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Abstract. The article deals with the problem of continuous speech recognition 
of Czech language. The main goal of this study is to compare various kinds of 
bigram language models with respect to the accuracy and speed of speech 
recognition. The main types of bigram language models are described here as 
well as multiple parameters that affect the performance of a speech recognition 
system. A comparison with a zerogram model is also made. Different models 
and various parameter settings are compared by means of the accuracy rate in 
extensive experiments done with a large test database of 1,600 Czech sentences 
recorded by 40 speakers. 

1   Introduction 

Systems that recognize voice input in a form of isolated words or short discrete 
phrases have been available for Czech language for several years. Some perform well 
even for lexicons with thousands of words, and they have been already applied in 
public services [1]. The recognition of fluently spoken language is a much more 
challenging task. So far no usable system capable of doing this in Czech language has 
been brought to market. Its development is the main goal of the long-term research in 
our lab. Though some specific problems of Czech language make the task extremely 
difficult. Czech language has approximately 1 million word-forms, which is about 20 
times more than in English. Such a large lexicon is a result of complex rules for 
inflection of Czech words. Many Czech words sound similarly having only different 
prefixes or suffixes. In comparison to English, the word order in Czech sentences is 
freer, which worsens the utility of language models. Nevertheless, this article shows 
that language models help substantially in the recognition of Czech. Experiments 
described in this article have been carried out with the use of the software system 
described in the complementary paper [2]. 



2   Test Speech Database 

The people recorded for our both training and test databases were not professional 
speakers. In some cases it was hard even for a human to understand the complete 
sentence uttered by some of our speakers. 

But even if the sentences had been uttered correctly, there would still have 
remained a space for some mistakes that could not be prevented. Those mistakes 
originate in words that have a different spelling but the same phonetic transcription. 
1,600 test sentences contained 126 words of that kind having 44 different spelling 
word-forms. Our test speech database had 16,027 words having 7,033 different word-
forms. It means that nearly 0.8% of words could be messed up, if they had been 
classified only with the use of acoustic model by some perfect recognizer. 

More details about our test (evaluation) speech database can be seen in [2]. 

3   The Role of Various Parameters in Speech Recognition System 

3.1   Searching for the Optimal Parameter Settings 

Our speech recognition system was controlled by several parameters whose optimal 
settings had to be searched for by making small perturbations of one of them, the rest 
staying constant, picking up the best value, and then making perturbations of another 
parameter. All these tuning experiments had to be done on a relatively large amount of 
the test data. We have used 800 sentences that were a subset of our test database, 
and our working vocabulary contained 3,622 words. If the database for finding the 
best settings had been smaller, the optimal settings of parameters found for it would 
have been far from optimal for the whole test database. We have used the following 
parameters to control the speech recognition: 
1. acoustic model, 
2. language model, 
3. language model factor, 
4. word insertion penalty, 
5. number of word-end hypotheses, 
6. prune threshold. 

3.2   Acoustic Model 

We have used either 16 or 32-mixture acoustic models trained on an independent 
speech database. Paper [2] describes the training speech database and compares the 
performances of the two types of acoustic models. 32-mixture model works more 
precisely at the expense of somewhat higher time consumption. All results shown in 



this article have been done using the 32-mixture acoustic model which we prefer to the 
16-mixture one. 

3.3   Language Model 

Admissible values of the parameter specifying the language model can have the 
following effects: 
1. using no language model (i.e. using a zerogram model), 
2. using a dependent language model which has been made of the test data, 
3. using some independent language model, 

a) unsmoothed, 
b) smoothed, 

- by adding one, 
- by linear interpolation, 
- by Witten-Bell discounting. 

3.4   Language Model Factor and Word Insertion Penalty 

Higher values of language model factor (CLM) mean greater influence of language 
model on recognition. As it is shown below, the optimal value of this parameter was 
different for different language models. 

Our recognition system has a tendency of preferring shorter words to longer ones. 
To suppress this phenomenon we have introduced the parameter called word insertion 
penalty (CIP) that worsens each candidate word’s score, which really had an improving 
effect on the accuracy of recognition. Similarly to the case of the language model 
factor mentioned previously, there is some optimal value of CIP for each type of 
language model. We have used higher absolute values of CIP with a negative sign for 
a greater word penalization. More details about CLM and CIP parameters are shown in 
paper [2]. 

3.5   Number of Word-End Hypotheses and Prune Threshold 

The parameter that we denote as the number of word-end hypotheses (CWE) influences 
the number of bigrams in language model that are examined while inter-word 
transitions are evaluated. The higher its value is the better is the performance of the 
recognizer, but when this value reaches a certain level, the performance is no longer 
better, only the time consumption rises. The role of the parameter called prune 
threshold or state pruning threshold (CPT) is to reduce the number of words that are 
kept in memory as the most probable. From the practical point of view, the prune 
threshold parameter behaves the similar way as the number of word-end hypotheses. 

For both CWE and CPT parameters it was necessary to choose optimal values 
assuring the highest possible performance without letting the time consumption soar 
too high. Figure 1 in Chapter 5 shows the results of changing the prune threshold or 



the number of word-end hypotheses  while all other parameters are constant. 
Mathematical details are in paper [2]. 

4   Language Models 

4.1   N-gram Language Models 

When computing the probability of a given word sequence from sufficiently large 
amount of training text, we can see that this probability is very close to the probability 
of the same word sequence computed from some other amount of training text if these 
two training corpora share the same language characteristics. This property helps us 
to predict what word will follow if we know some sequence of preceding words in 
some utterance that has also the same language characteristics as the corpus from 
which we have derived the probability of the word sequence. This is the basic concept 
of n-gram language modeling. N-gram is a conditional probability that if we observe 
some sequence of n – 1 words w1

n-1 then some particular n-th word wn will follow. It can 
be computed as the frequency of the word sequence w1

n, also called w1
n count and in 

further text denoted as C(w1
n), divided by the frequency of the word sequence w1

n-1. N-
gram language model is a collection of conditional probabilities for all n-word long 
sequences that can be composed of a given vocabulary. When n = 2, we speak about 
bigrams. In languages with some relatively small vocabulary like English also 
probabilities of word triples can be computed and these are called trigrams. 

N-gram also called statistical language models are successfully employed in tasks 
where spontaneous speech is recognized because they are robust and flexible in 
comparison to rule-based models that use some strictly described grammar. 

4.2   Maximum Likelihood Estimate 

Maximum likelihood estimate (MLE) is the simplest possible n-gram model. It contains 
conditional probabilities for all possible n-grams as they appeared in the training data. 
Word sequences not present in the training corpus have their probabilit ies equal to 0. 
In a more formal way, the values in the model are computed according to the equation 

( ) ( )
( )1-

1

11-
1 n

n
n

n wC
wC

wwP = . 
(1) 

MLE model is the starting probability database from which all smoothed models can 
be derived. Our dependent language model was MLE of probabilities in our evaluation 
database the sentences of which were formed of 14,387 different word pairs. Source 
data for our independent language models were the 55,841,099-word corpus described 
in more details in [2]. From this corpus we have extracted all its word pairs that were 



formed of the 7,033-word vocabulary of our evaluation speech database. The result of 
this extraction was the database of 1,785,458 different word pairs. It means that non-
zero bigrams  covered 3.6% of the matrix of all possible word pairs made of our working 
vocabulary. Albeit there are several software tools for n-gram language model 
smoothing available in the research community, we have developed our own ones. 

4.3   Add-One Smoothing 

Even in the relatively simple case of bigram model and some limited vocabulary there is 
no chance to collect so much meaningful texts written in a particular natural language 
so that the resulting MLE language model contains no zero probabilities. Even the 
biggest corpora ever collected give most of the probabilities in the MLE model equal 
to zero. On the other hand, nearly every written text or spoken utterance not present in 
the training corpus, from which MLE model has been created, contains some bigrams 
with non zero probabilities that have zero probabilities in the training corpus. 
Language models work better in speech recognition when they have all their 
probabilities equal to some number bigger than zero. The process of turning the MLE 
language model into some form with all probabilities above zero is called smoothing. 

The simplest idea of smoothing is so-called add-one smoothing. All possible 
combinations of n-word sequences counts are incremented by one and MLE model is 
computed from the resulting data. The equation for add-one smoothing is  
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where a is the constant added to all the counts (the model works better when we add 
less than one) and V is the number of words in vocabulary. 

4.4   Witten-Bell Discounting 

Witten-Bell discounting is introduced as Method C in [3]. Let C(w1
n) be the count of a 

particular sequence of n words, C(w1
n-1) be the count of the first n – 1 word sequence 

(w1
n-1 is also called the history of w1

n), T(w1
n-1) be the number (not count) of all n-word 

sequences that begin with the same n – 1 word sequence, i.e. the number of all distinct 
word types that followed a particular n – 1 word sequence, and V be the size of 
vocabulary. Then the equations for Witten-Bell discounting are 
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Every smoothing method distributes some probability mass from the n-grams with 
probabilities above zero to all the n-grams not seen in the training corpus. Witten-Bell 
discounting does this separately for each group of n-grams that share the same n – 1 
word history with the purpose to discount more probability mass from those n-gram 
groups that have relatively more ending words, i.e. that have relatively large T(w1

n-1). 
This probability mass is then distributed among all the other possible words that have 
not followed the n – 1 word sequence in the training corpus. The reason for this 
strategy is that if some word sequence is followed by a relatively large number of word 
types in the training corpus then the probability that some other word types can 
follow it too is bigger. 

4.5   Linear Interpolation Smoothing 

Linear interpolation smoothing is published as deleted interpolation algorithm in [4]. 
Its idea is the following: If we have no examples of a particular word triple w1

3 to help 
us to compute its trigram P(w3|w1

2), we can estimate its probability by using the bigram 
probability P(w3|w2), and if there is no occurrence of the word pair w2

3 in the training 
corpus, we can look to the unigram P(w3). The method in which lower order n-grams 
are used for higher order n-grams estimation only if higher order n-grams have zero 
probability in the training corpus is called backoff. Its algorithm was introduced in [5]. 
The method in which lower order n-grams are always used for higher order n-grams 
estimation is called interpolation smoothing. Linear interpolation smoothing estimates 
the trigram probability P(w3|w1

2) by adding together trigram, bigram, and unigram 
probabilities. Each of these is weighted by a linear weight λ. 
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The last term λ0/V in equation (5) represents uniform distribution of unigram 
probabilities (V is the size of vocabulary). The set of λ values is trained using a version 
of expectation-maximization (EM) algorithm which is also shown in [4]. The training 
corpus is divided into training and held-out data and the target λ values must minimize 
the cross entropy of smoothed models computed from both training and held-out 
corpora. Due to compression reasons explained in [2] we prefer language models that 
have large groups of the same probability values. Models smoothed by means of 
linear interpolation do not have this property. It can be seen in the equation (5). N-
grams that share the same history get different probabilities according to the 
frequencies of their ending words as well. In the initial phase of the search for the 
optimal parameter settings described in Chapter 3.1 we have found that linear 
interpolation models’ performance is the second best after Witten-Bell discounting. 
Because of these reasons we have not implemented linear interpolation models for our 
whole evaluation database. 



5   Experimental Results 

 
Figure 1 illustrates the information given in Chapter 3.6 about the two parameters that 
are used for the reduction of a search tree in our recognizer. 

Fig. 1. When the value of prune threshold parameter increases, the accuracy of the recognition 
rises until it reaches some maximal point. The same rule applies for the case of the number of 
word-end hypotheses. Time measured on a PC (Athlon 1.3 GHz, 512 MB RAM) rises linearly 
in proportion to the both parameters 

Table 1 compares all language models tested on our 1,600-sentence evaluation 
database. 

Table 1. The optimal parameter settings and the best accuracy achieved for different language 
models 

Language Model Language 
Model 
Factor 

Word 
Insertion 
Penalty 

Number of 
Word-End 
Hypotheses 

Prune 
Threshold 

Accuracy 

Zerogram 0 -42 1 130 48.63 
Independent MLE 5 -12 10 130 47.52 
Add-One Smoothing 5 -3 10 130 61.58 
Witten-Bell 6 -5 10 130 65.48 
Dependent MLE 2 -9 10 130 95.82 
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Accuracy values in Figure 1 and Table 1 are computed according to the standard 

definition - see for example [2]. 

6.   Conclusion 

In this paper we have applied several language models for the recognition of 
continuous speech in Czech. The results in Table 1 show that Witten-Bell discounting 
is the best independent bigram model used so far. An interesting demonstration of the 
necessity of language model smoothing is the fact that accuracy of unsmoothed 
independent MLE model is slightly worse than zerogram (i.e. when no language model 
is used). The result of dependent MLE model marks the upper bound of accuracy that 
can be possibly achieved. Another result shown in Table 1 is the fact that poor 
language models need greater penalization of each word insertion. 

We have compared our language models also by means of their ability to be 
compressed for the operating memory savings reasons (details are in paper [2]). We 
are showing in Chapter 4.5 that linear interpolation model’s compression feasibility is 
very low. 

When using Witten-Bell language model and its best parameter setting (shown in 
Table 1) about 12% of sentences were recognized with 100% accuracy. 
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