Filtering of Large Numbers of Unstructured
Text Documents by the Developed Tool TEA

Jan Zizka! and Ales Bourek?

! Department of Information Technologies, Faculty of Informatics,
Masaryk University in Brno, Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: zizka@informatics.muni.cz
2 Department of Biophysics, Faculty of Medicine,

Masaryk University in Brno, Jostova 10, 662 43 Brno, Czech Republic
E-mail: bourek@med.muni.cz

Abstract. This paper describes a text-document-filtering software tool
TEA (TExt Analyzer), which was originally developed for physicians to
support selections of large numbers of unstructured medical text docu-
ments obtained from available Internet services. TEA learns interesting
and relevant documents for individual users basically by the naive Bayes
algorithm. Moreover, TEA provides a number of additional functions
that improve its classification accuracy. The learning process of TEA is
based on a set of labeled positive and negative examples of text docu-
ments, which obtain their labels from users interested in documents of
certain, usually very specific topics. Experiments and real uses of TEA by
physicians have demonstrated that a classification accuracy—separating
the documents between two classes (interesting and uninteresting)—can
be expected from 70% up to 97%, typically 85% and better.

1 Introduction

Users, like physicians, of modern data-processing technologies mostly expect
obtaining very specific information and knowledge from extensive resources pro-
vided, for example, by the Internet. Unfortunately, in too many cases the re-
sources provide a lot of very raw data retrieved using only a set of key-words.
Such a situation is still unsatisfactory because it is often impossible to manually
separate hundreds or thousands of documents within a reasonable time. On the
other hand, the users can employ computers and special software for the pro-
cessing of rather raw data to obtain the requested information. One possibility
is to use computers for learning which text documents are relevant for a specific
user if this user can provide his or her parameters describing the area of interest.
The text-filtering tool TEA (TExt Analyzer), described in the following sections,
supports its users in separating unstructured text documents into two classes,
interesting and uninteresting. TEA disposes of the basic functions learning and
classification; moreover, it contains many additional functions which improve
the final result—text documents that are mostly relevant and interesting for the
users’ specific needs. This approach is very important also in medicine because



S OTERE L3

TR

SOTELTAE T CLE CLE DT L
ST RT AN o R T VTR ]
el 1) e ssara iyl THATER_ 9111
WLET Ok FET

freLgi gen lneLy, oT1
frpa s ialeregt . LR
pipi Bmp ILELE, Rk
rbepi pEnl, bxi

syl pdk r 9T

e patr 100

eanar Gimll.End
=it Peramcohi TEM TER_GUTY
rdiT O FCT

rgurrhis

P rdess

Eocricke _WE-_§E+ Wd-_bd4
rrhow Gl L ITr eepedows. T=l
po=d 2 Pepemrcb TEKLTER GO
p-dic: CL. T
pofprpanlncip. ¥

P les: i Feamec o TELI TIL GO -
pood ) Bapamcchy TELTER G014 DATEY

p-Siz L, BT

pofp:rpan IncEp. i

[rimm: i Fammesca i TEL TIA_GUDDATA b koadt GLALL. TXT

Arbvamced Braigie U]

.
o |

Fig. 1. The GUI (graphical user interface) of the text analyzer TEA—an example of
a user’s new text-project establishment.

there is very often a huge number of documents, however, physicians usually
need only a fragment covering their actual requirements. In addition, physicians
as well as other users also deeply need to manage a lot of unstructured text
materials which include great numbers of mutual links. Preprocessing of huge
numbers of text documents, which are accessible via different electronic archives
distributed in the Internet, is generally inescapable, e.g., because of more than
10,000 medical documents published per day. On the other hand, text-document
filtering can reveal that within a certain time interval, publication numbers of
certain topics rapidly decrease, or specific new terms start to arise. Potential
users of this kind of filtering software would also require individual adaptation
of such tools (unlike the common WWW searching tools and browsers) for their
specific needs. The described tool TEA has been developed and implemented for
the operating system Windows, using the graphical user interface as illustrated
in Fig 1.

2 The essential functions—learning and classification

The text-document classification tool TEA learns to recognize a user’s interesting
and uninteresting documents by the naive Bayes algorithm. For its learning, TEA
needs user-labeled sets of training examples, i.e., training text documents. Each
example has a label—provided by a user before starting the learning process—as



a mark of belonging either in a group of interesting or uninteresting documents.
In other words, the learning process uses positive (interesting, relevant) and
negative (uninteresting, irrelevant) examples of text documents, according to an
individual user’s requirements. Different users can naturally mark the same text
documents differently if they need it.

TEA manipulates with the text documents as with sequences of words (or
character strings), where these words are separated by the standard white space
and punctuation marks and signs. In addition, all upper-case letters are con-
verted into their lower-case equivalents. The separated individual words are then
used as distinct words and are stored—together with their frequencies in all the
training documents—into the dictionary.

To avoid a very long time of computation, the naive Bayes algorithm assumes
that positions of words are independent. Despite the fact that this assumption
is not quite correct, results with (and not only) text documents are practically
acceptable, which is described, e.g., in Lewis (1998). Thus, the frequencies of the
distinct words are used for computing degrees to which a text document belongs
to the interesting (4) or uninteresting (—) class. Let Degree(+/—) stands for a
degree of belonging to the (+) or (=) class, Ny stands for the total number of
documents in both classes, N, ,_) stands for the number of documents in the
(4) or (—) class, and P(w;|+ /—) stands for the relative frequency of a word w;
in the (4) or (—) class (actually, a posteriori probability). Then, for n being the
number of words in a classified text document, the belonging degree is given by
the following equation (the degrees for (4) and (—) are computed separately):

N _ n
Degree(+/=) = — L= T] P(wil + /-)
@ =1

After computing the degree, a classified document obtains the class (+) or (—)
that corresponds to a greater degree value.

3 Classification results of TEA

The implemented system TEA was tested using the cross-validation method
and—at the present time—is used by physicians in the area of medical text doc-
uments obtained in huge numbers by various Internet tools and browsers. Among
resources of text documents were, for example, on-line medical databases pro-
vided by the National Library of Medicine, many fulltext databases accessible to
academics and professional health-care providers (Biological Abstracts, Zoologi-
cal Record—database of BIOSIS comp., DL, ACM—digital library of ACM, EIFL
Direct—most important fulltext databases of EBSCO, LINK—scientific journals
of Springer-Verlag, Web of Science—journals bibliography /citation DB, MED-
LINE, etc.). During the processing of text documents, users of the initial TEA
tool suggested and needed additional functions, which gradually extended possi-
bilities of TEA and contributed to higher accuracies of classifications. The main
goal of the users has always been to eliminate many uninteresting and irrelevant



documents obtained from the Internet using mainly browsers and key-words be-
cause in too many cases there were so many documents that users did not have
time enough to read them and to select only what was necessary.

The original tests, which used real data from the MEDLINE source, are
published in Zizka et al. (2000) and (2002). The document set contained 701
interesting and 1,109 uninteresting documents with 12,631 different word forms.
Classification accuracies were between 73% — 94%, depending on different ap-
proaches: lower accuracy could be expected for sets of very similar documents
(like, e.g., a very narrow medical branch), while higher accuracies were obtained
for sets with more different document contains (e.g., documents from a medi-
cal branch with more aspects). Later, after the initial tests of the TEA’s core,
the experiments used much more text documents from different resources, and
users could apply new additional functions as excluding certain words, setting
up minimum and maximum occurrence of words, and so like. With this extended
additional support, the TEA analyzer is now able to filter the retrieved material
consistently with the average accuracy usually better than 85%. The experiments
with large and different data sets provided accuracies from 70% up to 97%.

The other group of extensive testing was performed using publicly acces-
sible Internet newsgroups from 20 topics (alt.atheism, comp.graphics, comp.-
0s.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, comp.-
windows.x, misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.-
hockey, sci.crypt, sci.electronics, sci.med, sci.space, soc.religion.christian, talk.-
politics.guns, talk.politics.mideast, talk.politics.misc, and talk.religion.misc). The
number of unstructured text documents was around 20,000 articles with 1,000
articles per class. The task of the TEA analyzer was based on the classification
of text documents using 20 classes (20 more or less different newsgroup topics).
The number of distinct words in all the original documents was 119,717. In this
case, the classification accuracy was between 86% and 89%. The TEA’s func-
tionality for these 20 classes was almost the same as for the purely medical set
of text documents mentioned above.

According to the extensive experiments, the classification accuracy depends
on several points. Higher numbers of training documents typically provide better
accuracy. In addition, the number of training positive and negative documents
should be as close as possible, e.g., 40%:60%, or even better, approximately
50%:50%. It is naturally not possible to obtain always the ideal data in practice,
however, users very often prefer the help of the tool even in less advantageous
situations, mainly if the number of the classified documents is very high (e.g.,
hundreds or thousands). Another important point is the possibility to exclude
common words (typically the first 100 most common words for English) as well
as certain words defined by a user. Such an exclusion improved the classifica-
tion accuracies by 0.5% to 5%. On the other hand, the experiments also have
revealed that the naive Bayes algorithm becomes less effective for sets of data
where positive and negative examples are very similar—however, in this case
it is also often rather difficult for humans to unambiguously decide whether a
text document belongs to the positive or negative class. Therefore, users can ex-



pect higher classification accuracies for large data sets containing more different
documents within a certain area of interest or within different areas.

4 Additional functions supported by TEA

The current version of the TEA tool includes the naive Bayes algorithm as its
basic function for the learning and classification purposes. As the main result of
learning, there is a dictionary containing words from documents together with
computed probabilities of each word occurrence both in positive and negative
text-document classes. In addition of learning, TEA enables its users to print
the dictionary, to modify its contents in various ways, and to use the potentially
modified dictionary subsequently as a basis for analyses of new documents. An-
other TEA’s important function is the possibility to set up different restrictions
for the learning and analyzing data to improve the classification results.

The additional functions supported by the TEA program can be divided into
several groups:

— the system configuration,

the program control functions,

the users’ projects (scripts as plans of actions) for running and controlling,
the support of works with files and folders (directories),

the setting up input and output files,

— the learning and analysis functions, and

— the work with words and dictionaries.

A Dbrief, not complete description of the functions is provided in the following
subsections. All the mentioned functions have more details and parameters as
well as error messages, if necessary. The following description covers only the
basic properties.

4.1 The system configuration

The program TEA is designed and implemented to enable the work in an arbi-
trary language (provided that a certain language support was created). To select
a communication language, for example, for error messages, there is a command
language:file, where file defines a file containing messages. Moreover, the com-
mand charset:file can be used for changing a character set for a specified language
(without this definition, the English alphabet characters are only used). The
command settings displays the set up configuration. Finally, free:configuration
cancels one of the configuration parameters; free without a specification simply
sets up the program initial, default configuration.

4.2 The program control functions

To finish the program run, the exit command is used; help supports displaying
Help of the program. The command print:message displays a requisite message
while nprint:message displays message with a new line.



4.3 The users’ projects for running and controlling

The users’ projects are actually scripts supporting repeated types of works, i.e.,
repeated sequences of commands. TEA uses interpret:file for running a project
file. Without file, an interactive command line is started, so a user can com-
bine both scripts and interactive commands. If a user wants to display script
commands, he or she can turn on/off the activation by say:on-off.

4.4 The support of works with files and folders

The system TEA allows displaying of a current folder by Is:mask, for example,
Is:*.txt displays all files having the tzt extension. The command cd:folder changes
a current folder, and more:file displays a requested file.

4.5 The setting up input and output files

A dictionary is set up by dictionary:file; if the file does not exist, it is created.
The functions of learning or analysis use a file defined by input:file. TEA also
needs a configuration system containing string definitions of beginnings of in-
teresting texts (the positive marking string starts with the character +, e.g.,
+abc) as well as uninteresting texts (the negative marking string starts with the
character —, e.g., —abc). In addition, if interesting texts within a file have as
their marks numbers, digits can be replaced by the character #, e.g., interesting
text units having eight-digit numbers are represented in the configuration file
as +##A#A#####. If a user wants to add his or her comments into the text
units, it is possible to define a beginning string of comments by estring, e.g., if a
comment should start with XXX, then eXXX. The command posfile:file sets up
an output file for interesting texts. To avoid a relatively frequent problem with
duplicate or multiple text units (typically obtained from the Internet), a user
can employ the command test-file:file; in addition, dupfile:file defines an output
file for duplicates or multiplicities.

4.6 The learning and analysis functions

The system TEA starts learning by input:file and learn or simply learn:file. After
its learning, TEA can classify new texts by analyse:file or just analyse provided
that a file was defined earlier. Interesting documents obtain probabilities higher
than 50%, up to 100%. However, if a user wants to change the default value 50%,
the command mipst:number is available, e.g., from 75% up to 100%: mipst:75.
On the other hand, if there are text units having suspicious, too high values,
e.g., 98%, a user can exclude such units by mapst:number, e.g., mapst:98 in our
case.



4.7 The work with words and dictionaries

Users very often need to influence importance of certain words defined by the
human approach because machines are still not so intelligent. During a normal
work, TEA stores words—found in the testing data—with certain information.
Each word is classified as, e.g., interesting, uninteresting, etc., using a scale
0, +, —, =, 1, 2, 3, 4, 5, 6, 7, 8, 9, n. Generally, a word has the implicit
classification =; if TEA during its analysis of a new text document (not included
in the training set) finds an unknown word, it assigns n (as unknown) to it.
In addition, a user can assign any item from the scale to a word; 0 means a
word is not interesting at all, + means a positive key-word, — a negative key-
word, = a word without any restriction. The other scale items can be used
according to the user’s meaning, if necessary. For example, in this way, the
user can exclude common words (like a, an, the, this, of, at, in, ..., etc.) to
improve TEA’s classification. In addition, there is also an often used function
that dynamically eliminates uninteresting words. Users can activate this function
by minpos:number, minsum:number, and/or masum:number, which influences a
needed ratio of words in positive and negative documents; therefore, depending
of defined ratios, some words can be ignored. For example, minsum:5 means that
all words occurring less than five times in the testing data are ignored. Similarly,
masum:100 ignores words occurring more than 100 times (to avoid too frequent
words). On the other hand, minpos:0.4 says that a word occurring, for example,
45 times in interesting documents and 55 times in uninteresting documents will
be ignored because 45/(45 + 55) = 0.45 > 0.4.

The command info provides information about a current dictionary, and
show:dictionary:file displays (or stores, if the file parameter is used) a dictionary
as a text file. To retrieve a text file as a dictionary, the command compile:file is
used. Sorting a dictionary is a task of sort:asc or sort:desc in the ascending or
descending order, respectively. The command cp:file creates a copy of a dictio-
nary; file is a name of the copy. Adding explicitly a new word is supported by
add:word, where the classification is supposed to be =, otherwise the command
current:classification can change the standard classification. If two dictionaries
should be joined, the command join:file enables this function, where the file
dictionary joins a current one.

5 Conclusions

As the popularity of the World Wide Web and other Internet services continues
to increase, there is a growing need to develop tools and techniques that would
help improve their overall usefulness. The all the time growing taking advantage
of the Internet services among physicians indicates that this (and surely not
only this) kind of users need efficient personal tools to enable PCs to boost user-
creative thinking in areas requiring manipulation of vast amounts of textual
information. Such a tendency has clearly been demonstrated in practice: the
case of Czech Standards of Efficient Medical Care, Bourek, Suchy et al. (2000),
and in tracking infertility treatment trends, Bourek, Zizka et al. (2000).



Experiments with a lot of real medical text-data verified the application of
the naive Bayes algorithm to be a useful method supporting results obtained
from the Internet, especially when it was inevitable to process large numbers
of more or less different documents selected only by key-words. The additional
functions, which enable users to modify the document classification, e.g., exclud-
ing certain words or documents, increase the classification accuracy and decrease
substantially the number of irrelevant, uninteresting text documents. However,
this modifications and their results mostly depend on specific users’ needs and
on particular types of text documents—what is advantageous for a certain user
could be disadvantageous for another one, even if they would work with the
same set of documents. Therefore, the additional functions support individual
settings of searching parameters while the naive Bayes algorithm is generally
responsible for the filtering itself. This also means that the next advantage of
using a tool as TEA is the possibility to exploit the same set of documents for
different purposes, even for more users, depending on a specific parameterization
of the TEA system during its run.

References

1. Bourek, A., Suchy, M., and Svoboda, P. (2000): Standards of Efficient Medical Care
(SEMC). In: Proceedings of the 7t International Conference on System Science in
Health Care, ”Sustainable structure for better health.” Lyon, ISSHC, 436-439.

2. Bourek, A., Zizka, J., Ventruba, P., and Frey, L. (2000): The Use of the Internet
for Monitoring Trends in Assisted Reproduction and Reproductive Medicine. Gy-
nekolog, 5, 220-223 (in Czech).

3. Lewis, D. D. (1998): Naive (Bayes) at Forty: The Independence Assumption in
Information Retrieval. In: Proceedings of the 104" European Conference on Machine
Learning ECML’98. Springer Verlag, Berlin Heidelberg New York, 4-15.

4. Zizka, J. and Bourek, A. (1998): Learning and Classifying Medical Text Documents
Using the Naive Bayes algorithm. In: Proceedings of the First Workshop TSD’98
on Text, Speech, and Dialogue. Masaryk University Press, Brno, Czech Republic,
147-150.

5. Zizka, J., Bourek, A., and Frey, L. (2000): TEA: A Text Analysis Tool for the
Intelligent Text Document Filtering. In: Text, Speech, and Dialogue. Springer Verlag,
Berlin Heidelberg New York, LNCS 1902, 151-156.

6. Zizka, J., Bourek, A. (2002): Automated Selection of Interesting Medical Text Docu-
ments. In: Computational Linguistics and Intelligent Text Processing. Springer Ver-
lag, Berlin Heidelberg New York, LNCS 2276, 402-404.



