be put under one
label. The only reserved marks are “_”, which is sign
for silence and “#” which is sign for final phoneme
ending. We can also see “spk” mark which can mean
some noise originating from the speaker, but it is all up
to program user to define and use such marks. Another
restriction is that label shouldn’t end with a digit (e.g.
A1), because these marks are used internally for
phoneme division into subphonemes.

4. Borders, beginings to be exact, of corresponding
phonemes, given in seconds.

Every line in label file gives information about one audio
file, so the number of lines and number of audio files
processed is the same.

2. MODEL TRAINING

2.1 Initial training
As mentioned before, semi continuous HMM model is used,
i.e. tied mixtures approach. The same mixture can be used
by any model, and which models will actually share the
mixtures depends on initial training. There is not much
sense to share some mixture between, for example, some
fricative and a vowel. Therefore so-called phoneme groups
are defined within which phonemes can share mixtures.
Each group is disjoint with other groups. These groups can
be defined in ini file. There is another approach in which
each subphoneme represents separate group. For example,
all sequences representing “A0” will be stored in one group,
and certain models (i.e. “A0” in different contexts) will use
appropriate mixtures from that repository. Although this
second approach makes more mixtures, it much more
successful in recognition accuracy.
Descriptive version of the initial training algorithm is given
in the following.

main
{

Extract features and all contexts available in the base
For each phoneme group:
{

Collect all vectors describing any of the phonemes in
group
Vector quantisation (making mixture repository)

For each subphoneme in group:
{

 Collect all vectors describing that subphoneme
MakeMoniphone(vectors, subphoneme)

}
}

}
MakeMonophone(vectors, subphoneme)
{
 If it is left subphoneme (e.g. A0 from A0 A1 A2)
 {
 For all left contexts available in the base:
 {
 Move all vectors concerning that context

If number of moved vectors is bigger than
defined for biphonemes and number of remaining
is bigger than defined for monophones

 {
MakeLeftBiphoneme(moved vectors, left
context)

}
 else
 {
 Move vectors back
 }
 }
 }
 else (middle or right subphoneme)
 {
 For all right contexts available in the base:
 {
 Move all vectors concerning that context

If number of moved vectors is bigger than
defined for biphonemes and number of remaining
is bigger than defined for monophones

 {
MakeRightBiphoneme(moved vectors, right
contexts)

 }
 else
 {
 Move vectors back
 }
 }
 }
 MakeInitialModel(remaining vectors) - monophone
}
MakeLeftBiphoneme(vectors, left context)
{
 For all right contexts available in the base:
 {
 Move all vectors concerning that context

If number of moved vectors is bigger than defined
for triphonemes and number of remaining is bigger
than defined for biphonemes

 {
 MakeInitialModel(moved vectors) - triphoneme

 }
 else
 {
 Move vectors back
 }
 }

 MakeInitialModel(remaining vectors) - biphoneme
}
MakeRightBiphoneme(vectors, right context)
{
 ...
}
MakeInitialModel(vectors)
{
 Collect all the mixtures containing at least one vector

Calculate average probability density function value
(pdfv) of vectors for all mixtures
while (pdfv > defined value)
{

Expel mixture with smallest number of vectors, and
those vectors join other, the closest, mixtures
Calculate average probability density function value
(pdfv) of vectors for all mixtures

}
Make model from the remaining mixtures

}

In the last step when the remaining mixtures are used to
make a model, initial mixtures weights are set proportional
to number of vectors left in that mixture. It is not written in
the algorithm, but in the same procedure duration
distributions for each model are being calculated. Actual
distribution of its duration in the training database is
memorized, which will be used during recognition.
Even when we restrict phoneme groups to only one
subphoneme, still relatively unlogical mixture sharing can
arise. For example, it doesn't make much sense to share
mixtures between model S-A0 (“A0” with left context “S”)
and model E-A0. It makes sense to share mixtures between
those models which have similar context. Meaning that in
one group should go contexts made of vowels, in other
fricatives etc. In HTK this problem is solved with so-called
tree-based-clustering algorithm, but our system doesn't treat
this problem explicitly. However if we adjust feature
weights adequatly, very cosistent mixture sharing among
models can be obtained. Therefore great weights should be
given to following features: energy, two first cepstrums
(rough spectrum description which can efficiently
distinguish fricatives, vowels and nasals) and their
derivatives.
Procedure of initial training is very simple from the aspect
of programme user. User should provide the following:
1. Speech database given as audio files (besides wav

format, adc and raw are supported).
2. Label file with phoneme boundaries. We shall see later

that the procedure of bound setting can be greatly
automated.

3. Configuration file (actually, only existing should be
modified).

4. Feature extractor (or use some offered).
Initial training will make so-called dictionary file whose
default name is “schmm.dict”. It contains all data about
built models, but also the contents of used extractor script
and configuration file, so latter, during recognition, they
aren’t needed. As it could be concluded from the algorithm,
the program will build all the triphonemes with sufficient

number of occurences in base, all biphonemes, and from the
remaining vectors all monophones.
In this way set of models is obtained which can be used for
building arbitrary trellis, regardless of which phoneme
sequence is required.

2.2 ML training
In all ASR systems it is common to have some form of
maximum likelihood training after initial. In this system
expectation maximization algorithm is used [8]. The
algorithm is described in detail in mentioned literature, but
it is algorithm for CDHMM model, i.e. the case without
mixture sharing. Our algorithm is, of course, adapted to
applied SCDHMM model.

3. RECOGNITION

For the purpose of recognition the following should be
provided:
1. dictionary file which contains HMM models, obtained

by initial and ML training.
2. Recognition grammar, i.e. graph of possible words and

allowed transitions.
3. Phonetic transcriptor
4. Postprocessor

3.1 Acoustical level
As mentioned, tied mixtures model is used. As far as state
transitions, only sequential model is supported so far, so it is
possible to transfer only to the next state. This is the case
when speaking about states within one phoneme. Transfers
between different phonemes and words can be arbitrarily
complex, which will be seen later.
Standard Gaussian mixtures are used with diagonal
covarianse matrix. For state probabilities calculation two
approaches are used [2]: calculation over weighted sum of
Gaussian mixtures, and winner take all method. Second
approach has, once again, proved equally good compared to
the first one, and provides significant time savings.

3.2 State duration modeling
After state probability calculation in certain time instants,
optimal sequence is found by Viterbi algorithm. One, well
known, method for modeling state durations is over
probability for staying in current state and probability for
transition to the next state:

Figure 3.1: Classical state duration modeling

It is also known that this model gives exponential
distribution of state durations that doesn't match real,
natural distribution which would optimally model phoneme
durations.
Therefore we supported, besides this classical approach,
model which optimally models state durations. Suppose
state S1 had following duration distribution in training
database:

S1 S2

p
1-p

0.1
0.3

0.2
0.15

0.15
0.1

0
0.05
0.1

0.15
0.2

0.25
0.3

Pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8
Duration (in frames)

Figure 3.2: Duration distribution of state S1

Then it could be divided into several states:

Figure 3.3: Expanded model for duration modeling

Unmarked transition probabilities (those within same macro
state) are 1. It is obvious that this model acquires the very
distribution we had in training database. However it is also
obvious that number of states is drastically increased (for
some states up to several dozen times). These are the same
states, from acoustic point of view, but nevertheless
significantly burden Viterbi algorithm and lag recognition.
By using this model certain accuracy improvement is
gained, but accuracy vs. CPU time ratio is not very well.
Hence it should be used when CPU power is not a problem.
Transition graph shown in figure 4 strictly restricts state S1
duration from 2-7 frames. In case of relatively small
training database these strict constraints can lead to poor
recognition results, if some duration wasn't present in the
base. Therefore we left possibility for the state to last less
than minimal and more than maximal number of frames, but
probabilities for such events are set to very small values.
Although better than standard, this method still doesn't treat
another aspect of state duration modeling. Here is not
modeled joint state probability distribution, and they are
treated as statistically independent. It known that this is
wrong.
In the end the overall probability of certain state is
calculated as:

() ()∏
=

===
N

n
a

K
t ntSPSNTPP

1
11 || (3.1)

Where Pt is probability that the state S1 lasted N frames, and
Pa is acoustical probability of state S1 in instant n. If K
would equal 1, this would be classical case, in accordance
with probability theory. However, if this coefficient would
be given some values bigger than 1, it would lift weight of
duration probability compared to acoustical, and the
experiments showed that this can lead to recognition

accuracy improvement. This coefficient can be set in
configuration file.

3.3 Grammar
Our system can be used as small and medium vocabulary
speech recognizer. In these cases it is usual to use regular
grammars. Grammar can be given in two ways:
1. By using transition diagram
2. Through EBNF form (Extended Backus Naur Form)

[4].

3.3.1 Setting grammar by using transition diagram
Suppose we want to define simple grammar which will
recognize arbitrary number of digits. Graphical
representation of appropriate transition diagram would look
like:

Figure 3.4: Transition diagram for digits grammar

So both direct transitions from digit to digit, and transitions
over silence state are allowed. It is very important to define
this in order to inform program to make optimal models. If
only transitions over silence would be enabled, it would
result in shorter and faster trellis, but the system accuracy
would be considerably degraded if the speaker wouldn't
make explicit pauses between words.
This diagram is given in textual file and could look like this:

main
{
 begin -> silence;
 tisina -> digit;
 digit -> digit;
 silence -> end;
}
cifra
{
 begin -> nula;
 begin -> jedan;
 nula -> end;
 jedan -> end;
}
tisina { "_" }
nula { "NULA" }
jedan { "JEDAN" }

Identifiers "digit", "silence", "nula" and "jedan" are so-
called rules and are represented with either new transition
diagram (as in "digit") or text sequence they represent.
Reserved identifier "main" describes the main rule in
grammar. Reserved identifiers "begin" and "end" define
begining and end of each transition diagram.

S1a S1b S1c S1d S1e S1f S1g S2a
digit begin silence

end

3.3.2 Setting grammar by using EBNF
This second method is by far more used and a file which
describes it is much smaller. Let's say that we want to
define grammar for room choice by number. Suppose we
want to allow some introduction sequences such as: "Molim
Vas", "Molio bih" and "Treba mi". This is done in following
way:

intro = (MOLIM VAS)|(MOLIO BIH)|(TREBA
MI);

After that user can say the word "Sobu" (room) followed by
array of digits. Digit definition (0-3):

digit = NULA | JEDAN | DVA | TRI;

Final grammar would look like:

main = [gar][$intro][SOBU]<$digit>[gar];

Sqare brackets mean that it is optional sequence, and "<>"
brackets mean that the sequence is repeated one or more
times. "gar" is short of garbage, but it is not reserved word.
This should be model which is trained on noises which were
in training base and serves to absorb such occurences in
recognized speech.
Among already seen marks: "|", "[]" and "<>", we can use
"{}" brackets which mean that the sequence is repeated zero
or more times. Once again it is obvious that the convention
is compatible with HTK, only "<<" and ">>" symbols are
not supported.
EBNF parser internaly translates this compact record into
transition diagram, and further into complete trellis.
It should be observed that in grammar we didn't explicitly
define silence existance, neither should the transitions go
directly or over silence states (i.e. is it requested that
speaker makes explicit pauses). By setting the appropriate
parameter in ini file, recognizer can be told to do this
automaticaly. So transition between any two words can be
direct or over silence. This option gratly relieves user.

3.4 Phonetic transcriptor
It could be noted that in grammar creating we use
ortographic transcription of the words to be recognized. In
Serbian language ortographic and phonetic transcriptions
are almost the same (although even there are differences),
but for the majority of languages this is necessary step.
Phonetic trascription is conducted in two steps:
1. Lookup for the word in pronunciation dictionary.
2. Application of set of rules on ortographic transcription.

3.4.1 Word lookup
If the user wants to use this option he should provide file
with pairs of ortographic and phonetic transcriptions. For
example:

NULA N U L A
JEDAN J E Do De A N
JEDAN J E A N

Each line describes new word. In phonetic trascription
phonemes are separated with space. It can be seen that
multiple pronunciation of the same ortographic word is
supported. These cases are, later, on the grammar level
separated into independent branches for recognition. During
detranscription they are returned to the same ortographic
transcription, regardless of which version of pronunciation
algorithm recognized.
From the given example of the pronunciation dictionary we
can see that we separated stops (and africates) into closure
and explosion, which is possible but not mandatory
approach.

3.4.2 Set of rules application
If we are talking about language with very strict rules of
ortographic to phonetic conversion, foregoing approach is
too spacious and demands unnecessary making of large
pronunciation file. In these cases it is more convenient to
apply certain set of rules to ortographic text and obtain
phonetic transcription. Here is how it could look like for
Serbian language (short version):

vowels { A E I O U }
rules
{
 // majica -> maica
 vowel J I -> vowel I;

// petnaest -> petnajst
N A E S T -> N A J S T;
// separating stops and affricates
// into closure and explosion
P -> Po Pe;
C -> Co Ce;
...

}

All geven rules are applied to word in ortographic
transcription in a given order (important in some cases).
With such set of rules even some more complicated
languages could be described, and exceptions could be put
into pronunciation dictionary. And that's how it works: if
the word wasn't in the pronunciation dictionary, rules are
applied to it.
One drawbac of this approach is that it doesn't support
multiple pronunciations of the same word. If we want that
dictionary must be used.

3.5 Detranscription
Detranscription is also an interesting process following the
recognition. Suppose recognizer gives following sequence:

N U L A J E A N Do De V A

Of course, user will be interested in words in the original,
ortographic transcription, conveniently separated, i.e.:

NULA JEDAN DVA

In order to obtain this sequence it is necessary to apply set
of rules to phonetic trascription, which could, in this case,
look like:

rules
{
 J E Do De A N -> "JEDAN ";
 Do De V A -> "DVA ";
 J E A N -> "JEDAN ";
 N U L A -> "NULA ";
}

There is a little problem here if we have word which is
subset of the bigger one (e.g. if we had word "JE" in this
case). If that "smaller" rule is applied first to word, it could
leave part of word in phonetic state which will lead to error.
That is why the preceding rules are sorted by the size of the
phonetic part.
This set of rules is generated automaticaly, during grammar
transcription, so user need not to worry about that.

3.6 Postprocesor
After detranscription one possible result would be:

_ NULA _ gar _ JEDAN _ gar _

User usually isn't interested in information about where the
silences were and did the noises occur, so he would have to
clean received sequence on his own. Therefore we provided
option which does this before returning result to the user
application. User should only define few simple rules which
would do that, and in this case the could look like:

rules
{
 _ ->;
 gar ->;
}

4. AUTOMATIC LABELING

As once mentionet, part of the programme for training
requires presence of labeled audio sequences, i.e. label file
with correctly set boundarioes between speech units. It is
obvious that this would require huge amount of work if all
done by hand. Therefor we provided option for automatic
labeling, if some initial acoustic models are provided
(dictionary file) and a label file with correct phonetic
transcription. This is done by building trellis which would
force recognizer to run through all phonemes in label, and
then let Viterbi algorithm to find the optimal path. Obtained
segmentation is written into the file.
Of course, it isn't hard to notice "small" paradox: where did
we get dictionary file? Well, some initial labeling would
have to be done by hand. By using relatively small number
of labels done by hand some initial model can be built. It
will be relatively poor, but can serve to automate process of
labeling in the next iteration. Then we can proceed in
several ways.
One way is to perform automatic labeling on the whole
base, and then to train the system with those labels,
discarding the outliers during the training. In the next
iteration we do the same, but with the new model.

Second approach is to notify the usual problems after first
iteration of automatic labelation, i.e. spots where
programme makes mistakes. Then label by hand another
part of base with sequences containing problematic
phoneme combinations. Then train the model on the
extended subset etc. Some combination of these two
approaches is possible.
During automatic labeling several details should be
observed:
• Models should have small number of mixtures (not

more than two).
• It is wise to decrease frame_duration parameter in

order to obtain preciser segmentation.
• Speakers should be divided into several groups, at least

by gender.
• For duration modeling it is better to use second

approach, using real duration probability.

5. IN THE RESEARCH PHASE

All mentiond methods are completely debuged, tested and
operational. Besides those there are several more ways of
training and recognition which hadn't been fully
implemented or sufficiently tested until now. Nevertheless
we will name the few.

5.1 Corrective training
Corrective or discriminative training should additionaly
improve modles obtained by ML training, in sense that they
are more pulled apart, and to make better distiction between
different models. Used algorithm is very similar to that
applied in [2], with the difference that we compare
phonemes in context, and not complete words. This leads to
number of new problems:
1. We can't make distinction between two models, if they

have subphonemes with the sam origin as their basis
(e.g. A0 and A1).

2. Even if basis phonemes don't have the same origin
some phoneme can be very similar to another. For
example model A2+M (right subphoneme from A
whose right context is M) and model A-M0 (left
subphoneme from M whose left context is A) look
alike very much and describe parts of signal which
often overlap.

3. Closures of all unvoiced stops and africates have
practicaly the same features. The same goes for
closures of voiced consonants.

4. Depending on channel and a speaker many other
phonemes can look alike. For example in telephone
channel, voiced - unvoiced consonant pairs are very
similar due to the lack of lower 300Hz. If the speaker
pronunced in some atipical and/or mellow way, some
phonemes could look alike for which we would never
say that they are similar. For example, "D" in mellowly
pronunced word "JEDAN", can look like "R".

5. When all mentioned considered we come to a
conclusion that it is sensible to make additional
distincion only between models which already differ
significantly, which puts question over the whole idea.

Due to given reasons it will be necessary to reinvestigate
phoneme level distinction approach. Maybe it will be
implemented for certain grammars, i.e. make distinction
between words, which makes more sense.

5.2 Word spotting or wild-cards usage
In this terminology wild-card would mean model which
could describe any phoneme, sufficiently well, but its
acoustic probability should be less than that of the correct
model. If we would have such moedl at a disposal we could
make the following grammar:

Figure 5.1: Transition diagram of the word-spotter

If any of the keywords is pronunced in test sequence,
optimal path through such grammar would be over that
keyword and it would be recognized ("spotted"). If no
keyword is spoken, the best probability would have staying
in wild-card (*) state.
Option which makes such models is implemented, but that
part is still in testing phase.

CONCLUSION
In this paper we described one complete programme
package for continuous speech recognition, based on
phoneme in context recognition. Many standard methods for
training and recognition are applied, and some new are
tested, which represent author's scientific contribution to
this field. In many ways this package is compatible or even
similar to well known HTK. Results obtained by using this
package are not only comparable to those obtained by HTK,
but surpass them. The whole package is written in C++
programming language, in comprehensible and elegant
form, but also highly optimized, where necessary, so it is
ready for commercial use.

LITERATURE
[1] D. Pekar, R. Obradović, C++ Library for Digital

Signal Processing - slib, Telfor, Belgrade, November
2001.

[2] D. Pekar, R. Obradović, V. Delić, Connected Words
Recognition, Telfor, Belgrade, November 2001.

[3] R. Obradović, D. Pekar, S. Krčo, V. Delić, V. Šenk, A
Robust Speaker Independent CPU Based Speech
Recognition System, Eurospeech, Vol.6. pp. 2881-2884,
Budapest, September 1999.

[4] S. Young, D. Kershaw, J. Odell, D. Ollason, V.
Valtchev, P. Woodland, The HTK Book, 1995-1999,
Microsoft Corporation

[5] Rabiner, B.H. Juang, Fundamentals of Speech
Recognition, Prentice-Hall, New Jersey, 1993.

[6] Mikko Kurimo, Application of Learning Vector
Quantization and Self-Organizing Maps for training
continuous density and semi-continuous Markov

models, Licentiate's Thesis, Helsinki University of
Technology, 1994.

[7] J.C. Junqua, J.P. Haton, Robustness In Automatic
Speech Recognition, Kluwer, 1993.

[8] Perry Moerland, Mixture Models for Unsupervised and
Supervised Learning, Ph.D. thesis, Swiss Federal
Institute of Technology, 2000.

[9] S. Krčo Apendage to the Methods of Isolated Words
Recognition, ETF, University of Belgrade, 1997.

[10] N. Draper, H. Smith, Applied Regression Analysis,
Wiley, 1981.

[11] T. Back, H. P. Schwefel, An Overview of Evolutionary
Algorithms for Parameter Optimization, University of
Dortmund, 1993.

[12] P. Yao, R. Leinecker, Visual C++ 6 Bible, IDG Books
Worldwide, Foster City, USA, 1999.

[13] A. Stepanov, Standard Template Library, Hewlet
Packard, 1995.

*

keyword 1

keyword 2

keyword 3

*

