
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Bounding Volume Hierarchy Analysis (Case
Study)

by

Radek Oslejšek

FI MU Report Series FIMU-RS-2000-13

Copyright c© 2000, FI MU December 2000



Bounding Volume Hierarchy Analysis
(Case Study)

Radek Oslejsek
oslejsek@fi.muni.cz

Faculty of Informatics
Masaryk University

Brno, Czech Republic

Abstract

Bounding Volume Hierarchies are very popular structures for ob-
jects storage of virtual scenes. In this article various OO models of
BVH are analysed and described using UML. The first part compares
structure of bounding volume hierarchy with inner structure of vir-
tual scene representation. The second part is focused on relationship
between a class hierarchy of scene graph and a class hierarchy of
BVH.

Analysis of bounding volume hierarchies is a part of a major
project dealing with analysis of computer graphics architectures.
Ideas originate from experimental architecture under development.
Case study shows how the current OO technology and software en-
gineering may bring distinct architectural and design concepts into
computer graphics.

Keywords: Bounding volume hierarchy, scene graph, rendering,
UML

1 Introduction
An applications of computer graphics often works with wide scenes
comprised by a big amount of primitives. For an efficient access to
each primitive it is necessary to have stored them in any kind of
structure providing quick search. This is required not only by local
illumination computation or collision detection but mainly by global
illumination methods because during a light distribution we have ac-
tually to probe the whole scene for every individual primitive again
and again. In the computer graphics structures for object storage are
usually called Space Sorting Structures.

1



The most popular and the most often used is just the Bounding Vol-
ume Hierarchy - BVH. Bounding volumes should help with effective
scene search, that is it should optimize object selection based on given
strategy. To do that it should cooperate closely with scene graph.

Scene Graph - SG is hierarchical structure representing a virtual
scene. It is a tree which nodes are drawable objects (geometric prim-
itives, fog, etc.), special nodes like “link to sub-tree” or “sound” and
finally there are group nodes. The last type creates tree ramification.
It stores information about its sons and also offers their maintenance
and inspection. Typical specialization of Group node is Transform
node which manage geometric transformations of all sons towards
upper objects.

Now we have defined basic terms. To be able to describe relation-
ships between bounding volumes and scene graph we summarize
requirements for their properties first.

The first requirement to scene objects proceeds from description
above: There is a possibility to store them hierarchically using scene
graph. Together with geometric transformations hierarchical order
allows an easy definition of complex scene with conditions like “a
chair is rotated and translated towards a table” and also it facilitates
quick look up.

The second requirement to objects is an ability to draw them.
Therefore they have to provide informations about their geometry
(form) and illumination features (color, texture, transparency, etc.)

The third necessary functionality is intersection computation. On
the one hand we need to be able to compute intersection of beam
with object (used by ray-tracing for instance), on the other we need
to compute intersection with any object in scene during collision de-
tection. Even so in this article both types are called by the single term
intersection.

Last required feature was already mentioned when we have
talked about hierarchical representation of scene. Such a feature is
geometric transformation. It is necessary to distinguish between two
types of such transformations. The first one may be named “static
transformation” and it is used only for a definition of static scene
(see example with chair and table above). Then its main property
is that objects can be rotated and translated to each other when the
scene is created but this transformation is fixed during the scene ma-
nipulation. Expressed the same in different way, transformations are
fixed inside the scene and they are not available from outside. Sec-

2



ond type is “dynamic transformation” which allow sub-scene rota-
tion anytime. They are available from outside the scene and therefore
this solution brings a lot of problems with interface design. But such
dynamic scene changes are not significant to BVs (see ideas about
transformations inside BVH bellow). Therefore they are ignored here.

When we look at the properties required for bounding volume
then we can see that they are very similar to properties required for
objects of scene. BVH is a tree like scene graph is. Also we would
like to draw particular bounding volumes. That can be used for ap-
proximation of objects far enough from an avatar. In such case we
can replace a big amount of triangles forming object surface by a few
volumes from selected level of tree composed by only a few poly-
gons. Also the third functionality is similar to scene objects. BVH is
used for quick search of candidates to point of intersection. Therefore
it should support computation of intersection with light beam. For a
collision detection it also should provide computation of intersection
with another bounding volume. BV must be also transformable to-
gether with packed objects.

2 BVH Structure Analysis
This chapter is focused on two variants of hierarchical representa-
tion of bounding volumes in comparison with scene graph definition.
Both discussed solutions differs in a way how a BVH and a scene
graph are constructed and how they are managed.

2.1 Self-Managed Bounding Volume Hierarchy
The first solution defines BVH as a structure independent on scene
graph. The class BoundingVolume depicted in Figure 1(a) contain
pointers to sons or in the case of leaf node it contain pointer to list
of stored objects. Let me note that object stored in BVH may by any
object of scene graph not only a primitive.

Because this arrangement implies that the structure of BVH is un-
der its full control, it is called Self-Managed Bounding Volume Hierar-
chy, shortly Self-managed Hierarchy or Self-Managed BVH.

This arrangement has three advantages:

1. BVH directs its own structure. BVH decides where a new ob-
ject of scene is stored or haw a tree depth is managed (for in-

3



Figure 1: Class diagram of self-managed hierarchy (a) and an example
with geometric transformations (b)

stance maximal amount of objects in leaves versus maximal tree
depth).

2. Ability to optimize computation with other bounding volume
hierarchies. Because BVH know its own structure then it is able
to traversing it efficiently and in some cases it is able to cooper-
ate with another BVH which also know its inner structure.

3. Inner nodes of BVH have only a simple structure without geo-
metric transformations and usually they have only a fixed num-
ber of sons. Then it is possible to pass through the tree from root
to leaf very quickly and then to speed up search of interesting
objects.

Absence of transformations inside BVH discussed in third point
is not contradict to requirement of transformation of BVH described
in previous section. What we really want is to be able to transform
stored objects individually - that is their inner functionality, or to be
able to transform all stored objects together - that is transformation
of the whole tree which is not protected (see Figure 1(b)).

Usage of self-managed model has also some disadvantages:

1. Hierarchy without transformations inside and objects stored
only in leaves deplores us to pass through entire tree with no
benefit until leaves. Only in leaves is stored any useful informa-
tion like candidates to intersection.

2. It is possible to reasonably work only with one type of bound-
ing volume in one hierarchy because it is rather hard to propose

4



Figure 2: Class diagram of outside-managed hierarchy (a) and an example
of scene graph (b)

enough general OO model of hierarchy combining for example
box and sphere as its BV. The trick how to reduce such restric-
tion is to store in leaves another BVH instead of only object of
scene. But this is quite brute adaptation.

Operations over BVH can be implemented in two ways. Firstly
they can be fixed in interface. But this solution brings some problems
when we want to append new operation into existing class hierarchy.
The second way is to append general methods for tree traversing into
the interface and to use them for children inspection. More detailed
discussion is in section 3.1.

Conclusion is that a structure of self-managed model is mainly
useful in situation when we want to store mutually static objects like
any complex solid approximated by a big amount of planar polygons.
In such case there is a free space for various optimizations and speed-
ups. But we can use discussed arrangement also as a repository of
entire scene graphs or a parts of scene graphs managing transfor-
mations internally and therefore we are not restricted to only static
scenes without transformations. Moreover, the next way haw to add
geometric transformation to self-managed hierarchy is to rotate and
translate BVH as a whole.

5



2.2 Outside-Managed Bounding Volume Hierar-
chy
The second view to bounding volume hierarchy definition is based
on the fact that both the scene graph and the BVH are trees. The basic
idea is to use structure of scene graph also as a structure of bounding
volume hierarchy. Every node of scene graph contain a pointer to
bounding volume packing itself (and all its sons), see Figure 2(a) and
(b). Hence now we have to understand the term Bounding Volume as
a really single BV rather then entire bounding volume hierarchy like
in self-managed model. Therefore in the following text it is necessary
to distinguish between the shortcut BV denoting single volume and
the shortcut BVH used for entire hierarchy.

Contrary to self-managed BVH, hierarchy defined by this second
way is completely dependent on the structure of scene graph and
is also managed together with scene graph management. This is the
reason why it is called outside-managed BVH .

Using outside-managed hierarchy has advantage that there is not
necessary to define separate structure and methods for its adminis-
tration. That may save a lot of work and it also brings simple unified
interface usable for both structures. This interface only offers meth-
ods for tree structure management (setup of children) and methods
for its traversing. All other operations like collision detection are ap-
plied externally. Finally it is possible to use different volumes for dif-
ferent nodes.

On the other hand, the tight interconnection between scene graph
and bounding volumes, the structure of BVH managed outside and
finally the unified interface for structure traversing are very restric-
tive for optimizations of methods working with volumes. Additional
disadvantage is that using this model brings troubles with usage of
another space sorting structures like Unified Space Sorting because
almost of such non tree structures cannot be associated with single
scene graph node in this tree context.

3 Structural Models of BV Definition
In previous chapter there was described two variants of coexistence
between bounding volume hierarchies and scene graphs from point
of view of their management. Contrary, following paragraphs are fo-

6



Figure 3: Bounding volume hierarchy defined separately

cused on possible bounding volume definitions in comparison with
class diagram of scene graph.

3.1 Independent Definition of BVH
In the first case, the class hierarchy of bounding volumes and the
class hierarchy of scene graph objects are defined completely inde-
pendently. Using such a solution bounding volumes may be seen as
a something special from visible objects of virtual scene. Event so,
bounding volumes still have to provide two methods common for
both the BV and the drawable object. That is visualization and inter-
section computation. Let look at them more closely.

The main meaning of bounding volume is to approximate any
generally complex object by surface with easy mathematical manip-
ulation. Therefore the bounding volume should have its geometri-
cal properties prepared for effective computation of intersection with
beam and with other volumes. Hence it should be easy to implement
such methods.

A little bit complicated is visualization because BV can be ren-
dered using various shading techniques from Phong’s shading
through wire-frame model up to any kind of global illumination.
But every such technique requires different description of material
and geometry (for instance radiosity require polygonal approxima-
tion for its job). Therefore there must be used quite complex model
denoting illumination and geometry properties for every BV. But the
same complex model must be created also for depictable objects of

7



Figure 4: Bounding volume defined as a special geometry and a special
primitive respectively

scene. Then it is rational to define geometry and appearance only
once and to use it simultaneously by both classes. The most straight-
forward seems to associate the light properties with Primitive and in
the BoundingVolume class to redefine method display() in the way
that it instantiates colored primitives - see Figure 3(a).

Described approach assumes existence of a single primitive with
geometry suitable for bounding volume. To get around this restric-
tion the method display() can instantiate any objects of scene graph
i.e. Group rather than primitive only. This solution allows creation of
complex geometry composed by more primitives. But such process-
ing may be quite complex. To became this solution a little bit clear
and flexible it seems to be better to move visualization from single
method display() into the special class Visualizer which encapsulates
this functionality (Figure 3(b)).

Separate definition is applicable for single volume used by
outside-managed hierarchy as well as for BVH used in self-managed
model.

3.2 BVH as a Special Scene Object
Next three OO models works with BV like with object of scene
graph having some special features. Therefore all three models de-
fines bounding volumes as a specialization of various classes from
scene graph.

8



Figure 5: BVH as a specialization of Group node

The first two possibilities depicted in Figure 4 have very similar
class diagrams. One of them looks at a bounding volume as at a spe-
cial geometry. The second one uses BV as a special primitive. Both
the principles are exactly the same. The only difference is that the
scene designer instantiates appropriate bounding volume directly or
he must instantiate some general primitive first and then to assign
valid geometry to it..

It is easy to imagine the usage of described models for defini-
tion of single volume in outside-managed hierarchy. But because the
classes Geometry and Primitive are understood as a simple non-
separable objects it is wasteful to define entire BVH in such a way.

The third approach is based on the fact that both the bounding
volume hierarchy and the Group node are mainly used for object
storage. Accordingly a BVH is defined as specialization of just the
Group class (Figure 5).

It is folly to define single volume inherited from class representing
container and then this approach is not suitable for outside-managed
model.

To be able to exploit power of entire BVH defined by this ap-
proach we must use existing methods for scene traversing in a little
different way or we must fix all operations over BVH into its inter-
face. The reason for that is based of the fact that standard methods
for scene graph traversing works directly with stored sub-nodes (get-

9



Sons(), setSons()) but the inner structure of class keeps hidden. If we
want to exploit knowledge of inner structure from outside then we
have to adapt each operation onto the actual structure or we must be
able to work with each inner nodes of BVH.

For instance, let assume that we want find candidates to inter-
section with ray. Using only the getSons() operation working in the
standard way we must test all children sequentially. But when we fix
the function getCandidates() into the interface then the function can
return the most probable candidates first. Another already depicted
way is to use existing traversing methods not for look up of stored
children but for traversing of BVH inner structure. It means that the
method getSons() returns children nodes in bounding volume hierar-
chy instead of really stored objects of scene.

Fixed operations are essential mainly in cases when also other
types of space sorting may be used because not all space sorting
structures are tree-based. But this approach have one disadvantage.
When it is necessary to append some new operation into existing
class hierarchy then all its classes must be properly changed. How-
ever the solution is to use ITERATOR pattern described in [GoF95].
More about several patterns may be also found in [Alex77], [Folw97],
[Niem81], [Risi98], etc.

4 Conclusion
In previous chapters there was discussed two basic views on rela-
tionship between bounding volume hierarchy and scene graph. The
first view have described two variants of BVH definitions: by sepa-
rate structure independent of scene graph and secondly as a part of
scene graph. The second part was focused on definition of bounding
volumes in comparison with class hierarchy of scene graph.

Various combinations of models taken from both views are appli-
cable to various tasks. Suitability of their usage strongly depends on
requirements to scene manipulation and rendering techniques. The
main goal of this article was not to explicitly name which combina-
tion are best for any concrete application. There was only mentioned
restrictions and advantages of some combinations found during im-
plementation of experimental architecture.

10



References
[Alex77] Alexanderi Ch., Ishikawa S., Silverstein M., Jacobson M.,

Fiksdahl-King I., Angel S.: A Pattern Language. Oxford Univer-
sity Press, New York, 1977.

[Folw97] Fowler M.: Analysis patterns reusable object models.
Addison-Wesley, Menlo Park, 1997.

[Lea97] Lea D.: Concurrent programming in JAVA : design principles
and patterns. Addison Wesley, Reading, 1997.

[Malv97] Malveau R.C., Mowbray T.J.: Corba design patterns. John
Wiley & Sons, New York, 1997.

[GoF95] Gamma E., Helm R., Johnson R., Vlissides J.: Design pat-
terns elements of reusable object-oriented software. Addison-
Wesley, Reading, 1995.

[Coad97] Coad P.: Object models : strategies, patterns and applica-
tions. Yourdon Press, Upper Saddle River, 1997.

[Niem81] Niemann H.: Pattern Analysis. Springer-Verlag, Berlin,
1981.

[Vlis98] Vlissides J.: Pattern hatching : design pattens applied.
Addison-Wesley, Reading, 1998.

[Buch96] Buschmann F. [et al.]: Pattern-oriented software architec-
ture : a system of patterns. John Wiley & Sons, Chichester, 1996.

[Risi98] Rising L.: Patterns handbook : techniques, strategies, and
applications. Cambridge University Press, Cambridge, 1998.

[Zika97] K. Zikan a P. Konecny, Lower Bound of Distance in 3D,
Technical Report of FI MU, FIMU-RS-97-01, 1997.

[Sowi97] Sowizral H., Rushforth K., Deering M.: The Java 3D API
Specification. Addison-Wesley, 1997.

[Ames97] Ames A.L., Nadeau D.R., Moreland J.L.: VRML 2.0 Source-
book. John Wiley & Sons, 1997.

[Brow98] Brown W.J.: AntiPattern : refactoring software, architec-
tures, and projects in crisis. John Wiley & Sons, 1998.

[Chen95] Chen S.E., Turkowski K., Turner D.: An Object–Oriented
Testbed for Global Illumination. In: Laffra et al. (Eds.) Object–
Oriented Programming for Graphics. Springer–Verlag, 1995,
pp.155–166

11



[Slus95] Slussalek,P., Seidel,H.P.: Vision - An Architecture for Global
Illumination Calculations. In: IEEE Trans. Visualization & Com-
puter Graphics 1(1), 1995

[Fell95] Fellner,D.W.: MRT - An Extensible Platform for 3D Image
Synthesis. Computer Graphics Lab., Dept. of Computer Science,
University of Bonn, Germany, Dec. 1995

[Fell96] Fellner,D.W.: Extensible Image Synthesis. In: Object-Oriented
and Mixed Programming Paradigms, Wisskirchen P., (Ed.), Focus
on Computer Graphics, Springer, Feb. 1996

[Schr96] Schroeder W., Martin K., Lorensen B.: The Visualiza-
tion Toolkit : An Object-Oriented Approach to 3D Graphics,
Prentice-Hall, 1996.

12



Copyright c© 2000, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic


