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Abstract

The investigation of some well known noise estimation techniques is presented.
The estimated noise is applied in our noise suppression system that is generally used
for speech recognition tasks. Moreover, the algorithms are developed to take part
in front-end of Distributed Speech Recognition (DSR). Therefore we have proposed
some modifications of noise estimation techniques that are quickly adaptable on
varying noise and do not need so much information from past segments. We also
minimized the algorithmic delay. The robustness of proposed algorithms were
tested under several noisy conditions.

1 Introduction

The error rate of speech recognition systems increases dramatically in the presence of
noise. It is therefore very convenient to use some noise reduction technique which can
operate under adverse conditions. Often used speech enhancement systems based on
spectral decomposition such as Wiener filtering or Spectral subtraction rely on an accu-
rate estimation of the background noise energy as well as signal-to-noise ratio (SNR) in
the various frequency bands.

A number of approaches were proposed to estimate the noise without the need for
speech/pause detector. However the implementation of the front-end DSR system is lim-
ited by technical constraints, e.g. memory requirements, algorithmic delay, complexity.
Since this limitation is given a-priori, we were supposed to come up with noise estimation
algorithm that would satisfy the requirements and that would be the best for our noise
suppression algorithm.
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2 Experimental setup

The noise suppression algorithms proposed for speech recognition system were tested on
three SpeechDat - Car (SDC) databases used for Advanced DSR Front-End Evaluation:
Italian SDC [1], Spanish SDC [2], and Finish SDC. The recordings were taken from the
close-talk microphone and from one of the hands-free microphones. Data were recorded
at 16kHz, but downsampled to 8kHz. The databases contain various utterances of digits.

During experiments, the robustness was tested under three different training condi-
tions. For each of these three conditions 70% of the files were used for training, 30% for
testing.

e Well-matched condition (wm): All the files (close-talk and hands-free micro-
phones) were used for training and testing.

e Medium mis-matched condition (mm): Only recordings made with the hands-
free microphone were used for training and testing.

e Highly mis-matched condition (hm): For the training only close-talk micro-
phone recordings were used, whereas for testing the hands-free files were taken.

3 Noise suppression system

Many of noise suppression schemes exist. Practically all of them share the common goal
of attempting to increase the signal-to-noise ratio (SNR). They differ in complexity and
suitability for real-time processing. The noise suppression algorithm [3], which is be-
ing used in our feature extraction, has been derived from standard Spectral subtraction
and Wiener filtering. The algorithm supposes that the noise and the speech signal are
uncorrelated. Moreover we assume that their power spectral contributions are additive:
| Xk[n]|> = |Yi[n]|> + | Nk[n]|?, where |Yi[n]|*> denotes the clean speech power spectrum
at the given time n in the frequency subband k, and |Ng[n]|? is the noise power spec-
trum. The noise reduction algorithm can be viewed as a filtering operation where high
SNR regions of the measured spectrum are attenuated less than low SNR regions. The
mathematic description of our noise suppression filter is:

(1)

|Hy[n]]? = max<|Xk[”]|2 - 03ub|N,c[n]|2,ﬁ>2.

[ Xk[n]|?

An oversubtraction factor osub is a filter parameter which varies with time and is esti-
mated from energy of signal and noise. While a large osub essentially eliminates residual
spectral peaks, it also affects quality of speech so that some of the low energy phonemes
are suppressed. This drawback is reduced by dependency of osub on SNR. Yet a spectral
floor threshold B does not change with time and prevents the filter components from
small values.

In order to alleviate the influence of musical noise, the filter transfer function | Hy[n][?
is smoothed in temporal domain, whereas the following smoothness in spectral domain
showed itself to be very useful for low SNR as well as clean speech recognition.



4 Noise estimation

As can be seen from Eq.1, the noise suppression algorithm requires the accurate estima-
tion of the noise power spectrum |Ng[n][?. This is however difficult in practical situations
especially if the background noise is not stationary or SNR is low.

A commonly used method for noise spectrum estimation is to average over sections
which do not contain speech, i. e. voice activity detector (VAD) is required to determine
speech and non-speech sequences. It relies on the fact that there actually exists a suf-
ficient amount of non-speech in the signal. Standard noise estimation methods without
explicit VAD were tested in our feature extraction system.

4.1 Temporal minima tracking

The best estimation of noise in our experiments has been obtained with standard tempo-
ral minima tracking algorithm [4]. This algorithm is applied consequently on smoothed
power spectrum:

Pu[n] = aPes[n — 1] + (1 — )| X[n] %, (2)

with forgetting factor o between 0.75...0.8. The algorithm is independently used on
each spectral subband of P,x[n]. The initial smoothing of power spectra slows down the
rapid frame-to-frame movement. The estimated power spectrum of noise P,;[n] for k"
subband is found as a minimum of Pyg[n| within a temporal window of D previous and
current power sample:

Poi[n] = min(Pg[n — D] : Pyln]). (3)

The processing window of D samples is at the beginning filled by first frame P[1]. It
reflects the assumption that the first frame of an utterance does not contain speech. The
example of estimated noise P,x[n] is given in Fig 2 (lower panel). However the standard
minima tracking algorithm causes problems of causality and large memory requirement.
From many experiments we have observed that P,x[n] can be well estimated just from
current and previous samples of P.[n]. But the necessity of large memory buffer makes
this noise estimation technique not applicable for feature extraction part of DSR system.
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Figure 1: Scheme of noise suppression system with noise estimation applied in Mel-scale
filter bank domain.

The memory buffer size for minima tracking algorithm is given as D times r, where
r denotes number of spectral subbands. In order to get sufficient estimation of P,[n],



D should not be smaller than 80. Usually r is 129. In [4], it is suggested to decompose
one window of length D into W subwindows (for each spectral band independently),
which brings some memory reduction but does not cause the system’s degradation (noise
est. 2, 3, 4 in Tab.1).

In our previous experiments we have observed some good properties of noise estima-
tion algorithms when processing in spectral domain as well. Spectral domain processing
is another possibility to reduce memory buffer for noise estimation. We may decrease
the spectral resolution of Pyt[n|, estimate the noise and apply some kind of interpolation
technique with spectral smoothing to get the initial number of spectral subbands noise
est. 6 in Tab.1).

Another spectral processing we have tried in our experiments was to integrate the
power spectra |Xj[n]|? into spectral bands applying the Mel filter bank. This operation
can be viewed as a smoothing of power spectra in spectral domain. Then the noise
estimation is done in this integrated spectrum. Number of spectral bands of initial
power spectra |Xi[n]|? is 129 (1... Fyampiing/2). After application of Mel filter bank,
number of bands was reduced to 23. The estimated noise in Eq. 1 is however expected
in power spectral domain (again 129 subbands). Hence we applied inverse projection
from 23 spectral bands into 129 subbands of power spectra, which caused the additional
smoothing. In order to keep the same energies in bands, standard Mel filter bank for
direct projection was modified, so that the areas under particular triangular weighting
functions were normalized to unity:

Mfbyop,[1] = = M, kel...23,i€1...129. (4)

o Mfby[5]

The results obtained with noise estimated using previously described approaches are
in Tab. 1.

Accuracy [%] Italian Finish Spanish overall
conditions hm | mm | wn | hm | mm [ wm | hm | mm | wm (%]

baseline 85.01 | 91.17 | 96.00 | 88.15 | 86.85 | 95.48 | 88.21 | 90.67 | 95.84 | 91.81
noise est. 1 86.77 | 92.77 | 96.90 | 91.17 | 88.92 | 96.67 | 92.51 | 92.85 | 96.43 | 93.23
noise est. 2 89.11 | 93.45 | 96.75 | 92.16 | 90.36 | 97.13 | 92.60 | 93.11 | 96.80 | 93.89
noise est. 3 89.21 | 93.41 | 96.74 | 92.19 | 90.22 | 97.13 | 92.72 | 93.22 | 96.60 | 93.87
noise est. 4 89.27 | 93.25 | 96.71 | 92.19 | 90.29 | 96.97 | 92.84 | 93.31 | 96.70 | 93.83
noise est. 5 88.24 | 92.53 | 96.59 | 92.12 | 88.17 | 96.97 | 91.94 | 93.55 | 96.86 | 93.41
noise est. 6 89.16 | 93.05 | 96.67 | 92.05 | 89.81 | 96.82 | 92.60 | 93.20 | 96.65 | 93.71

Table 1: Speech recognition results for Italian, Finish and Spanish databases with noise
estimation based on temporal minima tracking algorithm. The experiments’ conditions
are explained in section 2. The detailed algorithm descriptions are in Tab. 3.
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Figure 2: Process of noise estimation in short-time power spectra (8" subband - related
to 250 Hz). The solid lines represent the smoothed power spectra P,[n|, the dashed
lines describe estimated Pp[n]:

Upper panel: Filtering of spectral subbands in temporal domain.

Lower panel: Minima tracking in temporal domain.

4.2 Noise estimation based on filtering of temporal trajectories
of spectral coefficients

Often used noise estimation algorithm, proposed in [5], which does not need information
about speech/non-speech segments, has been tested in our experiments. Here each spec-
tral subband is filtered by nonlinear estimator that might be perceived as an efficient
implementation of temporal minima tracking in power spectral domain. This temporal
processing also requires a smoothed version of power spectrum Py[n] pre-computed by
Eq. 2. The algorithm can be described as follows:

Putln] = 7Posln = 1]+ T—4(Pafr] = BPusln — 1). (5)
The minima tracking is ensured in this approach so that P,x[n] < Pu[n],Vk,n as can
be seen in Fig. 2 (upper panel). Although this method does not bring any difficulties
with memory size, the basic approach from [5] was not successful in our front-end system
(noise est. 7 in Tab. 2). That was mainly caused by high level of estimated noise in speech
portions of processed sentences. Therefore we have experimented with implementation
of some simple speech/pause detector. The used algorithm comes from [6] and is based
on the evaluation of the SNRs in each spectral subband individually. We compute the
relative ratio of noise energy to signal&noise energy N X for each subband:

_ NXi[n] — NXp 0]
NXpepln]) = NXmazk[n] — NXpineln]

(6)

NX,in and NXmqy are originally determined from the past (at least 400ms) which
can cause memory complexity. Therefore we have used NX,,.., NXmqz fixed. For
calculation of NX ratio, Py[n| from Eq. 2 and P,;[n| from Eq. 5 were taken. For each
spectral subband independently the speech is indicated, and P,;[n| is modified so that

0.4P[n] if NX,p[n] <thresh, kel...129,
Posln] = { ")

1.1P[n] else



The threshold is in our case equal to 0.15. The example of estimated and later modified
trajectory of P,[n] is given in Fig. 3.

Accuracy (%) Italian Finish Spanish overall

conditions hm | mm | wn | hm | mm [ wm | hm | mm | wm [%]

noise est. 7 88.98 | 92.61 | 96.66 | 91.98 | 88.85 | 96.92 | 92.66 | 93.07 | 97.19 | 93.60

noise est. 8 88.87 | 93.57 | 96.65 | 92.69 | 89.67 | 96.97 | 91.49 | 94.74 | 97.00 | 93.82

Table 2: Speech recognition results for Italian, Finish and Spanish digit databases with
application of temporal filtering based noise estimation system. The experiments’ con-
ditions are explained in Tab. 2. The algorithm descriptions are in Tab. 3.
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Figure 3: Trajectories related to 15" spectral band (465Hz).

Upper panel: NX . ; [n] used for speech/pause detection.

Middle panel: Trajectory of Py[n].

Lower panel: P,[n] (dashed line) estimated using temporal filtering of P,[n], and mod-
ified P,x[n] (solid line) by speech/pause detection.

5 Experimental results

The whole proposed noise reduction algorithm is shown in Fig. 1. At the beginning the
power spectra | Xg[n]|? is computed using FFT algorithm. Then the input |X[n]|? is
split into two branches. In the upper branch (Fig. 1), the signal goes directly into noise
suppression system. In the lower branch, the noise estimation algorithm is applied.

The noise suppression algorithm is in our experiments only part of the feature ex-
traction. The whole feature extraction system consists of several processing blocks, such
as voice activity detection, mean and variance normalization or application of temporal
filter in auditory spectrum. The experimented noise estimation algorithms have been
tuned while the rest was kept constant so that we did not have to retrain any data-
dependent algorithms.

The output features for speech recognizer were based on MFCCs. We have used the
standard set of 23 triangular band filters with projection of output log-energies into 15



cosine basis. Tab. 1 contains the results with temporal minima tracking noise estimation
technique, while Tab. 2 describes the results of experiments with noise estimation based
filtering in temporal domain. The overall results of our experiments are obtained so that
the wm conditions are weighted by 0.4, mm by 0.35, and hm by 0.25 over average of
all databases.

‘ baseline ‘ Not used noise estimation and noise suppression algorithm at all. ‘

~

noise est. The average of the first 15 frames of each sentence used, (1x129 f).
noise est. 2 | The whole temporal minima tracking alg. [4] in smoothed power
spectra (129 spectr. bands), temporal window D = 80, (80x129 f).
noise est. 8 | Derived from noise est. 2, decomposition of temporal

window D into 10 subwindows, (10x129 f).

noise est. 4 | Derived from noise est. 2, decomposition of temporal

window D into 5 subwindows, (5x129 f).

noise est. 5 | Derived from noise est. 2, addition of spectral smoothing using
modified Mel-filter bank projection (23 critical banks),
decomposition of temporal window D into 10 subwindows, (10x23 f).
noise est. 6 | Derived from noise est. 2, decreasing the spectral resolution

of initial Py[n] by 2, decomposition of temporal window D into

5 subwindows, linear interpolation into 129 bands, (5x65 f).

noise est. 7 | Appl. of standard temporal filter [5] (129 spectr. bands), (1x129 f).
noise est. 8 | Derived from noise est. 7, speech/pause detector applied, (1x129 f).

Table 3: Description of noise estimation experiments (results mentioned in Tab. 1 and
Tab. 2) Each algorithm contains the approximate size of processing memory buffer in
floats.

6 Conclusions

Experimented noise estimation techniques for modified Wiener filter based noise sup-
pression algorithm of feature extraction DSR system have been described. The standard
temporal minima tracking noise estimation itself which is guaranteed to be very robust
in our task does not satisfy the memory size limitation. Therefore we came up with
modification in order to decrease this memory requirement. As can be seen from Tab. 1,
the decomposition of one temporal window (applied for one spectral band) into several
smaller ones does not bring almost any degradation. However such a memory reduction
is not sufficient for our task. So we have experimented with algorithms estimating the
noise from spectrum with reduced frequency resolution. Sufficient results were obtained
with simple reduction of spectral resolution. The filtering of power spectra by modified
Mel-filter bank seems to be applicable too.

On the other side, standard temporal filtering based noise estimation method did
not work well. However its advantage is that there is no need for any memory buffer
for algorithm processing. The results became interesting when we implemented simple



speech/pause detector based on SNR estimation (Tab. 2). Its application for noise
estimation based on minima tracking did not bring any improvement.

One of the goals of these experiments was to see if noise estimation techniques can
be improved (better overall speech recognition) when doing additional spectral process-
ing. Generally any other spectral processing algorithms, such as spectral smoothing
or spectral resolution’s reduction did not improve the noise estimation. The spectral
processing seems to be good for clean speech (attenuate the noise suppression system’s
influence when clean speech is processed), but degrade robustness for noisy speech. How-
ever the complexity as well as memory size of such noise estimator is widely reduced.
Very interesting fact is that spectral processing greatly increases the robustness of noise
suppression algorithm when applied on its filter characteristics.
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