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Abstract 

This paper shortly presents program package for continuous 
speech recognition which is, so far, successful with small 
and medium dictionaries. Package is very large because it 
contains both modules for training and recognition. Each of 
these modules consists of several submodules and variety of 
classes and functions. It includes two libraries developed in 
last two years by the same authors. Those are slib library for 
digital signal processing [1] and general purpose an_misc 
library. Program package is product of several years of 
work on the automatic speech recognition topic, starting 
from isolated words recognition, over connected words 
recognition, to continuous speech recognition using 
phoneme in context, which this system is based on. Since 
the system is based on phoneme in context recognition, it 
supports recognition of any set of words (grammar) which 
needs to be recognized. Changing grammar requires no 
additional training or speech database recording, but only 
building of a new trellis, which takes few seconds. The 
whole program is written in C++ programming language, it 
is fully developed by the authors, which means that it does 
not rely on any third party specialized library. Software is in 
its largest part independent of the platform or the operating 
system (except for the part which requires communication 
with hardware). 
 
INTRODUCTION 
Because of the size of the package, this paper will be 
divided into several parts, although even then there won't be 
enough space to fully describe all aspects of the system 
functioning. Tutorial will be given through the phases of 
training and testing which should be followed in the process 
of creating one ASR system. These phases comprise: 
• creation and/or adjustment of the global ini file, 
• feature extraction, 
• label file creation, 
• initial training, 
• ML training, 
• grammar setting, 
• recognition. 
 
1. GENERAL INFORMATION 
 
1.1 Configuration (ini) file 
In this text file user can define all the parameters which are 
important both for training and recognition. It is not 
classical ini file, it has somewhat different structure. List 
and vector structures are supported, so we can define data 
structure of arbitrary complexity. This is enabled by class 

sobj as well as appropriate parser. Here is a short example 
of how can data look like in ini file: 
 
{ 
// features data 
 samples_per_second = 16000.0, 
 window_duration_ms = 30.0, 
 frame_duration_ms = 10.0, 
 
 derivatives_data = 
 [ 
  { window_ms = 30.0, weight = 2.0 } 
  { window_ms = 50.0, weight = 2.0 }
 ] 
 cache_dynamic_features = 0 // false 
} 
 
There are three levels of parameters configuring. The first is 
the default level. These values are defined in the source 
code and are diplayed every time the program is started. 
The second level is ini file in which we can override any 
default value. The third level is command line in which we 
can define new values, which will override those from the 
previous levels. For example, if command line looks like 
this: 
 
csr test -cdf 1 
 
switch -cdf enables setting variable 
cache_dynamic_features to 1, even it has been set to 0 in 
config file. Not all of the variables have the ability to be 
altered from the command line (switches aren't provided), 
only those for which it makes sense. 
 
1.2 Feature extraction 
Feature extraction is based on previously mentioned library 
slib and its script version slib_scipt. Feature extractor is 
given in textual form, where are described all the blocks 
used for feature calculation. User can choose among wide 
range of usually used features such as: cepstral coefficients, 
(several kinds), energy and log energy, zero crossing rate, 
pitch, degre of voicing, as well as derivatives of these static 
features. So, features are not fixed in source code, and user 
has oportunity to choose desired features. Since it is rather 
complex to create whole script file for feature extraction, 
several most used combinations are offered. User can use 
those files or modify them to match his need. 
Program supports so-called feature caching on hard disk. It 
is well known that the process of feature extraction is rather 
time consuming task, but when these features are once 
calculated it is usually unnecessary to alter them during 



training and testing. Therefore it is convenient to store 
extracted features to disk and simply to load them in the 
next iteration of training. This task is performed 
automaticaly, but the user can turn it off. Features are 
cached in directory which name is the function of extractor 
name and its content. Every "wav" file has corresponding 
cached ("mfc") file. Directory structure is the same as the 
one of the speech database. We emphasise that the name of 
this directory is function not only of the name of the used 
extractor but also of its content (hash value is calculated), as 
well as several other parameters which can influence 
features shape, so it is impossible for program to load 
cached features if user changed something in the way they 
are calculated. All these files and directories are stored in 
directory "cache", so that unnecessary files can be manualy 
deleted. 
It is interesting that the features are being saved on disk in 
format which is compatible with HTK [4] parameter files. 
This is done delibarately  because of the two things. Firstly 
we wanted to check how do our features function on the 
system trained with HTK. We also wanted to see eventual 
advantages or drawbacks of our algorithm for phoneme in 
context training compared to HTK. 
Delta features can be calculated in two ways. They can be 
calculated directly, in extractor, using slib blocks, which is 
prefered approach if we want to use our system in some on-
line recognition application (meaning that there isn't whole 
file at disposal, but the samples gradually arrive). Second 
approach is to calculate them afterwards in main program. If 
the user wants this, he should define the number of 
derivatives and each derivative window size in ini file. This 
approach can save disk space if we are using caching, 
because the files will be three times smaller (if two 
derivatives are used). In the second case derivatives are 
being calculated "on the fly", which is not time consuming. 
Energy normalization can also be performed in two ways, 
similar to derivatives calculation. If we need on-line 
recognizer, slib blocks should be used, when normalization 
is performed in so-called moving window (SMovingMax 
and SMovingMin blocks) with some, configurable delay. If 
we process signal in file, much better approach if file level 
normalization. This is also specified in ini file. 
Well known method for robust, channel independent, 
cepstral coefficients is supported, so-called cepstral mean 
subtraction [6]. It can also be performed "on the fly" or on 
the file level. 
After extraction features can be dividen into several data 
streams. Which features would belong to which stream and 
how many of them is going to be is totaly arbitrary, and is 
given in ini file. For building continuous density HMM 
systems, this facility is of limited use and by far the most 
common case is that of a single data stream. However, when 
building tied-mixture systems or when using vector 
quantisation, a more uniform coverage of the acoustic space 
is obtained by separating energy, deltas, etc., into separate 
streams. 
In the same structure as the data streams, feature weights 
are given. This information is very important in initial 
training and vector quantisation, but once the variances are 
calculated it becomes irrelevant. 
 

1.3 Model structure 
Our system uses so-called semi continuous HMM [6] 
approach, which means the following: certain phoneme in 
context models don't have their, and only their, mixtures, 
but there is mixture repository which contains all the 
mixtures obtained in training, and every model has a list of 
refereces to the belonging mixtures. This approach offers 
great time savings during recognition, because the number 
of mixtures to be calculated is greatly reduced (depending 
on the grammar). 
 

 
Figure 1.1: Model
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One line in our label file should look like: 
 
"pera.wav" "gender=male;" "_ Po Pe E R A 
spk _ #" 0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1.0 
 
Three wholes can be seen: 
1. The name of the audio file is given under quotes. 
2. Class field. Can contain arbitrary number of data given 

in key=value form. It can be used for speaker data, 
information about file itself (quality etc.), about 
whether the file was inspected etc. 

3. Labels, i.e. pronunced phonemes. The programme does 
not restrict this to be strictly phonemes. As can be seen 
stop “P” is divided into closure and explosion. In the 
same way, the whole word could be put under one 
label. The only reserved marks are “_”, which is sign 
for silence and “#” which is sign for final phoneme 
ending. We can also see “spk” mark which can mean 
some noise originating from the speaker, but it is all up 
to program user to define and use such marks. Another 
restriction is that label shouldn’t end with a digit (e.g. 
A1), because these marks are used internally for 
phoneme division into subphonemes. 

4. Borders, beginings to be exact, of corresponding 
phonemes, given in seconds. 

Every line in label file gives information about one audio 
file, so the number of lines and number of audio files 
processed is the same. 
 
2. MODEL TRAINING 
 
2.1 Initial training 
As mentioned before, semi continuous HMM model is used, 
i.e. tied mixtures approach. The same mixture can be used 
by any model, and which models will actually share the 
mixtures depends on initial training. There is not much 
sense to share some mixture between, for example, some 
fricative and a vowel. Therefore so-called phoneme groups 
are defined within which phonemes can share mixtures. 
Each group is disjoint with other groups. These groups can 
be defined in ini file. There is another approach in which 
each subphoneme represents separate group. For example, 
all sequences representing “A0” will be stored in one group, 
and certain models (i.e. “A0” in different contexts) will use 
appropriate mixtures from that repository. Although this 
second approach makes more mixtures, it much more 
successful in recognition accuracy. 
Descriptive version of the initial training algorithm is given 
in the following. 
 
main 
{ 

Extract features and all contexts available in the base 
For each phoneme group: 
{ 

Collect all vectors describing any of the phonemes in 
group 
Vector quantisation (making mixture repository) 

For each subphoneme in group: 
{ 

   Collect all vectors describing that subphoneme 
MakeMoniphone(vectors, subphoneme) 

} 
} 

} 
MakeMonophone(vectors, subphoneme) 
{ 
 If it is left subphoneme (e.g. A0 from A0 A1 A2) 
 { 
  For all left contexts available in the base: 
  { 
   Move all vectors concerning that context 

If number of moved vectors is bigger than 
defined for biphonemes and number of remaining 
is bigger than defined for monophones 

   { 
MakeLeftBiphoneme(moved vectors, left 
context) 

} 
   else 
   { 
    Move vectors back 
   } 
  } 
 } 
 else (middle or right subphoneme) 
 { 
  For all right contexts available in the base: 
  { 
   Move all vectors concerning that context 

If number of moved vectors is bigger than 
defined for biphonemes and number of remaining 
is bigger than defined for monophones 

   { 
MakeRightBiphoneme(moved vectors, right 
contexts) 

   } 
   else 
   { 
    Move vectors back 
   } 
  } 
 } 
 MakeInitialModel(remaining vectors) - monophone 
} 
MakeLeftBiphoneme(vectors, left context) 
{ 
 For all right contexts available in the base: 
 { 
  Move all vectors concerning that context 

If number of moved vectors is bigger than defined 
for triphonemes and number of remaining is bigger 
than defined for biphonemes 

  { 
 MakeInitialModel(moved  vectors) - triphoneme 

  } 
  else 
  { 
   Move vectors back 
  } 
 } 



 MakeInitialModel(remaining vectors) - biphoneme 
} 
MakeRightBiphoneme(vectors, right context) 
{ 
 ... 
} 
MakeInitialModel(vectors) 
{ 
 Collect all the mixtures containing at least one vector 

Calculate average probability density function value 
(pdfv) of vectors for all mixtures 
while (pdfv > defined value) 
{ 

Expel mixture with smallest number of vectors, and 
those vectors join other, the closest, mixtures 
Calculate average probability density function value 
(pdfv) of vectors for all mixtures 

} 
Make model from the remaining mixtures 

} 
 
In the last step when the remaining mixtures are used to 
make a model, initial mixtures weights are set proportional 
to number of vectors left in that mixture. It is not written in 
the algorithm, but in the same procedure duration 
distributions for each model are being calculated. Actual 
distribution of its duration in the training database is 
memorized, which will be used during recognition. 
Even when we restrict phoneme groups to only one 
subphoneme, still relatively unlogical mixture sharing can 
arise. For example, it doesn't make much sense to share 
mixtures between model S-A0 (“A0” with left context “S”) 
and model E-A0. It makes sense to share mixtures between 
those models which have similar context. Meaning that in 
one group should go contexts made of vowels, in other 
fricatives etc. In HTK this problem is solved with so-called 
tree-based-clustering algorithm, but our system doesn't treat 
this problem explicitly. However if we adjust feature 
weights adequatly, very cosistent mixture sharing among 
models can be obtained. Therefore great weights should be 
given to following features: energy, two first cepstrums 
(rough spectrum description which can efficiently 
distinguish fricatives, vowels and nasals) and their 
derivatives. 
Procedure of initial training is very simple from the aspect 
of programme user. User should provide the following: 
1. Speech database given as audio files (besides wav 

format, adc and raw are supported). 
2. Label file with phoneme boundaries. We shall see later 

that the procedure of bound setting can be greatly 
automated. 

3. Configuration file (actually, only existing should be 
modified). 

4. Feature extractor (or use some offered). 
Initial training will make so-called dictionary file whose 
default name is “schmm.dict”. It contains all data about 
built models, but also the contents of used extractor script  
and configuration file, so latter, during recognition, they 
aren’t needed. As it could be concluded from the algorithm, 
the program will build all the triphonemes with sufficient 

number of occurences in base, all biphonemes, and from the 
remaining vectors all monophones. 
In this way set of models is obtained which can be used for 
building arbitrary trellis, regardless of which phoneme 
sequence is required. 
 
2.2 ML training 
In all ASR systems it is common to have some form of 
maximum likelihood training after initial. In this system 
expectation maximization algorithm is used [8]. The 
algorithm is described in detail in mentioned literature, but 
it is algorithm for CDHMM model, i.e. the case without 
mixture sharing. Our algorithm is, of course, adapted to 
applied SCDHMM model. 
 
3. RECOGNITION 
 
For the purpose of recognition the following should be 
provided: 
1. dictionary file which contains HMM models, obtained 

by initial and ML training. 
2. Recognition grammar, i.e. graph of possible words and 

allowed transitions. 
3. Phonetic transcriptor 
4. Postprocessor 
 
3.1 Acoustical level 
As mentioned, tied mixtures model is used. As far as state 
transitions, only sequential model is supported so far, so it is 
possible to transfer only to the next state. This is the case 
when speaking about states within one phoneme. Transfers 
between different phonemes and words can be arbitrarily 
complex, which will be seen later. 
Standard Gaussian mixtures are used with diagonal 
covarianse matrix. For state probabilities calculation two 
approaches are used [2]: calculation over weighted sum of 
Gaussian mixtures, and winner take all method. Second 
approach has, once again, proved equally good compared to 
the first one, and provides significant time savings. 
 
3.2 State duration modeling 
After state probability calculation in certain time instants, 
optimal sequence is found by Viterbi algorithm. One, well 
known, method for modeling state durations is over 
probability for staying in current state and probability for 
transition to the next state: 
 

 
Figure 3.1: Classical state duration modeling 

 
It is also known that this model gives exponential 
distribution of state durations that doesn't match real, 
natural distribution which would optimally model phoneme 
durations. 
Therefore we supported, besides this classical approach, 
model which optimally models state durations. Suppose 
state S1 had following duration distribution in training 
database: 
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Figure 3.2: Duration distribution of state S1 

 
Then it could be divided into several states: 
 

 
Figure 3.3: Expanded model for duration modeling 

 
Unmarked transition probabilities (those within same macro 
state) are 1. It is obvious that this model acquires the very 
distribution we had in training database. However it is also 
obvious that number of states is drastically increased (for 
some states up to several dozen times). These are the same 
states, from acoustic point of view, but nevertheless 
significantly burden Viterbi algorithm and lag recognition. 
By using this model certain accuracy improvement is 
gained, but accuracy vs. CPU time ratio is not very well. 
Hence it should be used when CPU power is not a problem. 
Transition graph shown in figure 4 strictly restricts state S1 
duration from 2-7 frames. In case of relatively small 
training database these strict constraints can lead to poor 
recognition results, if some duration wasn't present in the 
base. Therefore we left possibility for the state to last less 
than minimal and more than maximal number of frames, but 
probabilities for such events are set to very small values. 
Although better than standard, this method still doesn't treat 
another aspect of state duration modeling. Here is not 
modeled joint state probability distribution, and they are 
treated as statistically independent. It known that this is 
wrong. 
In the end the overall probability of certain state is 
calculated as: 
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Where Pt is probability that the state S1 lasted N frames, and 
Pa is acoustical probability of state S1 in instant n. If K 
would equal 1, this would be classical case, in accordance 
with probability theory. However, if this coefficient would 
be given some values bigger than 1, it would lift weight of 
duration probability compared to acoustical, and the 
experiments showed that this can lead to recognition 

accuracy improvement. This coefficient can be set in 
configuration file. 
 
3.3 Grammar 
Our system can be used as small and medium vocabulary 
speech recognizer. In these cases it is usual to use regular 
grammars. Grammar can be given in two ways: 
1. By using transition diagram 
2. Through EBNF form (Extended Backus Naur Form) 

[4]. 
 
3.3.1 Setting grammar by using transition diagram 
Suppose we want to define simple grammar which will 
recognize arbitrary number of digits. Graphical 
representation of appropriate transition diagram would look 
like: 
 

 
Figure 3.4: Transition diagram for digits grammar 

 
So both direct transitions from digit to digit, and transitions 
over silence state are allowed. It is very important to define 
this in order to inform program to make optimal models. If 
only transitions over silence would be enabled, it would 
result in shorter and faster trellis, but the system accuracy 
would be considerably degraded if the speaker wouldn't 
make explicit pauses between words. 
This diagram is given in textual file and could look like this: 
 
main 
{ 
 begin -> silence; 
 tisina -> digit; 
 digit -> digit; 
 silence -> end; 
} 
cifra 
{ 
 begin -> nula; 
 begin -> jedan; 
 nula -> end; 
 jedan -> end; 
} 
tisina { "_" } 
nula { "NULA" } 
jedan { "JEDAN" } 
 
Identifiers "digit", "silence", "nula" and "jedan" are so-
called rules and are represented with either new transition 
diagram (as in "digit") or text sequence they represent. 
Reserved identifier "main" describes the main rule in 
grammar. Reserved identifiers "begin" and "end" define 
begining and end of each transition diagram. 
 
 

S1a S1b S1c S1d S1e S1f S1g S2a 
digit begin silence 

end 



3.3.2 Setting grammar by using EBNF 
This second method is by far more used and a file which 
describes it is much smaller. Let's say that we want to 
define grammar for room choice by number. Suppose we 
want to allow some introduction sequences such as: "Molim 
Vas", "Molio bih" and "Treba mi". This is done in following 
way: 
 
intro = (MOLIM VAS)|(MOLIO BIH)|(TREBA 
MI); 
 
After that user can say the word "Sobu" (room) followed by 
array of digits. Digit definition (0-3): 
 
digit = NULA | JEDAN | DVA | TRI; 
 
Final grammar would look like: 
 
main = [gar][$intro][SOBU]<$digit>[gar]; 
 
Sqare brackets mean that it is optional sequence, and "<>" 
brackets mean that the sequence is repeated one or more 
times. "gar" is short of garbage, but it is not reserved word. 
This should be model which is trained on noises which were 
in training base and serves to absorb such occurences in 
recognized speech. 
Among already seen marks: "|", "[]" and "<>", we can use 
"{}" brackets which mean that the sequence is repeated zero 
or more times. Once again it is obvious that the convention 
is compatible with HTK, only "<<" and ">>" symbols are 
not supported. 
EBNF parser internaly translates this compact record into 
transition diagram, and further into complete trellis. 
It should be observed that in grammar we didn't explicitly 
define silence existance, neither should the transitions go 
directly or over silence states (i.e. is it requested that 
speaker makes explicit pauses). By setting the appropriate 
parameter in ini file, recognizer can be told to do this 
automaticaly. So transition between any two words can be 
direct or over silence. This option gratly relieves user. 
 
3.4 Phonetic transcriptor 
It could be noted that in grammar creating we use 
ortographic transcription of the words to be recognized. In 
Serbian language ortographic and phonetic transcriptions 
are almost the same (although even there are differences), 
but for the majority of languages this is necessary step. 
Phonetic trascription is conducted in two steps: 
1. Lookup for the word in pronunciation dictionary. 
2. Application of set of rules on ortographic transcription. 
 
3.4.1 Word lookup 
If the user wants to use this option he should provide file 
with pairs of ortographic and phonetic transcriptions. For 
example: 
 
NULA  N U L A 
JEDAN J E Do De A N 
JEDAN J E A N 
 
 

Each line describes new word. In phonetic trascription 
phonemes are separated with space. It can be seen that 
multiple pronunciation of the same ortographic word is 
supported. These cases are, later, on the grammar level 
separated into independent branches for recognition. During 
detranscription they are returned to the same ortographic 
transcription, regardless of which version of pronunciation 
algorithm recognized. 
From the given example of the pronunciation dictionary we 
can see that we separated stops (and africates) into closure 
and explosion, which is possible but not mandatory 
approach. 
 
3.4.2 Set of rules application 
If we are talking about language with very strict rules of 
ortographic to phonetic conversion, foregoing approach is 
too spacious and demands unnecessary making of large 
pronunciation file. In these cases it is more convenient to 
apply certain set of rules to ortographic text and obtain 
phonetic transcription. Here is how it could look like for 
Serbian language (short version): 
 
vowels { A E I O U } 
rules 
{ 
 // majica -> maica 
 vowel J I -> vowel I; 

// petnaest -> petnajst 
N A E S T -> N A J S T; 
// separating stops and affricates 
// into closure and explosion 
P -> Po Pe; 
C -> Co Ce; 
... 

} 
 
All geven rules are applied to word in ortographic 
transcription in a given order (important in some cases). 
With such set of rules even some more complicated 
languages could be described, and exceptions could be put 
into pronunciation dictionary. And that's how it works: if 
the word wasn't in the pronunciation dictionary, rules are 
applied to it. 
One drawbac of this approach is that it doesn't support 
multiple pronunciations of the same word. If we want that 
dictionary must be used. 
 
3.5 Detranscription 
Detranscription is also an interesting process following the 
recognition. Suppose recognizer gives following sequence: 
 
N U L A J E A N Do De V A 
 
Of course, user will be interested in words in the original, 
ortographic transcription, conveniently separated, i.e.: 
 
NULA JEDAN DVA 
 
In order to obtain this sequence it is necessary to apply set 
of rules to phonetic trascription, which could, in this case, 
look like: 



 
rules 
{ 
 J E Do De A N -> "JEDAN "; 
 Do De V A -> "DVA "; 
 J E A N -> "JEDAN "; 
 N U L A -> "NULA "; 
} 
 
There is a little problem here if we have word which is 
subset of the bigger one (e.g. if we had word "JE" in this 
case). If that "smaller" rule is applied first to word, it could 
leave part of word in phonetic state which will lead to error. 
That is why the preceding rules are sorted by the size of the 
phonetic part. 
This set of rules is generated automaticaly, during grammar 
transcription, so user need not to worry about that. 
 
3.6 Postprocesor 
After detranscription one possible result would be: 
 
_ NULA _ gar _ JEDAN _ gar _ 
 
User usually isn't interested in information about where the 
silences were and did the noises occur, so he would have to 
clean received sequence on his own. Therefore we provided 
option which does this before returning result to the user 
application. User should only define few simple rules which 
would do that, and in this case the could look like: 
 
rules 
{ 
 _ ->; 
 gar ->; 
} 
 
4. AUTOMATIC LABELING 
 
As once mentionet, part of the programme for training 
requires presence of labeled audio sequences, i.e. label file 
with correctly set boundarioes between speech units. It is 
obvious that this would require huge amount of work if all 
done by hand. Therefor we provided option for automatic 
labeling, if some initial acoustic models are provided 
(dictionary file) and a label file with correct phonetic 
transcription. This is done by building trellis which would 
force recognizer to run through all phonemes in label, and 
then let Viterbi algorithm to find the optimal path. Obtained 
segmentation is written into the file. 
Of course, it isn't hard to notice "small" paradox: where did 
we get dictionary file? Well, some initial labeling would 
have to be done by hand. By using relatively small number 
of labels done by hand some initial model can be built. It 
will be relatively poor, but can serve to automate process of 
labeling in the next iteration. Then we can proceed in 
several ways. 
One way is to perform automatic labeling on the whole 
base, and then to train the system with those labels, 
discarding the outliers during the training. In the next 
iteration we do the same, but with the new model. 
 

 
Second approach is to notify the usual problems after first 
iteration of automatic labelation, i.e. spots where 
programme makes mistakes. Then label by hand another 
part of base with sequences containing problematic 
phoneme combinations. Then train the model on the 
extended subset etc. Some combination of these two 
approaches is possible. 
During automatic labeling several details should be 
observed: 
• Models should have small number of mixtures (not 

more than two). 
• It is wise to decrease frame_duration parameter in 

order to obtain preciser segmentation. 
• Speakers should be divided into several groups, at least 

by gender. 
• For duration modeling it is better to use second 

approach, using real duration probability. 
 
5. IN THE RESEARCH PHASE 
 
All mentiond methods are completely debuged, tested and 
operational. Besides those there are several more ways of 
training and recognition which hadn't been fully 
implemented or sufficiently tested until now. Nevertheless 
we will name the few. 
 
5.1 Corrective training 
Corrective or discriminative training should additionaly 
improve modles obtained by ML training, in sense that they 
are more pulled apart, and to make better distiction between 
different models. Used algorithm is very similar to that 
applied in [2], with the difference that we compare 
phonemes in context, and not complete words. This leads to 
number of new problems: 
1. We can't make distinction between two models, if they 

have subphonemes with the sam origin as their basis 
(e.g. A0 and A1). 

2. Even if basis phonemes don't have the same origin 
some phoneme can be very similar to another. For 
example model A2+M (right subphoneme from A 
whose right context is M) and model A-M0 (left 
subphoneme from M whose left context is A) look 
alike very much and describe parts of signal which 
often overlap. 

3. Closures of all unvoiced stops and africates have 
practicaly the same features. The same goes for 
closures of voiced consonants. 

4. Depending on channel and a speaker many other 
phonemes can look alike. For example in telephone 
channel, voiced - unvoiced consonant pairs are very 
similar due to the lack of lower 300Hz. If the speaker 
pronunced in some atipical and/or mellow way, some 
phonemes could look alike for which we would never 
say that they are similar. For example, "D" in mellowly 
pronunced word "JEDAN", can look like "R". 

5. When all mentioned considered we come to a 
conclusion that it is sensible to make additional 
distincion only between models which already differ 
significantly, which puts question over the whole idea. 



Due to given reasons it will be necessary to reinvestigate 
phoneme level distinction approach. Maybe it will be 
implemented for certain grammars, i.e. make distinction 
between words, which makes more sense. 
 
5.2 Word spotting or wild-cards usage 
In this terminology wild-card would mean model which 
could describe any phoneme, sufficiently well, but its 
acoustic probability should be less than that of the correct 
model. If we would have such moedl at a disposal we could 
make the following grammar: 
 

 
Figure 5.1: Transition diagram of the word-spotter 

 
If any of the keywords is pronunced in test sequence, 
optimal path through such grammar would be over that 
keyword and it would be recognized ("spotted"). If no 
keyword is spoken, the best probability would have staying 
in wild-card (*) state. 
Option which makes such models is implemented, but that 
part is still in testing phase. 
 
CONCLUSION 
In this paper we described one complete programme 
package for continuous speech recognition, based on 
phoneme in context recognition. Many standard methods for 
training and recognition are applied, and some new are 
tested, which represent author's scientific contribution to 
this field. In many ways this package is compatible or even 
similar to well known HTK. Results obtained by using this 
package are not only comparable to those obtained by HTK, 
but surpass them. The whole package is written in C++ 
programming language, in comprehensible and elegant 
form, but also highly optimized, where necessary, so it is 
ready for commercial use. 
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