
Dialogue systems and planning

Guy Camilleri

IRIT, CCI-CSC, Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse Cedex 4 France

Abstract. Planning processes are often used in dialogue systems to rec-
ognize the intentions conveyed in dialogue. The generation of utterances
can also be achieved by a planning/execution mechanism. Some advan-
tages of this kind of mechanim are: knowledge sharing, modular design,
declarative description, etc.
In this paper, we present some planning mechanisms and the related
models enabling the dialogue management (generation and understand-
ing).

Introduction

In many works, a plan-based framework is used to represent goals (intentions)
conveyed in dialogue. The philosophical studies of natural language proposed by
Austin [1], Searle [2], Grice [3] and Bratman [4] constitute the theoretical bases
of intentional plan based approaches of dialogue. These studies regard utterances
as actions carried out by an agent (or speaker) in a particular environment. This
association unifies the representation of actions to utterances, and consequently
their handling mechanisms. Hence, utterances can be a part of a plan contain-
ing other utterances and/or actions. In this way, the dialogue can be modeled
by an action plan. This kind of pragmatic context provides some agents goals
hierarchically organized.

In this paper, we propose to describe the dialogue utterances generation
and interpretation through plan-based models. In the earlier approaches, the
interpretation mechanism builds a model (in the form of plans) describing the
participant’s intentions in dialogue. The generation process is rarely described.
The intentions plan (built during interpretation) seems to be used as an input
(data) by a utterances generator. Like Wilensky [5] we think, it is interesting
to manage utterances generation through a plan-based model. Such approaches
propose a plan model to guide the generation process. The main advantages of
this modeling are:

– The relations between tasks (responsible of utterances generation), and tasks mo-
tivating their achievement, are described in an explicit way.

– The generation process is more modular (a declarative specification is used).
– This kind of description unifies the knowledge representations used by the inter-

pretation and generation mechanisms. Hence, these mechanisms can share some
models (knowledge) and processes.



The first section of this paper presents the main plan-based models used to
manage dialogue. We discuss then the problems arising from the use of these
models in utterances generation and we present new models enabling the inte-
gration of an exclusive plan management1 of dialogue. We briefly discuss the
advantages of such kind of modeling framework. Finally, this framework is illus-
trated by an example.

1 Plan-based models used in dialogue

Grosz and Kraus [6] have developed a formal model that specifies the beliefs and
intentions that must be held by collaborative agents engaged in a collective ac-
tivity. This model called Shared Plan (SP) is applied in a dialogue understanding
context. The essential idea is that agents participating in a dialogue (discourse)
have a collaborative behavior. The SP specifies all needed features to achieve a
collective or individual goal. Agents produce utterances to reach a goal that is,
they intend to satisfy all features expressed in the SP for this goal.

Lochbaum [7] has defined her interpretation process with the SP concept.
The outcome of this process is represented by a graph structure, her Rgraph (or
Recipe Graph). This graph represents all recognized goals participating to more
abstract ones. In fact, this structure is a hierarchical tree of goals. Rgraph is a
multi-agent plan containing detected goals of the dialogue participants.

Carberry, Lambert [8], Ardissono [9] use a Discourse Model (DM), Litman
and Allen [10] a Plans Stack (PS), to capture the intentions of the dialogue
participants. DM and PS are very similar to Lochbaum’s Rgraph.

For the modeled agent (system), these dialogue representations seem to de-
scribe the system beliefs on user’s intentions, and some local intentions of the
system. The system has a description of the common activity (as Rgraph, DM,
PS, etc). The part of the representation describing the system beliefs on the
users intentions is often used as data (input) for utterances generation. The re-
lations between interventions (actions) of the system agent and its partners are
modeled through multi-agents plans.

2 Generating dialogue through plan-based models

We think that the understanding of intentions is not the recognition of some
“common” plan, but in particular the understanding of the fact that the other
partner may/must have a complementary view.

The use of Rgraph or DM or . . . plan-based models in generation process
poses some problems. These models describe the intentions (goals) of discourse
participants. At least two agents interact in discourse, therefore these plan-
based models are multi-agent plans. Unfortunately, multi-agent plans can not
be performed. Generally, some tasks miss in multi-agent plans to be carried out
by agents. For example, the multi-agent plan: Obtain-Info-Ref(A,B,...) by
1 Interpretation and generation.



achieving Ask-Ref(A,B,...) and Answer-Ref(B,A,...) can not be performed
in this form by A. To achieve his part of this plan, the A agent must wait the
B’s answer. This waiting task is not described in this multi-agent plan. However,
this task is required to the Obtain-Info-Ref(A,B,...) achievement.

More generally, an agent only achieves his actions2. Plans performed by an
agent are thus mono-agent plans. Therefore, an executable plan-based model
must be mono-agent. The interaction modeling in these mono-agent plans re-
quires the utilization of synchronization tasks (as wait, etc). The previous multi-
agent plan can be translated for A agent as follow: Obtain-Info-Ref(A,B,...)
by Ask-Ref(A,B,...) and Wait-Answer(A,B,...). The synchronization task
Wait-Answer(A,B,...) replaces the task Answer-Ref(B,A,...) ascribed to B
agent. This Obtain-Info-Ref(A,B,...) plan version is now achievable by A
agent.

3 Modeling principle for dialogue generation and
understanding

The key point of our modeling principle is: each knowledge is described from
the point of view of the modeled agent. As discussed above, dialogue generation
requires mono-agent plans.

3.1 Modeling primitives

The primitives proposed here are conceived to be handled by some classical mech-
anisms of planning, plan-based approaches of discourse and knowledge systems
research areas. A task/method paradigm is chosen to describe our hierarchical
models.

Task A task is an action represented as follows:
Name Task name
Par List of handled typed

parameters
Objective Task goal expressed in

state form
Methods list of methods achieving

the task
The parameter list specifies the set of world objects handled by the task. All

defined methods (or way to achieve) during the modeling phase are recorded in
the method list of the considered task.

2 Ascribed to him.



Method A method describes a way (at only one level of abstraction) to achieve
a task.

Header Task carried out
Cond-app Applicability conditions
Prec Preconditions set
Effects Effects set
Control Subtasks performance order
Subtasks Subtask set
The action carried out by a method is indicated by the heading. Applicability

conditions3 are used to constrain the method instantiation. Preconditions and
effects sets are handled in the usual way. The order of subtasks performance is
described in the control field; subtasks are recorded in the subtasks set.

Terminal task A terminal task is directly executable. Its execution does not
require the description of its decomposition.

Handling mechanisms Mechanisms applied in our plan-based models are
planning (plan recognition4) processes and execution engines. Cond-app, Prec,
Effects and Subtasks are used for planning and plan recognition purpose (see
Camilleri [11, 12]).

Execution engines commonly used in task/method models can roughly be
sketched by the following steps:

1. If the current task is a terminal task then execute it else
2. Select an applicable method (by checking Cond-app and Prec) to the current task.
3. Apply the selected method by performing the control field, which determinates the

new task to be executed, and so on.

These execution engines can be applied on a task/method model to gen-
erate dialogue. The production of utterances results from the discourse tasks
achievement (as Ask-ref(...) task of the figure 1), that is the application of
an execution engine on discourse tasks.

3.2 Agent plan libraries

In plan-based approaches of discourse understanding, two kinds of knowledge
play a crucial role: plan library, which enumerates the set of possible domain
plans and user model describing agent’s preferences. The former represents the
knowledge allowing the achievement of domain goals, usually the latter describes
the methods more likely employed by a particular agent (or group of agents).

The domain plan library appears in the majority of approaches as common
ground knowledge. However, some possible differences of knowledge between
3 as action parameters.
4 Plan recognition is the process of infering (in term of plans) an agent’s intention

from his observed behavior.



agents are modeled through the methods and the goals preferences in user model.
User model can also contain some plans, which are specific to a user. Usually,
these particular plans correspond to erroneous (flawed) plans. In fact, all possible
plans (methods) allowing the domain tasks achievement are described in domain
plans. This library is filtered by user’s preferences.

The plan recognition process interprets utterances from the plans contained
in the common ground knowledge. The understanding process is guided by the
user model, which possibly adapts plans to the modeled user.

In our plan-based framework, plans are used to generate and understand dia-
logues. Models are described in the task/method paradigm previously presented.

In our framework, the following categories of plan libraries are used:

– The Domain plan library represents all agent’s goals (tasks) and methods typical to
the application domain. This library specifies all way used by the agent to achieve
the domain tasks.

– The Agent plan library describes the agent’s behavior. The agent’s behavior li-
brary is composed of discourse, activity, extension/execution and cooperative sub-
libraries. These sub-libraries are independent of the application domain, and thus
more generic. Discourse plans describe the different ways to communicate with
others. The activity library represents agent life cycle. Extension/execution plans
specify the planning/execution process. The cooperative plans define the distribu-
tion5 and adapt plans to the current cooperative context.

– The User plan library describes the system’s (or modeled agent) beliefs on its
users. This library consists of two categories of plans: The system’s beliefs on
the methods employed by users to carry out tasks, and the system’s beliefs on
the system representation owned by users (image of oneself). The later category
describes the methods whose users think the system uses.

4 Dialogue example

In this part, we illustrate our plan-based framework by the following dialogue
adapted from Ardissono et al [9]. Agents participating to this dialogue are a
system (noted S) and a user (U). The dialogue domain is the exam university
registration. Students use this system to register themselves for exams.

U: Could you register me for the m10
exam ?

S: What’s your name ?
U: Mario Rossi.
S: Ok, you are registered.

A part of S’s plan-based models used in this example are mentioned in the
figure 1. The system goal is to register the user Register(S,U,ex) by obtaining
the user name (tasks Request-ref(...) and Perceive-ref(...)) , checking
the user situation (Check-student(...)) and registering him/her (Register-
-student(...)). The system also knows the user registration way (cf. user plan

5 The agents which perform tasks.



library). Only, the discourse and activity plan libraries are partly exposed, for
brevity reasons the problem solving level (composed of extension/execution and
cooperative plan libraries) is not presented here.

Fig. 1. Agent models

All plan libraries are mono-agent.
The plans in the figure 2 represent the various goals recognized and achieved

by the agent S (system) during the proposed dialogue. The plan in the left
side (boxed with wide dotted line) describes user’s task recognized from his
utterances and model. The plan sketched in the right side (boxed with small
doted line) represents the system tasks plan recognized by user corresponding
in this application to the system plan.

The utterance “Could you register me for the m10 exam ?” is translated by
the surface act Utterance-act(...). The plan recognition is applied to interpret
(explain) this task from the Register(...) task. This process builds the plan in
the top left corner (figure 2) by accomplishing the following reasoning: The user
has performed the Utterance-act(...) to achieve Locutionary-act(...), be-
cause the former task is only a subtask of the latter. The Locutionary-act(...)
is a subtask of several methods, but the utterance form analysis indicates that
this utterance is an Ask-do(...) act. The Ask-do(...) belongs to the Request-
-do(...) method which is a subtask of Register(u1,m10) task.

The generation of the “What’s your name ?” utterance is provoked by the
top right plan execution. The system performs the Work(s) task by choosing and
executing the method { Interpret(...), Find-GoalToPerform(...), ...},
and so on. Utterance production is accomplished by the Utterance-act(...)
achievement.



Fig. 2. Dialogue Plans

In the figure 2, the boxed plan corresponds to the path responsible of a speak
turn. Subtask/task links mean that the bound tasks are either a subtask or the
same task as the upper task. Goal edges specify that an effect of the original
task indicates to the hearer that the speaker wants something, and the task in
the target side describes the way whose the agent considers the goal6.

All built plans are mono-agent plans. A direct link between a question (as
“What’s your name ?”) and an answer (“Mario Rossi”) does not exist. This link
is accomplished through a goal adoption task Find-GoalToPerform(...). We
do not try to model the dialogue for itself but we describe the agent behavior,
which entails the dialogue generation.

Conclusion and future work

Using plan-based model to generate utterances in dialogue enables an incremen-
tal system modeling. It is difficult in practice to completely model all behaviors
of an intelligent system and its users in one step. We think that plan-based
models appear to be a good way to represent agent’s behavior. These models
are expressed in a declarative way, which improve the model readability, modu-
larity; they also facilitate the system maintenance, evolution, etc and enable an
incremental design.

The dialogue generation and understanding is a huge problem, however we
think that the representation of agent’s behavior seems to be a good approach
to manage dialogue7. The knowledge of the others points of view appears to be
6 In this example, the agent adopts the goal.
7 Enabling to handle a great number of dialogues.



important to design agents. Of course, all the knowledge constituting an agent is
built (and inferred) from the agent’s point of view. However, the agent can have
some knowledge about points of view of the others. The key point of our modeling
principle is that we represent the knowledge of an agent participating to (inside)
the collective activity. We do not try to represent the dialogue, neither to describe
the knowledge of all agents engaged in the activity. Only the necessary knowledge
to the goals achievement of the modeled agent is regarded and established.

The agent plan library seems to be generic and reusable in several applica-
tions. Our aim is to design a set of agent plan libraries representing the potential
agent behavior. This library set can constitute a knowledge base from which an
agent library (for an application) can be constructed. Currently, we are focalized
on the cooperation library and the features required to represent (and the way
to design) a user model.

References

1. Austin, J.L.: How To Do Things With Words. Havard University Press, Cambridge
Massachussetts (1962)

2. Searle, J.S.: Les Actes de Langage. Editions Hermann Paris (1972)
3. Grice, P.H.: Meaning. Philosophical Review 56 (1957) 377–388
4. Bratman, M.E.: Intentions in Communication. In: What is Intention? P r cohen,

j l morgan, m e pollack edn. MIT Press, Cambridge MA (1990) 15–31
5. Wilensky, R.: Meta-planning: Representing and using knowledge about planning in

problem solving and natural language understanding. Cognitive Science 5 (1981)
197–233

6. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial
Intelligence 86 (1996) 269–357

7. Lochbaum, K.E.: A collaborative planning model of intentional structure. Com-
putational Linguistics 24 (1998) 525–572

8. Carberry, S., Lambert, L.: A tripartite model of collaborative dialogue. Submitted
to International Journal of Human-Computer Studies (??) ??

9. Ardissono, L., Boella, G., Lesmo, L.: A plan based agent architecture for in-
terpreting natural language dialogue. appear in International Journal of Human
Computer Studies, Academic Press 52 (2000) 583–635

10. Litman, D., Allen, J.: A plan recognition model for subdialogues in conversations.
Cognitive Science 11 (1987) 163–200

11. Camilleri, G.: A generic formal plan recognition theory. In: IEEE International
Conference on Information, Intelligence and Systems ICIIS’99. (1999) 540–547

12. Camilleri, G.: Une approche, basée sur les plans, de la communication dans les
systèmes à base de connaissances coopératifs. PhD thesis, Université Paul Sabatier,
IRIT (Institut de Recherche en Informatique de Toulouse) (2000)


