
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Constrained Rewrite Transition Systems

by

Jan Strejček
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Abstract

We extend broadly studied rewrite transition systems with a mecha-
nism for computing with partial information in the form similar to
that one used in Concurrent Constraint Programming (CCP). Two
new classes of transition systems (fcBPA and fcBPP) are introduced as
this extension changes expressibility power of rewrite transition sys-
tems corresponding to BPA and BPP. The power of rewrite systems
corresponding to other classes (FSA, PDA, PPDA, and PN) remains
unchanged. The new classes are inserted to the hierarchy of standard
process classes presented by Moller [Mol96].

1 Introduction

For many years, computing with partial information is one of deeply stud-
ied domains of theoretical computer science. This conception becomes
even more interesting in conjunction with the idea of concurrency as this
combination corresponds to situations occurring in real world and thus can
be used for modeling such situations.

One of the most successful applications of the ideas of concurrency and
computing with partial information has led to Concurrent Constraint Pro-
gramming (CCP) presented by Saraswat [Sar89] and consequently studied
∗This work has been partially supported by the Grant Agency of Czech Republic, grants

No. 201/00/0400 and No. 201/00/1023.
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also by Rinard, Panangaden, de Boer, Palamidessi and others (see Refer-
ences for more details). In CCP processes work concurrently with a shared
store, which is seen as a constraint on the values that variables can assume.
At any stage of the computation, the store is given by the constraint estab-
lished until that moment. CCP provides two primitive actions for the ma-
nipulation with the store, tell and ask. The execution of a tell action modifies
the current store by adding a constraint (tell can be executed under the con-
dition that the store keeps consistent, i.e. there is some valuation of variables
which satisfies constraint in the store). An ask action is a test on the store –
it can be executed only if the current store is strong enough to entail a spec-
ified constraint. If this is not the case, then the process suspends (waiting
for the store to accumulate more information by the contributions of the
other processes). The execution of an ask itself leaves the store unchanged.
Hence both tell and ask actions are monotonic in the sense that after their
execution the store contains the same or more information. Therefore the
store evolves monotonically during the computation, i.e. the set of possible
values for the variables shrinks.

Operational semantics of concurrent systems is traditionally modeled
by labelled transition systems. For CCP such an operational semantics was
given by Saraswat in [Sar89]. Caucal [Cau92] presents an elegant classi-
fication of transition systems using families of rewrite systems defined by
restrictions on rewrite rules related with Chomsky hierarchy. Caucal’s clas-
sification has been generalized by Moller [Mol96] to both, parallel and se-
quential rewrite transition systems.

We include some principles of CCP to rewrite systems with the aim to
observe changes of expressibility power of these systems. The mechanism
of rewrite systems is extended by the store which can contain a partial in-
formation. We talk about constraints (as the theory around CCP does) al-
though we do not specify the shape of partial information as sharply as
CCP does. We add two constraints to every standard rewrite rule. The rule
can be applied only if the actual store is strong enough to entail the first
constraint. The second constraint is added to the store if the extended rule
is used (the rule is applicable under condition the store keeps consistent).
After application of the rule the store contains the same or more informa-
tion, thus we say that the store is monotonic. Extended systems are called
Constrained Labelled Rewrite Transition Systems.

The comparison of standard and constrained rewrite transition systems
gives some interesting results. At first, rewrite systems corresponding to
transition systems of FSA, PDA, PPDA, and PN classes do not change their
expressibility power by adding the store. More interesting result is that the
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expressibility power of rewrite systems corresponding to transition sys-
tems of BPA and BPP classes strictly increases, hence two new classes of
transition systems are introduced and Moller hierarchy is refined.

1.1 Outline of the paper

The rest of the paper is structured as follows. In Section 2 we summarize
Moller’s results, especially the classification and the hierarchy of standard
classes of transition systems. Section 3 defines the notion of constrained
rewrite transition system and presents the classification and the hierarchy
of classes of transition systems which can be defined by such constrained
rewrite transition system. This section also introduces two new classes,
fcBPP and fcBPA, which are studied in detail in Section 4 (fcBPP) and Sec-
tion 5 (fcBPA). The paper closes with a section that summarizes our results
and points out some directions for future research.

2 Rewrite Transition Systems

In this section we summarize (and slightly modify) the first part of Moller’s
paper titled “Infinite Results” [Mol96].

2.1 Definitions

Concurrent systems are modeled semantically as edge-labelled directed
graphs, whose nodes represent the states in which a system may exist, and
whose transitions represent the possible behavior of the system originating
in the state represented by the node from which the transition emanates. A
label assigned to a transition represents an event (or action) corresponding
to the execution of the transition, which will typically represent an inter-
action with the environment. The starting point for our study will be such
graphs (representing processes).

Definition 2.1. A labelled transition system T is a tuple (S,Σ,=⇒, α0, F )
where

• S is a set of states,

• Σ is a finite set of labels,

• =⇒⊆ S×Σ×S is a transition relation, written α a
=⇒ β for (α, a, β) ∈=⇒,
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• α0 is a distinguished start state,

• F ⊆ S is a finite set of final states which are terminal, i.e. for each α ∈ F
there is no a ∈ Σ and β ∈ S such that α a

=⇒ β.

This notion of a labelled transition system differs from the standard def-
inition of a (nondeterministic) finite-state automaton (as for example given
in [HU79]) in possible infiniteness of the set of states and in that final states
must not have any outgoing transitions. This last restriction is mild and
justified by the fact that a final state refers to the successful termination of a
concurrent system. This contrasts with unsuccessful termination (i.e. dead-
lock) which is represented by all non-final terminal states.

We follow the example set by Caucal [Cau92] and consider the fami-
lies of labelled transition systems defined by various rewrite systems. Such
an approach provides us with a clear link between well-studied classes of
formal languages and transition system generators, a link which is of par-
ticular interest when it comes to exploiting techniques from process theory
in solving problems in classic formal language theory.

Definition 2.2. A sequential labelled rewrite transition system V is a tuple
(V,Σ, P, α0, F ) where

• V is a finite set of variables, the elements of V∗ are referred to as states,

• Σ is a finite set of labels,

• P ⊆ V ∗ × Σ × V ∗ is a finite set of rewrite rules, written α
a
−→ β for

(α, a, β) ∈ P . A transition relation =⇒ is derived from P by prefix
rewriting rule, i.e. if α a

−→ β then αγ a
=⇒ βγ for each γ ∈ V ∗,

• α0 ∈ V ∗ is a distinguished start state,

• F ⊆ V ∗ is a finite set of final states which are terminal.

A parallel labelled rewrite transition system is defined as above, except that
the elements of V ∗ are read modulo commutativity of catenation, which is thus
interpreted as parallel composition rather than sequential composition (for example
XBB = BXB = BBX).

We shall freely extend the transition relation =⇒ homomorphically to
finite sequences of actions w ∈ Σ∗ so as to write α ε

=⇒ α and α
aw

=⇒ β

whenever α a
=⇒ γ

w
=⇒ β for some state γ. The set of states α such that
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α0
w

=⇒ α for the initial state α0 and some w ∈ Σ∗ is referred as the set
of reachable states. Although we do not insist that all states are reachable,
we shall assume that all variables in V are accessible from the initial state,
i.e. for each X ∈ V there is some w ∈ Σ∗ and α, β ∈ V ∗ such that α0

w
=⇒

αXβ.
This definition is slightly more general than that given by Caucal which

does not take into account final states nor the possibility of parallel rewrit-
ing as an alternative to sequential rewriting. By doing this, we expand the
study of the classes of transition systems which are defined and extend
some of the results given by Caucal.

2.2 Languages and bisimilarity

An important question in the realm of concurrency theory is to determine
when two transition systems are considered as “the same”. It turns out
that the isomorphism of transition systems is too strong equivalence. The
plethora of other equivalences was defined in eighties by many people, the
catalog of these equivalences was compiled by van Glabbeek [vG90]. We
define just two of them, namely language equivalence and bisimulation
equivalence.

Given a labelled transition system T with initial state α0, we can define
its language L(T ) to be the language generated by its initial state α0, where
the language generated by a state is defined in usual fashion as sequences
of labels associated with transitions leading from the given state to a final
state.

Definition 2.3. The language generated by a labelled transition system T (with
initial state α0 and a set of final states F ) is the set L(T ) = L(α0), where

L(α) = {w ∈ Σ∗ | α
w

=⇒ β for some β ∈ F}.

States α and β of the system T are language equivalent, written α ∼L β, iff they
generate the same language, i.e. L(α) = L(β).

Language equivalence is generally taken to be too coarse. The sec-
ond presented equivalence, bisimulation equivalence, is perhaps the finest
behavioral equivalence studied. Bisimulation equivalence was defined by
Park [Par81] and used to great effect by Milner [Mil80, Mil89]. Its defini-
tion, in presence of final states, is as follows.

Definition 2.4. A binary relation R on states of transition system is a bisimula-
tion iff whenever (α, β) ∈ R we have that
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• if α a
=⇒ α′ then β a

=⇒ β′ for some β′ with (α′, β′) ∈ R,

• if β a
=⇒ β′ then α a

=⇒ α′ for some α′ with (α′, β′) ∈ R,

• α ∈ F iff β ∈ F .

States α and β are bisimulation equivalent or bisimilar, written α ∼ β, iff
(α, β) ∈ R for some bisimulation R.

Bisimulation equivalence has an elegant characterization in terms of
certain two-player games presented by Stirling [Sti95].

The last definition in this subsection is the definition of norm which is
used mainly in Section 5.

Definition 2.5. We define the norm of the state α of a labelled transition system,
written norm(α), to be the length of the shortest rewrite transition sequence which
takes α to a final state, that is, the length of a shortest word inL(α). By convention,
we define norm(α) = ∞ if there is no sequence of transitions from α to a final
state, that is, L(α) = ∅. The transition system is normed iff every reachable state
α has a finite norm.

2.3 Classification

The families of transition systems which can be defined by restricted rewrite
systems can be easily classified using a form of Chomsky hierarchy. (Type
1, context-sensitive rewrite systems do not feature in this hierarchy since
the rewrite rules by definition are only applied to the prefix of a composi-
tion.) This hierarchy provides an elegant classification of several important
classes of transition systems which have been defined and studied indepen-
dently of their appearance as particular rewrite systems. This classification
is presented as follows.

Restriction on the
rules α a

−→ β of P
Restriction
on F

Sequential
composition

Parallel
composition

Type 0 none none PDA PN

Type 11
2

α ∈ QΓ and β ∈ QΓ∗

where V = Q ] Γ 1 F = Q PDA PPDA

Type 2 α ∈ V F = {ε} BPA BPP

Type 3 α ∈ V, β ∈ V ∪ {ε} 2 F = {ε} FSA FSA
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In the reminder of this subsection, we explain the classes of transition
systems which are represented in this table.

FSA represents the class of finite-state automata. Clearly if the rules are
restricted to be of the form A

a
−→ B or A a

−→ ε with A,B ∈ V, then the
reachable states of both the sequential and parallel transition systems will
be a subset of the finite set of variables V .

BPA represents the class of Basic Process Algebra processes of Bergstra
and Klop [BK85], which are the transition systems associated with Greibach
normal form (GNF) context-free grammars in which only left-most deriva-
tions are allowed.

BPP represents the class of Basic Parallel Processes introduced by Chris-
tensen [Chr93] as a parallel analogy to BPA, and are defined by the transi-
tion system associated with GNF context-free grammars in which arbitrary
grammar derivations are permitted.

PDA represents the class of push-down automata which accept on empty
stack. To define PDA as a restricted form of rewrite system, we assume that
the variable set V is partitioned into disjoint sets Q (finite control states)
and Γ (stack symbols). The rewrite rules are of the form pA

a
−→ qβ with

p, q ∈ Q, A ∈ Γ and β ∈ Γ∗, which represents the usual PDA transition
saying that while in control state p with the symbol A at the top of the
stack, PDA may read the input symbol a, move into control state q, and
replace the stack element A with the sequence β. Finally, the set of final
states is given by Q, which represent the PDA configurations in which the
stack is empty. PDA can be seen as a state-extended BPA.

Caucal [Cau92] demonstrates that, disregarding final states, any unre-
stricted (type 0) sequential rewrite transition system can be presented as
a PDA, in the sense that the transition systems are isomorphic up to the
labelling of states. The stronger result, in which final states are taken into
consideration, holds as well.

PPDA represents the class of “parallel” push-down automata, which are
defined as PDA except that they have random access capability to the stack.
Thus a PPDA transition rule pA a

−→ qβ with p, q ∈ Q, A ∈ Γ and β ∈ Γ∗

says that while in control state p with the symbol A anywhere in the stack,
PPDA may read the input symbol a, move into control state q, and replace
the stack element A with the sequence β. As the order of symbols in the

1We assume that α0 ∈ QΓ∗.
2We also assume that the initial state α0 is a member of V .
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stack is ignored, the stack can be seen as a multiset. This is the reason why
PPDA are also called MSA (multiset automata). PPDA can be also presented
as state-extended BPP.

PN represents the class of (finite, labelled, weighted place/transition)
Petri nets, as is justified by the following interpretation of unrestricted par-
allel rewrite systems. The variable set V represents the set of places of
the Petri net, and each rewrite rule α a

−→ β represents a Petri net transi-
tion labelled by a with the input and output places represented by α and
β respectively, with the weights on the input and output arcs given by the
relevant multiplicities in α and β.

2.4 Hierarchy

The classification of standard classes of transition systems presented in pre-
vious subsection gives some relations between these classes directly from
the form of restrictions on corresponding rewrite systems. It is easy to see
that FSA is a subclass of BPA and BPP, BPA is a subclass of PDA, and that
BPP and PPDA are subclasses of PN. Still not hard to see is the fact that
BPP is a subclass of PPDA. The whole hierarchy is depicted in Figure 1.

FSA

PDA

BPP

PPDA

PN

BPA

(*)(*)

Figure 1: Hierarchy of classes of transition systems

The strictness of this hierarchy (except for the relation between PN and
PPDA) with respect to bisimulation equivalence was compactly demon-
strated by Moller in [Mol96], where he complements the results presented
by Burkart, Caucal and Steffen [BCS96]. The strictness with respect to lan-
guage equivalence doesn’t hold in general. For example, both BPA and
PDA express exactly the (ε-free) context-free languages.
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The question about relation between PN and PPDA was partially solved
by Moller in [Mol98], where he presents an example of PN which is not
bisimilar neither to any PPDA nor to any PDA. Uncertainty around exis-
tence of the gaps marked in Figure 1 with (*) remains open.

Recently, Hirshfeld proved in so far unpublished manuscript that PN
and PPDA are language equivalent.

3 Constrained Rewrite Transition Systems

This section presents the new way how some (possibly infinite) transition
systems can be finitely represented as a constrained rewrite transition sys-
tem. The notion of constrained rewrite transition systems has grown up
from rewrite transition systems presented in previous section and from the
idea of the common store used in Concurrent Constraint Programming.

3.1 Constraint systems

The state space and possible evolution of the store used by constrained
rewrite transition systems are described by constraint system, i.e. the set of
constraints, with a structure of an algebraic lattice.

Definition 3.1. A constraint system is a complete lattice (C,≤,∧, tt, ff), where
C is the set of constraints,≤ is an ordering on this set, ∧ is the lub operation, and
tt (true), ff (false) are the least and the greatest elements of C (tt 6= ff).

Following the standard terminology and notation, instead of ≤we will
refer to its inverse relation, denoted by ` and called entailment. Formally

∀m,n ∈ C : m ` n ⇐⇒ n ≤ m.

We say that constraint m is consistent with constraint n iff m ∧ n 6= ff.
The state of the store cannot be ff as we require the consistency of the store
initialized to tt. We will use C� to denote C r {ff}.

Two following examples show constraint systems employed in the rest
of this thesis.

Example 3.2. Let C = {tt, ff},≤= {(tt, ff), (tt, tt), (ff, ff)}. Then Cε is the trivial
constraint system (C,≤,∧, tt, ff) depicted in Figure 2.
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tt

Figure 2: Constraint system Cε
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tt

Figure 3: Constraint system Cmn

Example 3.3. LetC = {tt,m, n, ff},≤= {(tt, ff), (tt,m), (tt, n), (m, ff), (n, ff)}∪
{(o, o) | o ∈ C}. Then Cmn = (C,≤,∧, tt, ff) is the constraint system depicted in
Figure 3.

We add one more example which can provide better illustration of the
relation between partial information, constraint system and the evolution
of the store.

Example 3.4. The Herbrand constraint system on {a, b} with variables x, y is
diagrammatically represented in Figure 4.

3.2 Definitions

Please observe the similarity between following definition of constrained
rewrite transition system (CRTS) and the definition of labelled rewrite tran-
sition system (Definition 2.2). A transition relation is defined separately as
its definition is essential and deserves some explanation.

Definition 3.5. A sequential constrained labelled rewrite transition system
V is a tuple (C, V,Σ, P, α0, F ) where

• C = (C,≤,∧, tt, ff) is a finite constraint system describing the store; the
elements of C represent the states of the store,
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Figure 4: Herbrand constraint system on {a, b}with variables x, y

• V is a finite set of variables; the elements of V∗ × C� are referred to as
states of the transition system,

• Σ is a finite set of labels or actions,

• P ⊆ V ∗ × Σ × V ∗ × C� × C� is a finite set of rewrite rules, written
(α

a
−→ β,m, n) for (α, a, β,m, n) ∈ P ,

• (α0, tt) ∈ V ∗ × C� is a distinguished start state,

• F ⊆ V ∗ × C� is a finite set of final states, which are terminal.

A parallel constrained labelled rewrite transition system is defined as above,
except that the elements of V ∗ are read modulo commutativity of catenation, which
is interpreted as parallel composition now. Thus for example, XBB = BXB =
BBX.

The previous definition specifies the syntax of constrained rewrite tran-
sition systems only. A transition relation =⇒ should be introduced to as-
sign the semantics for the syntax. The following definition stands for both
sequential and parallel case.

Definition 3.6. Let V = (C, V,Σ, P, α0, F ) be a constrained labelled rewrite tran-
sition system. For x, y ∈ V ∗, a ∈ Σ, m,n, o ∈ C� we write (x, o)

a
=⇒ (y, o ∧ n)

iff there exists some rewrite rule (α
a
−→ β,m, n) ∈ P such that x = αγ, y = βγ,

γ ∈ V ∗, o ` m, and o ∧ n 6= ff.
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The last two conditions are very close to principles used in Concurrent
Constraint Programming (CCP). The first one (o ` m) ensures that the ap-
propriate rule will be used only if the actual state of the store entails con-
straint m from the rule (similar to ask(m) in CCP). The second condition
(o∧n 6= ff) guarantees that the store keeps consistent after application of the
rule (analogous to consistency requirement when processing tell(n) action
in CCP). If these two conditions are satisfied then a rewriting under the
rule (α

a
−→ β,m, n) ∈ P corresponds to a prefix rewriting under the rule

α
a
−→ β in standard rewrite transition systems.

We shall freely extend a transition relation =⇒ homomorphically to fi-
nite sequences of actions w ∈ Σ∗ so as to write (x,m)

ε
=⇒ (x,m) and

(x,m)
aw

=⇒ (y, n) whenever (x,m)
a

=⇒ (z, o)
w

=⇒ (y, n) for some (z, o) ∈
V ∗ × C�. The set of states (α,m) such that (α0, tt)

w
=⇒ (α,m) for the initial

state (α0, tt) and some w ∈ Σ∗ is referred as the set of reachable states.

An important observation is that the state of the store (starting at tt)
can move in a lattice C only in one direction, from tt upwards. This can be
easily seen from the fact, that the actual state of the store o can be changed
only by application of some rewrite rule (α

a
−→ β,m, n) ∈ P and after this

application the new state o∧n always entails the old state o. Intuitively, the
partial information can only be added to the store, not retracted. We say
the store has monotonic behavior, or simply that the store is monotonic.

Note that when a rule is used for some transition then this rule can
always be used again because the actual store already entails the first con-
straint of the rule (due to monotonic behavior) and consistency require-
ment is always satisfied. The last statement comes from the fact that the
second constraint of the rule (denoted as n) changes the store only in the
first application of the rule provided the content of the store before this
application (denoted as o) does not entail n (o ∧ n 6= o). All subsequent ap-
plications of this rule do not change the store (again thanks to monotonic
behavior), i.e. for each sequent state p of the store p ∧ n = p holds.

On the other hand, the fact that some rule is applicable (i.e. entailment
and consistency are satisfied) does not imply that this rule is applicable
forever. The insidious point is a consistency requirement. The store can
evolve to a state inconsistent with second constraint from the rule.

The first information about the relation between constrained and stan-
dard rewrite transition systems is provided by following lemma formu-
lated for sequential case (it holds for parallel case too).
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Lemma 3.7. Transition systems defined by sequential rewrite transition system
V ′ = (V,Σ, P ′, α0, F

′) and by sequential CRTS V = (Cε, V,Σ, P, α0, F ) are
isomorphic on the assumption that P′ = {α

a
−→ β | (α

a
−→ β, tt, tt) ∈ P} and

F ′ = {α | (α, tt) ∈ F}.

Proof. Let T be the transition system corresponding to the sequential CRTS
V . The state of the store is tt in every state of T due to the shape of trivial
constraint system Cε (defined in Example 3.2).

Further, rewrite rules of the form (α
a
−→ β, tt, tt) are always applicable

as two necessary conditions are always satisfied (tt ` tt and tt∧ tt = tt 6= ff).
Now we know that the transition system T is of the form (S,Σ,=⇒

, (α0, tt), F ), where S = {(α, tt) | α ∈ V ∗} and the transition relation =⇒
can be alternatively defined as (αγ, tt) a

=⇒ (βγ, tt) for each rewrite rule
(α

a
−→ β, tt, tt) ∈ P and each γ ∈ V ∗.
If we remove tt from the states of transition system T , we get an isomor-

phic system T ′ which corresponds to the rewrite transition system V′.

Roughly speaking, the lemma says that the trivial constraint system
cannot hold any significant information and thus such a constrained rewrite
transition system is isomorphic to the corresponding standard rewrite tran-
sition system. The lemma can be used in both directions, for proving that
CRTS of the specified form has equivalent rewrite transition system as well
as for constructing CRTS equivalent to the given rewrite transition system.

The following lemma describes another case when added constraint
system cannot increase expressibility power of rewrite transition systems.

Lemma 3.8. For every sequential CRTS V = (C, V,Σ, P, α0, F ) with the rewrite
rules of the form (α

a
−→ β, tt, tt), there is (effectively constructible) sequential

rewrite transition system V′ with the transition system isomorphic to the transi-
tion system of V .

Proof. We may assume the constraint system C of V is not the trivial Cε (if
C = Cε then the lemma is a direct corollary of Lemma 3.7).

The fundamental step is to observe that the state n of the store cannot be
changed by any application of the rewrite rule of the form (α

a
−→ β, tt, tt)

as n ∧ tt = n. This means that there is no transition between states (α, n)
and (β,m) for any α, β ∈ V ∗ and m,n ∈ C�, m 6= n.

Next important observation says that applicability of rewrite rules of
the specified form does not depend on the current state of the store as nec-
essary conditions are always satisfied because every m ∈ C entails tt and
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every n ∈ C� is consistent with tt (n ∧ tt = n 6= ff). Thus if there is a tran-
sition (α, tt) a

=⇒ (β, tt) then there is also transition (α,m)
a

=⇒ (β,m) for
every m ∈ C�.

The conclusion is that the transition system defined by V can be sepa-
rated into |C�|3 isolated isomorphic parts. Let Tm denote the part with m

on the store for every m ∈ C�. It is easy to see that if we change the con-
straint system in V to Cε, the modified CRTS describes exactly Ttt. From the
Lemma 3.7 it follows that we can construct a standard rewrite transition
system V ′tt with a transition graph isomorphic to Ttt (i.e. isomorphic to ev-
ery Tm). The desired rewrite transition system V′ consists of |C�| copies of
V ′tt.

Again, the lemma given above holds for parallel case as well. Intu-
itively, the lemma says that if the power of the store is not employed by
the rules, then (without respect to the current constraint system) the con-
strained rewrite transition system is isomorphic to some standard rewrite
transition system. The proof also says that the reachable part of transition
system defined by such CRTS consists of states with tt on the store.

Although adding finite constraint system looks like quite powerless ex-
pansion, in what follows we will demonstrate this mechanism can change
expressibility of standard families of rewrite transition systems in some
cases.

3.3 Languages and bisimilarity

As the syntax of states of transition systems defined by constrained rewrite
transition systems is a bit different from the standard syntax, we enunci-
ate modified definitions of language and bisimulation equivalences. The
meaning of these definitions keeps unchanged.

Definition 3.9. The language generated by a labelled transition system T defined
by some CRTS V = (C, V,Σ, P, α0, F ) is the set L(T ) = L((α0, tt)), where

L((α,m)) = {w ∈ Σ∗ | (α,m)
w

=⇒ (β, n) for some (β, n) ∈ F}.

States (α,m) and (β, n) of T are language equivalent, written (α,m) ∼L
(β, n), iff they generate the same language, i.e. L((α,m)) = L((β, n)).

Definition 3.10. A binary relation R on states of transition system defined by
some CRTS is a bisimulation iff whenever ((α,m), (β, n)) ∈ R we have that

3Syntax |M | is used to denote cardinality of the set M .
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• if (α,m)
a

=⇒ (α′,m′) then (β, n)
a

=⇒ (β′, n′) for some (β′, n′) with
((α′,m′), (β′, n′)) ∈ R,

• if (β, n)
a

=⇒ (β′, n′) then (α,m)
a

=⇒ (α′,m′) for some (α′,m′) with
((α′,m′), (β′, n′)) ∈ R,

• (α,m) ∈ F iff (β, n) ∈ F .

States (α,m) and (β, n) of transition system are bisimulation equivalent or
bisimilar, written (α,m) ∼ (β, n), iff ((α,m), (β, n)) ∈ R for some bisimulation
R.

3.4 Classification

The classification of families of transition systems, which can be defined by
constrained rewrite transition systems, can be obtained in the same way as
in the case of standard rewrite transition systems, i.e. by putting different
restrictions derived from Chomsky hierarchy on rewrite rules.

Restriction on the rules
(α

a
−→ β,m, n) ∈ P

Restriction
on F

Sequential
composition

Parallel
composition

Type 0 none none PDA PN

Type 11
2

α ∈ QΓ and β ∈ QΓ∗

where V = Q ] Γ 4 F = Q×C� PDA PPDA

Type 2 α ∈ V F = {ε} ×C� fcBPA fcBPP

Type 3 α ∈ V, β ∈ V ∪ {ε} 5 F = {ε} ×C� FSA FSA

The contiguous table is very similar to the one presented in Subsec-
tion 2.3. The only two essential differences can be found on the line marked
with “Type 2”. The sameness in other raws states that every transition sys-
tem defined by CRTS of an arbitrary type except type 2 is identical to the
transition system described by an appropriate rewrite system of the same
type with respect to bisimulation equivalence. In fact, the sameness holds
even with respect to isomorphism of transition graphs with one exception
for CRTS of type 3. These statements are corollary of the following theo-
rems and Lemma 3.7.

4We assume that α0 ∈ QΓ∗.
5We also assume that the initial state α0 is a member of V .
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Theorem 3.11. Let V = (C, V,Σ, P, α0, F ) be sequential (resp. parallel) CRTS
of type 1 1

2 or type 0. There exists sequential (resp. parallel) CRTS V′ of the same
type with trivial constraint system Cε, isomorphic to V .

Proof. The idea of the proof for CRTS of type 11
2 is based on the fact that

every state of such a system has just one distinguished variable in the set
Q corresponding to the state of (parallel) push-down automata. Thus the
actual state of the store can be held as a part of such a variable.

Let V be the sequential (resp. parallel) CRTS of type 11
2 defined as V =

(C, Q∪Γ,Σ, P, q0γ0, Q×C�) where constraint system C is of the form (C,≤
,∧, tt, ff), Q and Γ are disjoint sets, q0 is a member of Q, and γ ∈ Γ∗. The
new sequential (resp. parallel) CRTS V′ of type 11

2 , isomorphic to V is con-
structed as V ′ = (Cε, Q′ ∪ Γ,Σ, P ′, q

(tt)
0 γ0, Q

′ × {tt}), where Q′ = {q(m) | q ∈
Q, m ∈ C�} is the set of variables which include the state of the store. In P′

we replace every rewrite rule

(pA
a
−→ qγ,m, n) ∈ P

by the set of rules
(p(o)A

a
−→ q(o∧n)γ, tt, tt) ∈ P ′

for every o ∈ C� which satisfies the entailment condition o ` m and the
consistency condition o∧n 6= ff. In other words, entailment and consistency
conditions are always satisfied in V′, but the power of checking for these
conditions is not lost, just moved to the new set of rules. The isomorphism
of V and V ′ is obvious as every state (q(m)γ, tt) of V ′ corresponds exactly to
the state (qγ,m) of the system V .

A bit different idea is used to prove the theorem for CRTS of type 0.
There is no suitable variable to hold the state of the store, because in gen-
eral in each state there is no variable which participates in every rewrite
rule applicable to this state. But we can add such a variable artificially as
CRTS of type 0 has no restriction on the rules and F (this is impossible for
constrained rewrite transition systems of type 2 due to restrictions on the
rules and on the set of final states).

Let V = (C, V,Σ, P, α0, F ) be a sequential (resp. parallel) CRTS of type 0
with the constraint system C = (C,≤,∧, tt, ff). The new sequential (resp. par-
allel) CRTS V ′ of the same type and isomorphic to V is constructed as
V ′ = (Cε, V ′,Σ, P ′, S(tt)α0, F

′), where V ′ = V ∪ {S(m) | m ∈ C�} is the
set of variables (assuming S /∈ V ), S(tt) is the variable representing the ini-
tial state of the store, F ′ = {(S(m)β, tt) | (β,m) ∈ F}. In P ′ we replace
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every rewrite rule
(α

a
−→ β,m, n) ∈ P

by the set of rules
(S(o)α

a
−→ S(o∧n)β, tt, tt) ∈ P ′

for every o ∈ C�which satisfies the entailment condition o ` m and the con-
sistency condition o∧ n 6= ff. Again, entailment and consistency conditions
are always satisfied in V ′ and the power of checking for these conditions
is moved to the new set of rules. The isomorphism comes from the fact
that every state (S(m)α, tt) of the system V′ corresponds exactly to the state
(α,m) of V .

In general, it is impossible to find rewrite transition system of type 3
which defines transition system isomorphic to the one defined by CRTS of
type 3. The reason is that rewrite transition systems of type 3 have always
just one final state while CRTS of type 3 can have more then one final state.
We decided not to define new class of finite-state automata with more final
states as the difference is inconsiderable due to the fact that every final state
is terminal and thus indistinguishable from other final states with respect
to bisimulation equivalence.

Theorem 3.12. Let V = (C, V,Σ, P, α0, F ) be CRTS of type 3. There exists CRTS
V ′ of type 3 with trivial constraint system Cε, bisimilar to V .

Proof. Except the final states which are of the form (ε,m), each state of
CRTS of type 3 consists of exactly one variable and one constraint. Thus
the actual state of the store can be held as a part of such a variable.

Let V = (C, V,Σ, P, α0, {ε} × C�) be a sequential (resp. parallel) CRTS
of type 3 with the constraint system C = (C,≤,∧, tt, ff). A new sequential
(resp. parallel) CRTS V′ of the same type bisimilar to V is constructed as
V ′ = (Cε, V ′,Σ, P ′, α

(tt)
0 , {(ε, tt)}), where V ′ = {A(m) | A ∈ V, m ∈ C�} is

the set of variables which include the state of the store and α(tt)
0 is the initial

variable holding the initial state of the store. In P ′ we replace every rewrite
rule

(A
a
−→ B,m,n) ∈ P or (A

a
−→ ε,m, n) ∈ P

by the set of rules

(A(o) a
−→ B(o∧n), tt, tt) ∈ P ′ or (A(o) a

−→ ε, tt, tt) ∈ P ′

for every o ∈ C� which satisfies the entailment condition o ` m and the
consistency condition o ∧ n 6= ff. The new rules are constructed to abide by
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the entailment and consistency conditions connected with original rules.
The system V′ is “almost isomorphic” to V in the sense, that each state
(A(m), tt) of V ′ corresponds to the state (A,m) of V . But the isomorphism
is corrupt due to the final state (ε, tt) of V′ corresponding to all reachable
final states (ε,m) of V . As final states are terminal, systems V and V′ are
bisimilar.

Notice that last two proofs provide an idea of algorithms for convert-
ing CRTS of mentioned types to bisimilar rewrite transition systems of the
same type.

Rewrite transition system of type 2 (corresponding to BPA resp. BPP)
can change its expressibility with respect to bisimulation equivalence, when
a finite constraint system is added. The new classes of transition systems
defined by constrained rewrite transition systems of type 2, fcBPA and
fcBPP, come in sight here and will be studied in more details in next sec-
tions.

3.5 Hierarchy

This subsection presents the hierarchy of classes of transition systems il-
lustrated in Figure 1, extended by two new classes, fcBPA and fcBPP. The
position of these classes in the hierarchy follows directly from the classifi-
cation demonstrated in Subsection 3.4, except for the relation between BPA
and fcBPA and between BPP and fcBPP, which follows from Lemma 3.7.
The extended hierarchy is depicted in Figure 5.

The extended hierarchy keeps strict with respect to bisimulation equiv-
alence. The proof can be found in the following sections dedicated to the
new classes. It also will be proved that BPP is a strict subclass of fcBPP and
fcBPP is a strict subclass of PPDA with respect to language equivalence.
On the other hand, from the fact that L(BPA) = L(PDA) it follows that the
language expressibility of fcBPA is identical to the language expressibility
of BPA and PDA.

4 The fcBPP Class

This section presents some basic facts around the class of the transition
systems which can be defined by a parallel constrained rewrite transition
system of type 2. The abbreviation fcBPP corresponds to BPP with finite
constraint system.
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FSA

PN

fcBPP

BPP

PPDA

PDA

BPA

fcBPA

Figure 5: Hierarchy extended with the new classes fcBPA and fcBPP

4.1 BPP is a strict subclass of fcBPP

The class of fcBPP amplifies the power of BPP with poor mechanism of
asynchronous communication via shared store. Although the store is mono-
tonic and has only finite number of possible states, BPP is a strict subclass
of fcBPP. We have already demonstrated that BPP is a subclass of fcBPP,
the strictness follows from the example given below which offers a fcBPP
transition system which is not in BPP class.

Example 4.1. Let V be a parallel CRTS (Cmn, {A,X}, {a, b, c}, P,A, F ) of type 2,
where Cmn is the constraint system from Example 3.3, the set of final states F =
{ε} × {tt,m, n} and P contains the following rules:

(A
a
−→ AX, tt, tt) (X

b
−→ ε,m, tt)

(A
b
−→ ε, tt,m) (X

c
−→ ε, n, tt)

(A
c
−→ ε, tt, n)

Behavior of this system is represented in Figure 6.

Language generated by this system L(V) = {an−1bn, an−1cn | n ≥ 1}
cannot be generated by any BPP due to the Pumping Lemma presented by
Christensen [Chr93] in the following form.

Lemma 4.2 (Pumping Lemma for BPP). Let L be any language of L(BPP ).
Then there exists a constant m such that if u is a word of L and |u| > m then there
exist x, y, z ∈ Σ∗ such that
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_ ^ ] \X Y Z [W V U TP Q R S(ε,m) (X,m)
boo (XX,m)

boo · · ·boo

// (A, tt)

b
OO

a //

c��

(AX, tt)

b

OO

a //

c

��

(AXX, tt)

b

OO

a //

c

��

· · ·

_ ^ ] \X Y Z [W V U TP Q R S(ε, n) (X,n)
coo (XX,n)

coo · · ·coo

Figure 6: Transition system described in Example 4.1

• u = xz,

• |y| ≥ 1,

• ∀i ≥ 0 : xyiz ∈ L.

In conclusion, we demonstrated that fcBPP has bigger expressibility
power than usual BPP even with respect to language equivalence.

4.2 Pumping Lemma

The pumping lemma for fcBPP is formulated and proved in this subsec-
tion. The proof is similar to the one presented by Christensen for BPP case
([Chr93]) thanks to the fact that number of derivation steps which change
the state of the store is bounded due to finiteness of constraint system.

Let V = (C, V,Σ, P, α0, F ) be a constrained rewrite transition system of
type 2. For X ∈ V , let Rm,n(X) denote the set

{Y ∈ V | ∃β ∈ V ∗ : (X,m)
+

=⇒ (Y β,m) and (β, n)
∗

=⇒ (ε, n)}6,

i.e. the set of variables Y which can be derived from (X,m) without changes
on the store and where string of variables β derived from (X,m) during the
derivation of Y can be rewritten to ε without changing the store set to the
constraint n. We extend this definition to multisets of variables in obvious
manner, thus Rm,n(A1A2 . . . Aj) =

⋃
i∈{1,2,...,j}Rm,n(Ai).

6The relation ∗
=⇒ (resp. +

=⇒) is apprehended as usual, i.e. (α,m)
∗

=⇒ (β, n)

(resp. (α,m)
+

=⇒ (β, n)) iff there exists w ∈ Σ∗ (resp. w ∈ Σ+) such that (α,m)
w

=⇒ (β, n).
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Lemma 4.3. Let V = (C, V,Σ, P, α0, F ) be parallel CRTS of type 2. If there exists
some derivation of a word u = u1u2 . . . uk ∈ L(V) of the form

(α0, tt) = (α0,m0)
u1=⇒ (α1,m1)

u2=⇒ . . .
uk=⇒ (αk,mk) = (ε,mk)

such that ∀i ∈ {1, 2, . . . , k},∀X ∈ αi it holds X /∈ Rmi,mk(X), then |u| ≤ h,
where h is a constant depending only on V .

Proof. At first we focus on maximum “flat” parts of the above derivation,
which are of the form

(αi,mi)
ui+1
=⇒ (αi+1,mi+1)

ui+2
=⇒ . . .

ui+j
=⇒ (αi+j,mi+j),

where the state of the store (in following marked as m) keeps unchanged
(m = mi = mi+1 = · · · = mi+j) and i + j = k or m 6= mi+j+1. We denote
u′ = ui+1ui+2 . . . ui+j . From this flat part we deduce another derivation
sequence

(β0γ0,m)
v1=⇒ (β1γ1,m)

v2=⇒ . . .
vp

=⇒ (βpγp,m),

where v1, v2, . . . , vp ∈ Σ+, β0γ0 = αi, in β0 there are all variables from α0

which are rewritten in derivation sequence (αi,m)
u′

=⇒ (αi+j ,m), and in
γ0 there are variables which do not actively participate in this derivation
sequence. Now βlγl (l = 1, 2, . . . , p) rises from βl−1γl−1 by one rewriting of
each variable from βl−1 in the same way as this variable was rewritten in
original flat derivation sequence (thus |vl| = |βl−1|) and still it holds that
βl contains variables, which are rewritten in the original flat derivation se-
quence, while γl contains the other variables (thus γl−1 ⊆ γl). We finish
rewriting when βl is empty (thus βp = ε and γp = αi+j). It is clear that
v = v1v2 . . . vp is a permutation of u′, especially |v| = |u′|. By replacing

(αi,m)
u′

=⇒ (αi+j ,m) with (β0γ0,m)
v

=⇒ (βpγp,m) in the original deriva-
tion we get correct derivation of the word u1 . . . uivui+j+1 . . . un of length
k. Further, for each X in βl (l = 1, 2, . . . , p) there exists αt (i ≤ t ≤ i + j)
such that X ∈ αt.

Now we show that Rm,mk(βl−1) ) Rm,mk(βl) for each 1 ≤ l < p.

“⊇” It comes directly from the fact that each variable from βl has an ances-
tor in βl−1.

“6=” Let us assume that for some 1 ≤ l < p we have Rm,mk(βl−1) =
Rm,mk(βl). For eachX ∈ βl (βl 6= ε) it holds thatX ∈ Rm,mk(βl−1) and
thus X ∈ Rm,mk(βl). From the premise X /∈ Rm,mk(X) follows that
there exists some Y ∈ βl, Y 6= X such thatX ∈ Rm,mk(Y ). Analogous
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reasoning as for X can be done for Y , i.e. from Y ∈ βl it follows that
Y ∈ Rm,mk(βl−1) = Rm,mk(βl) and Y /∈ Rm,mk(Y ), Y /∈ Rm,mk(X).
In conclusion we get Y ∈ Rm,mk(βl) and Y /∈ Rm,mk(XY ). Again,
there exists Z ∈ βl, Z /∈ {X,Y } such that Y ∈ Rm,mk(Z) and thus
also {X,Y } ⊆ Rm,mk(Z). We know Z ∈ βl and Z /∈ Rm,mk(Z), hence
we get Z ∈ Rm,mk(βl) and Z /∈ Rm,mk(XY Z). We can continue in this
fashion to the point where we have the contradiction W ∈ Rm,mk(βl)
and W /∈ Rm,mk(βl).

Hence we have

|V | ≥ |Rm,mk(β0)| > |Rm,mk(β1)| > . . . > |Rm,mk(βp−1)| > 0.

This implies p ≤ |V |. Further, for each 1 ≤ l ≤ p it holds that

|vl| = |βl−1| ≤ |β0|s
l−1 ≤ |β0|s

p ≤ |β0|s
|V |,

where s is a maximum length of right sides of rewrite rules in P . Now we
restrict length of u′

|u′| = |v| =
p∑
l=1

|vl| ≤
p∑
l=1

|β0|s
|V | = p|β0|s

|V | ≤ |V ||αi|s
|V |.

In conclusion we get the restriction on the length of flat parts of the original
derivation

|u′| ≤ |αi|r,

where r = |V |s|V |.
In general it holds that each sequence of derivation steps consists of

non-flat steps and flat derivation sequences. Number of “unflat” steps
(αi,mi)

ui+1
=⇒ (αi+1,mi+1), where mi 6= mi+1, is limited by |C�| − 1. The

cardinality of the set C also constrains the number of flat parts to |C�|.
Therefore

|u| ≤ |C�| − 1 +

|C�|∑
j=1

|α′j |r,

where (α′j ,m
′
j) is the first state of the j-th flat derivation sequence, i.e. m′j

is the j-th different state of the store used in the original derivation and
(α′j ,m

′
j) is the first state in this derivation with the constraint m′j in the

store. Thus (α′1,m
′
1) = (α0, tt).

The last step is to restrict the length of α′j for j > 1. We can deduce a
restriction

|α′j | ≤ |α
′
j−1|+ (s− 1)(|α′j−1|r + 1)
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thanks to the facts that each application of rewrite rule cannot add more
than s− 1 variables to the string of variables in the actual state and that the
number of these applications is limited by the length of the previous flat
string plus one (the unflat derivation step). The previous inequality can be
modified in the following way.

|α′j | ≤ |α′j−1|+ s(|α′j−1|r + 1)

|α′j | ≤ |α′j−1|(1 + rs+ s)

|α′j | ≤ |α′1|(1 + rs+ s)j−1

|α′j | ≤ |α0|(1 + rs+ s)j−1

By summarization we get

|u| ≤ |C�| − 1 + r|α0|

|C�|∑
j=1

(1 + rs+ s)j−1,

where r = |V |s|V |. The sum on the right side of previous inequality can be
modified as it is an geometric progression. The final form of desired h is
then

h = |C�| − 1 + r|α0|
(1 + rs+ s)|C

�| − 1

rs+ s
,

where s is the maximum length of right sides of rewrite rules in P and
r = |V |s|V |.

The pumping lemma formulated below is a simple consequence of the
previous lemma.

Lemma 4.4 (Pumping Lemma for fcBPP). Let L be a language of L(fcBPP)
Then there exists a constant h such that if u is a word of L and |u| > h then there
exist x, y, z, w ∈ Σ∗ such that

• u = xz,

• |y| > 1,

• ∀i ≥ 0 : xyizwi ∈ L.

Proof. Given L we have a parallel CRTS V of type 2 such that L = L(V). It
follows from Lemma 4.3 that each derivation

(α0, tt) = (α0,m0)
u1=⇒ (α1,m1)

u2=⇒ . . .
uk=⇒ (αk,mk) = (ε,mk)
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of the word u = u1u2 . . . uk ∈ L(V), |u| > h contains some state (αj ,mj) =
(Xγ,mj), where X ∈ Rmj ,mk(X). The definition of Rmj ,mk(X) says that
there exist β ∈ V ∗ and y,w ∈ Σ∗ such that |y| ≥ 1, (X,mj)

y
=⇒ (Xβ,mj)

and (β,mk)
w

=⇒ (ε,mk). Now the derivation

(α0, tt)
u1...uj
=⇒ (αj ,mj)

yi
=⇒ (αjβ

i,mj)
uj+1...uk

=⇒ (βi,mk)
wi

=⇒ (ε,mk)

is the correct one for all i ≥ 0. To make the proof complete we should add
that x = u1 . . . uj and z = uj+1 . . . uk.

4.3 fcBPP is a strict subclass of PPDA

From the classification presented in Subsection 3.4 it follows that fcBPP is a
subclass of PPDA.

The pumping lemma represents the powerful instrument which allows
us to enunciate without any other arguments that the language {anbcnden |
n ≥ 0} generated by PPDA from Example 4.5 cannot be generated by any
fcBPP.

Example 4.5. Let V = ({p, q, r,X,A,B}, {a, b, c}, P, pX, {p, q, r}) be a parallel
rewrite system of type 11

2 (corresponding to PPDA), where the set P consists of
the following rewrite rules:

pX
a
−→ pXAB

pX
b
−→ qX

qA
c
−→ q

qX
d
−→ r

rB
e
−→ r

Then L(V) = {anbcnden | n ≥ 0} is the language generated by system V .

To sum up, we have demonstrated that fcBPP is a strict subclass of
PPDA even with respect to language equivalence.

5 The fcBPA Class

This section is devoted to the class of the transition systems which can be
defined by a sequential constrained rewrite transition system of type 2. The
abbreviation fcBPA corresponds to BPA with finite constraint system.
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5.1 BPA is a strict subclass of fcBPA

The fact that the BPA is a subclass of fcBPA follows from Lemma 3.7. The
witness of the strictness can be found in Example 4.1. If we look at the CRTS
described there as to a sequential CRTS, we get fcBPA with the same transi-
tion diagram as the one presented in Figure 6. This transition system is not
bisimilar to any BPA as proven in [Mol96]. The Moller’s argumentation is
as follows.

Suppose that we have a BPA which represents this transition system up
to bisimilarity, and let h be greater than the norm of any of its variables.
Then the BPA state corresponding to (AXh, tt) in Figure 6 must be of the
form Bβ where B ∈ V and β ∈ V +. But then any sequence of norm(B)
norm-reducing transition must lead to BPA state β, while the transition sys-
tem on Figure 6 has two such non-bisimilar derived states, namely (Xk,m)
and (Xk, n) where k = norm(β).

Another example of fcBPA which is not bisimilar to any BPA can be
found in [BCS96]. The transition system is described in following example.

Example 5.1. Let V be a sequential CRTS (Cmn, {A,X, Y }, {a, b, c, d}, P,A, F )
of type 2, where the constraint system Cmn is described in Example 3.3, the set of
final states F = {ε} × {tt,m, n} and P contains the following rules:

(A
a
−→ AX, tt, tt) (X

d
−→ Y,m, tt)

(A
c
−→ ε, tt,m) (Y

d
−→ ε,m, tt)

(A
b
−→ ε, tt, n) (X

d
−→ ε, n, tt)

Behavior of this system is represented in Figure 7.

The transition graph depicted in Figure 7 cannot be described by any
BPA as its factor graph with respect to bisimulation equivalence is not regu-
lar ([CM90]) while the bisimulation collapse of each BPA graph is a regular
graph ([BCS96]).

To conclude, we have demonstrated that fcBPA has greater expressibil-
ity power than classic BPA, but not on the language expressibility level as
L(BPA) = L(PDA) and fcBPA is a subclass of PDA. Thus we haveL(BPA) =
L(fcBPA) = L(PDA).

5.2 fcBPA is a strict subclass of PDA

From the classification of transition systems presented in Subsection 3.4
follows that fcBPA is a subclass of PDA. A PDA transition system which
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_ ^ ] \X Y Z [W V U TP Q R S(ε,m) (Y,m)
doo (X,m)

doo (Y X,m)
doo (XX,m)

doo · · ·oo

// (A, tt)

c
OO

a //

b��

(AX, tt)

c

OO

a //

b

��

(AXX, tt)

c

OO

//

b

��

· · ·

_ ^ ] \X Y Z [W V U TP Q R S(ε, n) (X,n)
doo (XX,n)

doo · · ·oo

Figure 7: Transition system described in Example 5.1

cannot be described up to bisimilarity by any fcBPA is presented in Exam-
ple 5.2.

Example 5.2. The PDA given by the following rewrite rules and the initial state
qX describes transition system represented in Figure 8.

qX
a
−→ qAX qX

c
−→ r rX

b
−→ r

qA
a
−→ qAA qA

c
−→ r rA

b
−→ r

qA
b
−→ q

// qX
a //

c

��

qAX
b

oo
a //

c

��

qAAX
b

oo
a //

c

��

· · ·
b

oo

? > = <8 9 : ;/ . - ,( ) * +r rX
boo rAX

boo · · ·boo

Figure 8: Transition system described in Example 5.2

To see that there is no fcBPA bisimilar to the transition system presented
in Figure 8, suppose that we have such a fcBPA and let M be the set of all
strings α ∈ V ∗ of its variables, such thatα does not contain two occurrences
of any variable. This condition implies thatM is a finite set. Let s be greater
than the norm of any reachable state (α,m), where α ∈ M and m is an
arbitrary member of C�. Then the fcBPA state corresponding to qAsX must
be of the form (α,m) where α /∈ M . This means that there exists some A ∈
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V and β, γ, δ ∈ V ∗ such that α = βAγAδ. Due to bisimilarity with qAsX we
can make transitions under b∗ from (βAγAδ,m) to the state (AγAδ, n) and

then we can make next transitions (AγAδ, n)
cb∗
=⇒ (Aδ, o). The state (Aδ, o) is

bisimilar to the state rAiX of PDA for appropriate i. The only one possible
transition from the state rAiX is the transition with label b. But in the set
of possible transitions from the state (Aδ, o) there is also the transition with
label c corresponding to the rule used for the first transition of previous

derivation sequence (AγAδ, n)
cb∗
=⇒ (Aδ, o) as used rule is usable forever in

CRTS.

To summarize, we have demonstrated that fcBPA is a strict subclass of
PDA with respect to bisimulation equivalence.

6 Conclusion

We have enriched standard rewrite transition systems with the mechanism
related to computing with partial information in the form used in widely
studied Concurrent Constraint Programming. It has been proven that the
enrichment of rewrite transition systems from classes FSA, PDA, PPDA,
and PN with the finite constraint system does not change their express-
ibility with respect to bisimulation equivalence and except for FSA even
with respect to graph isomorphism. It means that we open a more com-
fortable way how to describe transition systems of classes PDA, PPDA,
and PN. On the contrary, the rewrite transition systems of classes BPA and
BPP extended by finite constraint system establish two new classes, fcBPA
and fcBPP, as the expressibility power of such systems increases. We have
demonstrated that BPA is a strict subclass of fcBPA, BPP is a strict subclass
of fcBPP and moreover that fcBPA is a strict subclass of PDA and fcBPP is
a strict subclass of PPDA. We have also presented the Pumping Lemma for
fcBPP.

6.1 Future research

Two topics for our future work are provided by the fcBPP class. The first
one is an open question of decidability of bisimulation equivalence for
fcBPP since the decidability of bisimulation equivalence for BPP has been
already proven by Christensen, Hirshfeld and Moller [CHM93]. Using
Jančar’s method for proving undecidability of bisimulation equivalence
for PN ([Jan95]) Moller [Mol96] has shown that bisimulation equivalence
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is undecidable for PPDA. The second interesting challenge is to specify the
boundary of decidability of weak bisimulation equivalence with finite-state
processes. Mayr has proved in [May96] that weak bisimulation equiva-
lence with finite-state processes is decidable for BPP and Jančar, Kučera
and Mayr [JKM98] have demonstrated undecidability of this problem for
PPDA.

The next task is to extend similarly the transition systems of classes in
Mayr’s PRS-hierarchy [May97], very promising is the extension of the PA
class. Totally different mission is to employ infinite constraint system.

Acknowledgements

First of all, I would like to thank Luboš Brim for his effective help and
encouragement during my work on master thesis. My thanks go also to
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[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some
related problems. Theoretical Computer Science, 148(2):281–301,
1995.
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