
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Bisimilarity of Processes with Finite-state
Systems

by

Petr Jančar
Antonín Kučera

FI MU Report Series FIMU-RS-97-02

Copyright c© 1997, FI MU May 1997

Bisimilarity of Processes with
Finite-state Systems�

Petr Jančary

e-mail: jancar@osu.cz

Antonín Kučeraz

e-mail: tony@fi.muni.cz

Abstract

We describe a general method for deciding bisimilarity for pairs of
processes where one process has finitely many states. We apply this
method to pushdown processes and to PA processes. We also demon-
strate that the mentioned problem is undecidable for ‘state-extended’
PA processes.

1 Introduction

The aim of this paper is to highlight an approach for deciding bisimulation
equivalence between (some) infinite-state systems and finite-state ones.
Previous results like [JM95], [AK95] and [JE96] in fact employed special
instances of the general method described in this paper. Furthermore, we
present two (new) applications to the classes of pushdown processes and
PA processes. As an immediate consequence we obtain semi-decidability
of regularity for these process classes. On the other hand, if we extend
PA processes with a finite-state control unit, we obtain a calculus with full
Turing power and the mentioned problems become undecidable.

�Supported by GA ČR, grant number 201/97/0456
yDept. of Computer Science, Univ. of Ostrava and Techn. Univ. of Ostrava, Czech

Republic
zFaculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Repub-

lic

1

The first result indicating that decidability issues for bisimilarity are
rather different from the ones for language equivalence is due to Baeten,
Bergstra, and Klop. They proved in [BBK87, BBK93] that bisimilarity is
decidable for context-free grammars in GNF (this class of processes is also
known under the name ‘normed BPA’). Much simpler proofs of this were
later given in [Cau88], [HS91] and [Gro91]. In [HS91] Hüttel and Stirling
used a tableau decision method and gave also sound and complete equa-
tional theory.

If we replace the binary sequential operator with the parallel operator,
we obtain BPP processes. They can thus be seen as simple parallel pro-
grams. Christensen, Hirshfeld and Moller proved in [CHM93] that bisim-
ilarity is decidable for BPP processes.

Another positive result [Sti96] is due to Stirling—it says that bisimilar-
ity is decidable for normed PDA processes.

Jančar demonstrated in [Jan95] that bisimilarity is undecidable for la-
belled Petri nets. However, if one of those nets is bounded (i.e., finite-
state), bisimilarity becomes decidable (see [JM95]).

Abdulla and Kindahl proved in [AK95] that bisimilarity is decidable
between lossy channel systems and finite-state processes.

In this paper we show that bisimilarity is decidable for any pair of pro-
cesses such that one process of this pair is a (general) PDA or PA process
and the other process has finitely many states. Moreover, we also show
that bisimilarity cannot be checked effectively between state-extended PA
processes and finite-state ones.

Another interesting property of processes is regularity. A process is reg-
ular if it is bisimilar to some finite-state one. Jančar and Esparza proved
in [JE96] that regularity is decidable for labelled Petri nets. Consequently,
it is also decidable for BPP processes. Burkart, Caucal and Steffen demon-
strated in [BCS96] that regularity is decidable for BPA processes. Another
class of normed PA processes has been studied by Kučera in [Kuč96]—
regularity is decidable even in polynomial time. A recent result [Jan97]
due to Jančar says that regularity is decidable for one-counter processes.

Our results on decidability of bisimilarity between PDA (or PA) pro-
cesses and finite-state processes immediately imply semi-decidability of
regularity for PDA and PA processes. On the other hand, regularity of
state-extended PA processes is shown to be undecidable.

2

2 Definitions

Transition systems are widely accepted as a structure which can exactly
define operational semantics of processes. In the rest of this paper we un-
derstand processes as (being associated with) nodes in transition systems
of certain types.

Definition 1 (transition system). A transition system T is a triple (S;Act;!)
where S is a set of states, Act is a set of actions (or labels) and!� S�Act�S
is a transition relation.

As usual, we write s a
! t instead of (s; a; t) 2! and we extend this notation

to elements of Act� in an obvious way (we sometimes write s !� t instead
of s

w
! t if w 2 Act� is irrelevant). A state t is reachable from a state s if

s !� t.
A transition system T = (S;Act;!) is finitely-branching if each state has

finitely many immediate successors. T is image-finite is the set ft j s a
! tg

is finite for each s 2 S and a 2 Act.

Definition 2 (bisimilarity). Let T1 = (S1;Act1;!1), T2 = (S2;Act2;!2) be
transition systems. A binary relationR � S1�S2 is a bisimulation if whenever
(s; t) 2 R, then for each a 2 Act1 [Act2:

� if s a
!1 s0, then t a

!2 t0 for some t0 such that (s0; t0) 2 R.

� if t a
!2 t0, then s a

!1 s0 for some s0 such that (s0; t0) 2 R.

States s 2 S1 and t 2 S2 are bisimulation equivalent (or bisimilar), written
s � t, if there is a bisimulation relating them.

In case of finitely-branching (and even image-finite) transition systems
bisimilarity is characterizable using the following sequence of approxima-
tions (the symbol N0 denotes the set of nonnegative integers):

Definition 3. Let T1 = (S1;Act1;!1), T2 = (S2;Act2;!2) be transition sys-
tems. The family f�i j i 2 N0g is defined inductively as follows:

� s �0 t for all s 2 S1 and t 2 S2.

� s �i+1 t iff for each a 2 Act1 [Act2:

3

– if s a
!1 s0 then t a

!2 t0 for some t0 such that s0 �i t0.

– if t a
!2 t0 then s a

!1 s0 for some s0 such that s0 �i t0.

It is easy to see that each�i is an equivalence relation; moreover, it is easily
decidable in case of finitely-branching transition systems.1 The following
proposition is standard.

Proposition 1. Let T1;T2 be image-finite transition systems and let s and t be
states of T1 and T2, respectively. Then s � t iff s �i t for each i 2 N0.

2.1 PA processes

Let Act = fa; b; c; : : :g be a countably infinite set of atomic actions. Let Var =
fX;Y;Z; : : :g be a countably infinite set of variables such that Var \ Act = ;.
The class of PA expressions is defined by the following abstract syntax
equation:

EPA ::= � j a j aEPA j EPAkEPA j EPATEPA j EPA:EPA j EPA + EPA

Here a ranges over Act and X ranges over Var. In the rest of this paper we
do not distinguish between expressions related by structural congruence
which is the smallest congruence relation over PA expressions such that
the following laws hold:

� associativity for ‘:’, ‘k’ and ‘+’

� ‘�’ as a unit for ‘:’, ‘k’, ‘T’ and ‘+’

� commutativity for ‘k’ and ‘+’

� a� = a

As usual, we restrict our attention to guarded expressions; a PA expression
E is guarded if there is a PA expression E0 such that E and E0 are structurally
congruent and every variable occurrence in E0 is within the scope of an
atomic action.

1We assume that transition systems are defined in a “reasonable” way, i.e., the sets
of states and labels are recursive, and the set of immediate successors of each state is
effectively constructible.

4

aE a
! E

E a
! E0

E:F a
! E0:F

E a
! E0

E + F a
! E0

F a
! F0

E + F a
! F0

E a
! E0

EkF a
! E0kF

F a
! F0

EkF a
! EkF0

E a
! E0

ETF
a
! E0kF

E a
! E0

X
a
! E0

(X
def
= E 2 ∆)

Figure 1: SOS rules

A PA system is defined by a finite family ∆ of recursive process equa-
tions

∆ = fXi
def
= Ei j 1 � i � ng

where Xi are distinct elements of Var and Ei are guarded PA expressions,
containing variables from fX1; : : : ;Xng. The set of variables which appear
in ∆ is denoted by Var(∆).

Each PA system ∆ determines a transition system whose states are PA
expressions with variables from Var(∆) (called PA processes), Act is the set
of labels, and the transition relation is determined by the SOS rules of Fig-
ure 1.

We can even suppose each PA system to be in normal form (which is
called Greibach normal form by analogy with CF grammars).

Definition 4 (GNF for PA systems). A PA system ∆ is in Greibach normal
form (GNF) if each defining equation from ∆ is of the form

Xi
def
=
X

j

aij�ij

where aij 2 Act and �ij is a PA expression over the signature fk; T; :g, including �
(the set of all such expressions is denoted VPA(∆)). The set

S
i;jf(Xi; aij; �ij)g is

denoted by BT∆ (Basic Transitions of ∆).

Given a PA system ∆ and a PA process E, it is possible to construct a PA
system ∆0 in GNF and a PA process E0 2 VPA(∆0) such that E � E0 (see
[BEH95]). Hence the assumptions that ∆ is in GNF and PA processes are
elements of VPA(∆) can be used w.l.o.g. Each transition � a

! � is then due
to a unique element of BT∆0 which is denoted Step(�

a
! �).

5

If we omit the ‘k’ and ‘T’ operators from the definition of PA systems,
we get an important subclass of BPA systems. Greibach normal form for
BPA allows to assume that BPA processes are sequences of variables; in
the next subsection we extend PA systems with finite-state control unit.
If we apply the same construction to BPA systems, we obtain exactly the
class of pushdown (PDA) systems.

2.2 State-extended PA processes

A state-extended PA system is a triple = (∆;Q;BTSt) where ∆ is a PA
system in GNF, Q is a finite set of states, and BTSt � BT∆ �Q�Q is a set of
state-extended basic transitions.

The transition system generated by a state-extended PA process =
(∆;Q;BTSt) has Q � VPA(∆) as the set of states (its elements are called
state-extended PA processes, or StExt(PA) processes for short), Act is the set
of labels, and the transition relation is determined by the rule

(p; �)
a
! (q; �) iff � a

! � and (Step(�
a
! �); p; q;) 2 BTSt

As we already mentioned in the previous section, the class of pushdown
(PDA) systems can be obtained by extending BPA with a finite-state con-
trol unit; PDA processes are thus StExt(BPA) processes in fact.

3 The general method

In this section we describe the promised general method for deciding bisim-
ilarity between two processes where one process has finitely many states.
For notation simplification, we adopt the following conventions:

� F denotes a finite-state transition system with k states.

� G denotes a (general) transition system.

� Labels of F and G are elements of a finite set Act.

Note that each PA or StExt(PA) system actually contains only finitely many
actions, hence the set Act can be considered as finite.

Lemma 1. Let f1; f2 be two states of F. Then f1 � f2 iff f1 �k�1 f2.

6

Proof:
‘)’: Obvious.
‘(’: As F has k states, �k�1 =�k (note that �i is a refinement of �i�1 for
each i 2 N) and hence �k�1 =�k =�.

Now we come to the crucial proposition.

Proposition 2. Let g and f be states of G and F , respectively. Then g � f iff
g �k f and for each g0 such that g !� g0 there is a state f 0 of F with g0 �k f 0.

Proof:
‘)’: Obvious.
‘(’: We prove that the relation

R = f(g0; f 0) j g !� g0 and g0 �k f 0g

is a bisimulation. Let (g0; f 0) 2 R and let g0 a
! g00 (the case when f 0 a

! f 00 is
handled is the same way). By definition of �k, there is f 00 such that f 0 a

! f 00

and g00 �k�1 f 00. It suffices to show that g00 �k f 00; as g !� g00, there is a state
f of F such that g00 �k f . By transitivity of �k�1 we have f �k�1 f 00, hence
f �k f 00 (due to Lemma 1). Now g00 �k f �k f 00 and thus g00 �k f 00 as required.
Clearly (g; f) 2 R and the proof is finished.

Proposition 2 enables the following general strategy for deciding whether
or not g � f :

1. Decide whether g �k f (if not then g 6� f).

2. Check whether g can reach a state g0 such that g0 6�k f 0 for each state f 0

of F (if there is such a g0, then g 6� f ; otherwise g � f).

As we deal with processes associated with finitely-branching transition
systems, the first condition is easily decidable. We can thus concentrate
on the latter one. The aim of the following definition is to characterize all
‘k-step’ behaviours.

Definition 5 (Tree-process). For each i 2 N0 we define the set of Trees over
Act with depth at most i as follows:

� The only Tree with depth 0 is a tree with singleton node and no arcs.

7

� A Tree with depth at most i + 1 is any directed tree with root r whose arcs
are labelled with elements of Act which fulfills the following conditions:

– There is no arc ending in r.

– If r
a
! s, then the subtree rooted by s is a Tree with depth at most i.

– If r
a
! s and r

a
! s0, then the subtrees rooted by s and s0 are non-

isomorphic.

Each Tree can be seen as a transition system. Tree-processes are associated with
roots of Trees.

It is clear that for any finite set Act and i 2 N0 there are only finitely many
Trees (and hence also Tree-processes) over Act with depth at most i (up
to isomorphism). More precisely, the total number of such Trees (denoted
NT(i)) is given by

� NT(0) = 1

� NT(i + 1) = 2n:NT(i), where n = card(Act)

States of G which can be distinguished from any state of F within the first
k steps can be characterized by the following set of Trees:

Definition 6 (INCF). The set INCF of Tree-processes which are incompatible
with F is defined as follows:

INCF = fT j T is a Tree-process with depth at most k
and T 6�k f for each state f of Fg

It is obvious that the general method can be applied to a class of processes
P if the following ‘reachability’ problem is decidable:

The R-problem

Instance: [k;P;T] where k 2 N, P is a process of P and T is a Tree with
depth at most k

Question: Is there a state P0 such that P !� P0 and P0 �k T?

8

4 Applications

In this section we apply the previously described general method to PDA
processes and PA processes. In both cases we just demonstrate decidabil-
ity of the R-problem.

4.1 PDA processes

We prove that the R-problem for PDA processes can be reduced to the
problem whether an extended pushdown automaton2 accepts a nonempty
language (this problem is known to be decidable—see e.g., [HU79] for gen-
eral introduction to automata theory).

Theorem 1. Bisimilarity is decidable between PDA processes and finite-state
processes.

Proof: Let [k; p�;T] be an instance of R-problem and let = (∆;Q;BTSt)
be the PDA system (i.e., StExt(BPA) system) associated with p�. As the
‘k-step’ behaviour of each PDA process q
 is completely determined by
the first k symbols of
, each process which is related with T by �k has a
representative in the following finite set:

Rep = fq
 j length(
) � k and q
 �k Tg

The set Rep is effectively constructible. Now we want to check whether p�
can reach a state r� such that one of the following conditions holds:

� length(�) � k and r� 2 Rep

� length(�) > k and Rep contains an element r� where � is the prefix of
� of length k.

To do this, we construct an extended pushdown automaton A which has
Q[fstart; finalg as the set of states, and Var(∆)[fZ0g as the stack alphabet
(start is the initial state, final is the only final state, and Z0 is the stack
bottom). The transition function � is determined as follows:

2An extended pushdown automaton is a nondeterministic pushdown automaton
which can “see” a bounded prefix of its stack. It can be simulated by an effectively con-
structible pushdown automaton.

9

� �(start; �;Z0) = f(p; �Z0)g

� if qX a
! r
 then (r;
) 2 �(q; a;X)

� �(q; �;
) = f(final;
)g for each q
 2 Rep such that length(
) = k

� �(q; �;
Z0) = f(final;
Z0)g for each q
 2 Rep such that length(
) < k

The automaton A enters a final state (i.e., accepts a word) iff the process
p� can reach a state which is related with T by �k. This reduction proves
the theorem.

4.2 PA processes

Before we prove an analogous theorem for PA processes, we need to intro-
duce further notation. Let T1 = (S1;Act;!1; r1), T2 = (S2;Act;!2; r2) be
two Trees with depth at most k (remember that Trees can be seen as rooted
transition systems—the first three elements of the tuple are interpreted in
the same way as in case of transition systems; the last one denotes the
root). Furthermore, we assume that S1 \ S2 = ;. Processes T1kT2, T1:T2

and T1 + T2 are defined as follows:

� T1kT2 is associated with the node (r1; r2) in the transition system
(S1 � S2;Act;!) where ! is the least transition relation satisfying
the following rules:

– s a
!1 s0) (s; t) a

! (s0; t) for each t 2 S2.

– t a
!2 t0) (s; t) a

! (s; t0) for each s 2 S1.

� T1:T2 is associated with the node r1 in the transition system (S1 [S2;
Act;!) where ! is the least transition relation satisfying the follow-
ing rules:

– s
a
!1 s0 ^ s0 is not a leaf) s

a
! s0

– s a
!1 s0 ^ s0 is a leaf) s a

! r2

– t a
!2 t0) t a

! t0

� T1 + T2 is associated with the node r1 in the transition system (S1 [

S2 � fr2g;Act;!) where ! is the least transition relation satisfying
the following rules:

10

– s a
!1 s0) s a

! s0

– r2
a
!2 t) r1

a
! t

– t
a
!2 t0 ^ t 6= r2) t

a
! t0

In the proof of the following theorem we employ a general technique
known as tableau system, a goal-directed proof method. It is specified by a
finite system of inference rules of the form

goal
subgoal1 � � � subgoaln

(side conditions)

A tableau for a goal G is a maximal proof tree whose root is labelled G
and where immediate successors of each node are determined by appli-
cation of one of the rules (side conditions optionally specify some restric-
tions). These rules are applied only to nodes which are not terminal. Ter-
minal nodes are either successful or unsuccessful; a successful tableau is a
finite tableau where all leaves are successful terminals. Other tableaux are
unsuccessful.

If we want to demonstrate decidability of some problem P by means
of a tableau system, it suffices to prove that the tableau system fulfills the
following conditions:

1. Each tableau is finite and there are only finitely many tableaux with
a given root (finiteness).

2. If there is a successful tableau rooted by an instance P of the problem
P, then P is a positive instance (soundness).

3. For each positive instance P of the problem P there is a successful
tableau rooted by P (completeness).

If all the mentioned conditions are true, we can decide P by an exhaustive
search for a successful tableau.

Theorem 2. Bisimilarity is decidable between PA processes and finite-state pro-
cesses.

Proof: Decidability of R-problem will be demonstrated by a tableau sys-
tem specified by the rules of Figure 2. Let [k;E;T] be an instance of R-
problem and let ∆ be the PA system associated with E (we do not require

11

aE; T
E; T

(*) aE; T
E; T

(*)

E1 + E2; T

E1; T

E1 + E2; T

E2; T

E1 + E2; T

E1; T

E1 + E2; T

E2; T

E1:E2; T
E1; T1

(T �k T1:T2 ^ E2 �k T2)
E1:E2; T

E2; T
(E1 !

� �)

E1:E2; T

E1; T1

(T �k T1:T2 ^ E2 �k T2)
E1:E2; T

E2; T
(E1 !

� �)

E1kE2; T
E1; T1 E2; T2

(T �k T1kT2)
E1kE2; T

E1; T1 E2; T2

(T �k T1kT2)

E1kE2; T

E1; T1 E2; T2

(T �k T1kT2)
E1TE2; T

E1; T1 E2; T2

(T �k T1kT2)

E1TE2; T

E1; T1 E2; T2

(T �k T1kT2)
X; T
E; T

(X
def
= E 2 ∆)

X; T

E; T
(X

def
= E 2 ∆)

Figure 2: Tableau rules for the proof of Theorem 2

12

∆ to be in GNF). We determine whether E !� E0 for some E0 such that
E0 �k T by constructing a tableau rooted by E; T.

Nodes of each tableau are labelled by expressions of the form E; T or
E; T, where E is a PA process and T is a Tree with depth at most k. Side
conditions place some restrictions on Trees which can be used in subgoals.3

Terminal nodes are defined as follows:

� A successful terminal is a node E; T such that E �k T (note that nodes
of the form E; T cannot be successful terminals).

� Unsuccessful terminals can be divided into two groups as follows:

1. A node of the form �; T or �; T where � 6�k T.

2. A node for which there is another node with the same label
above (along the path from the root).

Intuition which stands behind the design of tableau rules is formally ex-
pressed by the following predicate Pr of nodes:

� Pr(E; T) = true iff E !� E0 for some E0 such that E0 �k T.

� Pr(E; T) = true iff E
w
! E0 for some E0 and w 2 Act� such that E0 �k T

and length(w) � 1.

To finish the proof, we need to show finiteness, soundness and completeness
of the tableau method.

Nodes are labelled by pairs of the form E; T or E; T, where E is a subex-
pression of a PA expression contained either in the root or in some defin-
ing equation from ∆, and T is Tree with depth at most k. As there are only
finitely many such subexpressions and the set of all Trees with depth at
most k is also finite, there are only finitely many (potential) labels. This
gives an obvious bound on the depth of each tableau (recall the definition
of unsuccessful terminal). As each tableau is finitely branching, it must be
finite (due to König’s lemma). For the same reason there are only finitely
many tableaux with a given root.

For soundness, it suffices to prove that the root of each successful tabl-
eau satisfies the predicate Pr. This is rather straightforward—terminal

3The side condition E !�
� means that E can reach the empty expression; this property

is also known as normedness and it is easily decidable.

13

nodes clearly satisfy Pr and each rule of Figure 2 is backward sound in the
sense that if all subgoals satisfy the predicate Pr, then the goal satisfies Pr.

Completeness is slightly more complicated. We need to show that
if [k;E;T] is a positive instance of R-problem, then there is a successful
tableau with the root E; T. To do this, realize the following fact: if a node
labelled E0; T0 satisfies Pr, then it is possible to apply an instance of one
of the rules of Figure 2 in such a way that all newly-added subgoals sat-
isfy Pr. This is easy to check. Each such instance is called a good instance.
Naturally, there can be many good instances for one node—to build a suc-
cessful tableau, we always choose an instance with minimal cost. A cost of
a good instance is defined to be the sum of distances of all subgoals, where
the distance of a subgoal E00; T00 is defined as

minflength(w) j E00 w
! F where F �k T00g

A tableau for [k;E;T] which is built according to this strategy cannot con-
tain an unsuccessful terminal of the type 1. Moreover, it cannot contain an
unsuccessful terminal of the type 2; this follows from an observation that
one of the (*) rules has to be applied at least once before the same label
(say E0; T0) occurs again—and it contradicts minimality of cost of the good
instance which was applied to the first (upper) occurrence of E0; T0.

5 An undecidability result

In this section we prove that bisimilarity is undecidable between StExt(PA)
processes and finite-state processes. We also demonstrate undecidability
of the regularity problem for StExt(PA) processes. These results are simple
consequences of the fact that an arbitrary Minsky machine can be simu-
lated by an effectively constructible StExt(PA) process. In other words,
StExt(PA) is a calculus with full Turing power.

5.1 The Minsky machine

The Minsky machine (denoted here by M) is equipped with two counters
C1;C2 which can store nonnegative integers. The behaviour ofM is deter-
mined by a finite-state program, composed of m 2 N labelled statements

14

l1 : s1

l2 : s2
...
lm�1 : sm�1

lm : HALT

where for each i; 1 � i < m the statement si is of one of the following
forms:

si =

(
Cj = Cj + 1; goto lk

if Cj = 0 then goto lk else Cj = Cj � 1; goto ln;

where j 2 f1; 2g. The machine M starts its execution (with given input
values on C1;C2) from the command l1. M halts if it reaches the com-
mand ‘HALT’ in a finite number of steps, and diverges otherwise. Minsky
has shown in [Min67] that an arbitrary Turing machine can be simulated
by an effectively constructible Minsky machine. This implies that the halt-
ing problem of Minsky machine is generally undecidable.

5.2 The simulation

Let M be an arbitrary Minsky machine whose program has m statements
and counters initialized to v1 and v2. We construct a StExt(PA) system
 = (∆;Q;BTSt) as follows:

� ∆ contains the following equations:

Z1
def
= a(I1:Z1) + aZ1

I1
def
= a(I1:I1) + a

Z2
def
= a(I2:Z2) + aZ2

I2
def
= a(I2:I2) + a

� Q = fq1; : : : ; qmg

� BTSt is determined by the following rules:

1. If the program of M contains an instruction of the form
li : Cj = Cj + 1; goto lk

then BTSt contains the elements qiZj
a
! qk(Ij:Zj) and qiIj

a
! qk(Ij:Ij).

15

2. If the program of M contains an instruction of the form
li : if Cj = 0 then goto lk else Cj = Cj � 1; goto ln

then BTSt contains the elements qiZj
a
! qkZj and qiIj

a
! qn.

3. Each element of BTSt can be derived using the rule 1 or 2.

The machineM is simulated by the StExt(PA) process

' � q1((I1: � � � :I1| {z }
v1

:Z1)k(I2: � � � :I2| {z }
v2

:Z2))

Intuitively, counters of M are simulated by two BPA processes which are
combined in parallel on the ‘stack’ and the program of M is simulated by
the finite-state control unit of . Each step of M is mimicked by ' which
emits the action a. Let Y be a process defined by Y

def
= aY. If the machineM

diverges then ' � Y. If the machine M halts then ' 6� Y, because ' emits
the action a only finitely many times (note that M is deterministic). This
reduction proves the following theorem:

Theorem 3. Bisimilarity is undecidable between StExt(PA) processes and finite-
state processes.

Remark 1. Bisimilarity is not the only behavioural equivalence which appeared
in the literature; Rob van Glabbeek presented in [vG90] a hierarchy of equiva-
lences, relating them w.r.t. their coarseness. The finest equivalence in this hier-
archy is bisimilarity, and at the very bottom is trace equivalence. It is easy to see
that the previous theorem can be generalized to all equivalences of van Glabbeek’s
hierarchy because ifM does not halt, then ' and Y are even not trace equivalent.

Now we can easily prove that regularity of StExt(PA) processes is also un-
decidable. The following definition recalls the notion.

Definition 7. A process X is regular if there is a process X0 with finitely many
states such that X � X0.

Theorem 4. Regularity is undecidable for StExt(PA) processes.

Proof: We use a similar reduction as in the previous theorem—given a
Minsky machine M, we construct the StExt(PA) system . Now we mod-
ify the system slightly—we add a new state q0 which can be entered only

16

from qm (for any contents of the ‘stack’). The state q0 can manipulate the
‘stack’ in such a way that there are infinitely many states (up to bisimi-
larity) reachable from the process q0
 for any
 2 VPA(∆). The resulting
system is denoted 0. If M does not halt, then the process ' is regular,
because it is again bisimilar to Y

def
= aY. If M halts, then ' is non-regular as

it can reach a state of the form q0
.

6 Conclusions

We described a general method for deciding bisimilarity between (some)
infinite-state processes and finite-state ones. Successful application of this
method to the classes of PDA and PA processes immediately imply semi-
decidability of regularity (by exhaustive search for bisimilar finite-state
process). Decidability of regularity (i.e., semi-decidability of the negative
subcase) is left open. Furthermore, we also demonstrated that if we extend
PA processes with a finite-state control unit, we obtain a calculus with full
Turing power and the mentioned problems become undecidable.

It is worth mentioning that a similar method can be designed for de-
ciding weak bisimilarity (see e.g., [Mil89]) between some infinite-state pro-
cesses and finite-state ones. The problem whether this method can be ap-
plied to PA and/or PDA processes is a part of ongoing research. The same
problem was shown to be decidable for BPP processes in [May96], and un-
decidable for Petri nets and lossy channel systems in [JE96] and [AK95],
respectively.

References

[AK95] P.A. Abdulla and M. Kindahl. Decidability of simulation and
bisimulation between lossy channel systems and finite state sys-
tems. In Proceedings of CONCUR’95 [Con95], pages 333–347.

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. In Proceedings of PARLE’87, volume 259 of LNCS,
pages 93–114. Springer-Verlag, 1987.

17

[BBK93] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of
bisimulation equivalence for processes generating context-free
languages. Journal of the Association for Computing Machinery,
40:653–682, 1993.

[BCS96] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and
the process taxonomy. In Proceedings of CONCUR’96 [Con96],
pages 247–262.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite
state processes with sequential and parallel composition. In Pro-
ceedings of POPL’95, pages 95–106. ACM Press, 1995.

[Cau88] D. Caucal. Graphes canoniques de graphes algebriques. Rap-
port de Recherche 872, INRIA, 1988.

[CHM93] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is de-
cidable for all basic parallel processes. In Proceedings of CON-
CUR’93, volume 715 of LNCS, pages 143–157. Springer-Verlag,
1993.

[Con95] Proceedings of CONCUR’95, volume 962 of LNCS. Springer-
Verlag, 1995.

[Con96] Proceedings of CONCUR’96, volume 1119 of LNCS. Springer-
Verlag, 1996.

[FST96] Proceedings of FST&TCS’96, volume 1180 of LNCS. Springer-
Verlag, 1996.

[Gro91] J.F. Groote. A short proof of the decidability of bisimulation for
normed BPA processes. Information Processing Letters, 42:167–
171, 1991.

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words:
Proving bisimilarity for context-free processes. In Proceedings of
LICS’91, pages 376–386. IEEE Computer Society Press, 1991.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

18

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some
related problems. Theoretical Computer Science, 148(2):281–301,
1995.

[Jan97] P. Jančar. Bisimulation equivalence is decidable for one-counter
processes. To appear in Proc. of ICALP’97. LNCS. Springer-
Verlag, 1997.

[JE96] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to
bisimilarity. In Proceedings of ICALP’96, volume 1099 of LNCS,
pages 478–489. Springer-Verlag, 1996.

[JM95] P. Jančar and F. Moller. Checking regular properties of Petri
nets. In Proceedings of CONCUR’95 [Con95], pages 348–362.

[Kuč96] A. Kučera. Regularity is decidable for normed PA processes in
polynomial time. In Proceedings of FST&TCS’96 [FST96], pages
111–122.

[May96] R. Mayr. Weak bisimulation and model checking for basic par-
allel processes. In Proceedings of FST&TCS’96 [FST96], pages 88–
99.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Min67] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, 1967.

[Sti96] C. Stirling. Decidability of bisimulation equivalence for normed
pushdown processes. In Proceedings of CONCUR’96 [Con96],
pages 217–232.

[vG90] R.J. van Glabbeek. The linear time—branching time spectrum.
In Proceedings of CONCUR’90, volume 458 of LNCS, pages 278–
297. Springer-Verlag, 1990.

19

Copyright c© 1997, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

