
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

On Simulation-Checking with Sequential
Systems

by

Antonín Kučera

FI MU Report Series FIMU-RS-2000-05

Copyright c© 2000, FI MU September 2000

On Simulation-Checking with Sequential

Systems�

Antonı́n Kučeray

Abstract

We present new complexity results for simulation-checking and model-
checking with infinite-state systems generated by pushdown automata
and their proper subclasses of one-counter automata and one-counter
nets (one-counter nets are ‘weak’ one-counter automata computation-
ally equivalent to Petri nets with at most one unbounded place).

As for simulation-checking, we show the following: a) simulation
equivalence between pushdown processes and finite-state processes
is EXPTIME-complete; b) simulation equivalence between processes
of one-counter automata and finite-state processes is coNP-hard; c)
simulation equivalence between processes of one-counter nets and
finite-state processes is in P (to the best of our knowledge, it is the first
(and rather tight) polynomiality result for simulation with infinite-
state processes).

As for model-checking, we prove that a) the problem of simulation-
checking between processes of pushdown automata (or one-counter
automata, or one-counter nets) and finite-state processes are poly-
nomially reducible to the model-checking problem with a fixed for-
mula ' � �X:[z]hziX of the modal �-calculus. Consequently, model-
checking with ' is EXPTIME-complete for pushdown processes and
coNP-hard for processes of one-counter automata; b) model-checking

�This work was supported by the Grant Agency of the Czech Republic, grants No.
201/98/P046 and No. 201/00/1023.

yFaculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,
tony@fi.muni.cz

1

with a fixed formula 3[a]3[b]ff of the logic EF (a simple fragment of
CTL) is NP-hard for processes of OC nets, and model-checking with
another fixed formula 2hai2hbitt of EF is coNP-hard. Consequently,
model-checking with any temporal logic which can express these sim-
ple formulae is computationally hard even for the (very simple) se-
quential processes of OC-nets.

1 Introduction

Two important approaches to formal verification of concurrent systems are

equivalence-checking and model-checking. In both cases, a process is formally

understood to be (associated with) a state in a transition system, which is a

triple T = (S;Act ;!) where S is a set of states, Act is a finite set of actions,

and ! � S � Act � S is a transition relation. We write s
a
! t instead of

(s; a; t) 2 ! and we extend this notation to elements of Act� in the natural

way. A state t is reachable from a state s, written s !� t, iff s
w
! t for some

w 2 Act�.

In the equivalence-checking approach, one describes the specification

(the intended behavior) and the actual implementation of a concurrent pro-

cess as states in transition systems, and then it is shown that they are equiv-

alent. Here the notion of equivalence can be formalized in various ways

according to specific needs of a given practical problem (see, e.g., [vG90]

for an overview). A favorite approach is the one of simulation equiva-

lence which has been found appropriate in many situations and conse-

quently its accompanying theory has been developed very intensively. Let

T = (S;Act ;!) be a transition system. A binary relation R � S � S is a sim-

ulation iff whenever (s; t) 2 R, then for each s
a
! s0 there is some t

a
! t0 such

that (s0; t0) 2 R. A process s is simulated by t, written s vs t, iff there is a sim-

ulation R such that (s; t) 2 R. Processes s; t are simulation equivalent, written

s =s t, iff they can simulate each other. Simulation can also be viewed as a

game — imagine there are two tokens put on states s and t. Now two play-

ers, Al and Ex, start to play a simulation game which consists of a (possibly

infinite) number of rounds where each round is performed as follows: Al

2

takes the token which was put on s originally and moves it along a transi-

tion labelled by (some) a; the task of Ex is to move the other token along a

transition with the same label. Al wins the game iff after a finite number of

rounds Ex cannot respond to Al’s final attack. We see that s vs t iff Ex has

a universal defending strategy, i.e., Al never wins provided Ex plays in a

sufficiently ‘clever’ way. We use simulation game as some points to give a

more intuitive justification for our claims. Finally, let us note that simula-

tion can also be used to relate states of different transition systems; formally,

two systems are considered to be a single one by taking their disjoint union.

In the model-checking approach, desired properties of the implemen-

tation are encoded as formulae of certain temporal logic (interpreted over

transition systems) and then it is demonstrated that the implementation

satisfies the formulae. There are many systems of temporal logic differing

in their expressive power, decidability, complexity, and other aspects (see,

e.g., [Sti92, Eme91]). In this paper we only work with one (fixed) formula

' � �X:[z]hziX of the modal �-calculus [Koz83] and some other (fixed) formu-

lae of its very simple fragment which is known as the EF logic (the logic EF

can also be seen as a natural fragment of CTL [Eme91]). A formal defini-

tion of the syntax and semantics of the modal �-calculus is omitted due to

space constraints (we refer, e.g., to [Koz83]). However, we do explain the

meaning of ' in Section 3. Formulae of the logic EF look as follows:

 ::= tt j ^ j : j hai j 3

Here a ranges over a given set of atomic actions. Dual operators to hai and

3 are [a] and 2, defined by [a] � :hai: and 2 � :3: , respectively. Let

T = (S;Act ;!) be a transition system. The denotation [[]] of a formula is

3

the set of states where the formula holds; it is defined as follows:

[[tt]] = S

[[1 ^ 2]] = [[1]] \ [[2]]

[[:]] = S� [[]]

[[hai]] = fs 2 S j 9t 2 S : s
a
! t ^ t 2 [[]]g

[[3]] = fs 2 S j 9t 2 S : s !� t ^ t 2 [[]]g

The ‘language’ of transition systems is not very practical – concurrent

systems often have a very large (or even infinite) state-space and hence it

is not feasible to define their semantics ‘directly’ by means of transition

systems. Therefore, ‘higher’ languages allowing to construct compact def-

initions of large systems have been proposed and studied. In this paper

we mainly work with (subclasses of) pushdown automata, which are con-

sidered as a fundamental model of sequential behaviors in the framework

of concurrency theory (for example, one can conveniently model programs

consisting of mutually recursive procedures in the syntax of PDA, and ex-

isting verification techniques for PDA are then applicable to, e.g., some

problems of data-flow analysis [EK99]). Formally, a pushdown automaton is

a tuple ∆ = (Q;Γ;Act ; �) where Q is a finite set of control states, Γ is a finite

stack alphabet, Act is a finite input alphabet, and � : (Q � Γ) ! 2Act�(Q�Γ�) is

a transition function with finite image. We can assume (w.l.o.g.) that each

transition increases the height (or length) of the stack at most by one (each

PDA can be efficiently transformed to this kind of normal form). In the

rest of this paper we adopt a more intuitive notation, writing pA
a
! q� 2 �

instead of (a; (q; �)) 2 �(p;A). To ∆ we associate the transition system T∆

where Q � Γ� is the set of states (we write p� instead of (p; �)), Act is the

set of actions, and the transition relation is determined by pA�
a
! q�� ()

pA
a
! q� 2 �.

A natural and important subclass of pushdown automata is the class of

one-counter automata where the stack behaves like a counter. Such a restric-

tion is reasonable because in practice we often meet systems which can be

4

abstracted to finite-state programs operating on a single unbounded vari-

able. For example, network protocols can maintain the count on how many

unacknowledged messages have been sent, printer spool should know how

many processes are waiting in the input queue, etc. Formally, a one-counter

automaton A is a pushdown automaton with just two stack symbols I and

Z; the transition function � of ∆ is a union of functions �Z and �I where

�Z : (Q� fZg) ! 2Act�(Q�(fIg�fZg)) and �I : (Q� fIg) ! 2Act�(Q�fIg�). Hence,

Z works like a bottom symbol (which cannot be removed), and the number

of pushed I’s represents the counter value. Processes of A (i.e., states of

T∆) are of the form pIiZ which is abbreviated to p(i) in the rest of this pa-

per. Again, we assume (w.l.o.g) that each transition increases the counter at

most by one. A proper subclass of one-counter automata of its own inter-

est are one-counter nets. Intuitively, OC-nets are ‘weak’ OC-automata which

cannot test for zero explicitly. They are computationally equivalent to a

subclass of Petri nets [Rei85] with (at most) one unbounded place. Hence,

one-counter nets can be used, e.g., to model systems consisting of produc-

ers and consumers which share an infinite buffer (a non-empty buffer en-

ables the execution of consumers but it need not be tested for zero explic-

itly). Formally, a one-counter net N is a one-counter automaton such that

whenever pZ
a
! qIiZ 2 �, then pI

a
! qIi+1 2 �. In other words, each transi-

tion which is enabled at zero-level is also enabled at (each) non-zero-level.

Hence, there are no ‘zero-specific’ transitions which could be used to ‘test

for zero’.

The state of the art: Let PDA, BPA, OC-A, OC-N, and FS be the classes

of all processes of pushdown automata, stateless pushdown automata, one-

counter automata, one-counter nets, and finite-state systems, respectively.

Moreover, let PN, BPP, and PA denote the classes of all processes of Petri

nets [Rei85], basic parallel processes [Chr93], and process algebra [BW90],

respectively. The problems of simulation preorder and simulation equiv-

alence between processes of classes A and B are denoted by A vs B and

A =s B, respectively. The problem of simulation-checking with (certain

classes of) infinite-state systems has been attracting attention for almost a

5

decade; here we only mention some of the most relevant results. First, it

was shown in [GH94] that the problems BPA vs BPA and BPA =s BPA

are undecidable. The undecidability of BPP vs BPP and BPP =s BPP

was proved in [Hir94]. An interesting positive result is [AČ98] where it is

shown that OC-N vs OC-N (and hence also OC-N =s OC-N) is decidable.

However, OC-A vs OC-A and OC-A =s OC-A are already undecidable

[JMS99]. The problem of checking simulation between infinite and finite-

state systems was first examined in [JM95] where it is shown that PN vs FS,

FS vs PN, and PN =s FS are decidable. A similar positive result was later

demonstrated in [KM99a] for the PDA vs FS, FS vs PDA, and PDA =s FS

problems; some complexity estimation were also given (see below). More-

over, the problems PA vs FS, FS vs PA, and PA =s FS are proved to be

undecidable.

The decidability and complexity of checking other behavioral equiva-

lences (in particular, strong and weak bisimilarity [Par81, Mil89]) between

infinite and finite state systems also exist; we give a short comparison in

the final section.

Our contribution: In our paper we present new complexity results for

simulation-checking and model-checking problems with the above men-

tioned subclasses of pushdown processes. The most significant original

contributions are summarized below together with a short discussion on

previous work.

• PDA =s FS is EXPTIME-complete. Previously, there was a coNP

lower bound for the problem [KM99a] (this lower bound also works

for BPA processes). In the same paper, the membership of PDA =s FS

to EXPTIME has also been shown, hence here we only need to prove

the EXPTIME lower bound.

• OC-A =s FS is coNP-hard. The problem whether this lower bound is

tight is left open. Intuitively, the problem should be expected easier

then for PDA processes, because there is a substantial simplification

in the case of strong bisimilarity – the problem of strong bisimilarity

6

with finite-state processes is in P for OC-A processes [Kuč00], but

PSPACE-complete for PDA processes [May00].

• OC-N =s FS is in P. In fact, we show that OC-N vs FS and FS vs

OC-N are in P. To the best of our knowledge, this is the first (and

rather tight) polynomiality result for simulation with infinite-state

systems. Let us note that some equivalence-checking problems be-

tween processes of OC-nets and FS processes are still hard (for exam-

ple, weak bisimilarity is DP-hard [Kuč00]), so the result is not imme-

diate (see also the comments below).

• Next, we show that the problems of simulation preorder/equivalence

between processes of PDA (or OC-A, or OC-N) and FS processes are

reducible to the model-checking problem for the fixed formula ' �

�X:[z]hziX of (the alternation-free fragment of) the modal �-calculus.

It is essentially a simple observation which was (in a similar form)

used already in [And93, KM99a, LS00]. The point is that (due to

the previous hardness results) we can conclude that the problem of

model-checking with ' is EXPTIME-complete for PDA processes (the

upper-bound is due to [Wal96]) and coNP-hard for OC-A processes.

An interesting thing is that the model-checking problem for stateless

pushdown (i.e., BPA) processes and any fixed formula of the modal �-

calculus is already polynomial [Wal96]. The classes of BPA and OC-A

processes are rather natural but incomparable subclasses of PDA pro-

cesses – we see that the absence of a finite control is a ‘stronger’ sim-

plification than the replacement of the storage device (counter instead

of stack) in this case.

As simulation between OC-N and FS processes is in P, the afore-

mentioned technique does not yield any hardness result for model-

checking with OC-N processes. Therefore, we examine the problem

directly – we prove that even model-checking with a simple fixed for-

mula 3[a]3[b]ff of the logic EF is NP-hard for OC-N processes, and

model-checking with another fixed formula 2hai2hbitt is coNP-hard.

7

Hence, we can forget about an efficient model-checking procedure for

OC-N processes and any modal logic which can express these simple

formulae (unless P = NP).

2 Results about Equivalence-Checking

Theorem 2.1. The problem of simulation equivalence between PDA processes and

deterministic FS processes is EXPTIME-hard.

Proof. We show EXPTIME-hardness by reduction from the acceptance prob-

lem for alternating LBA (which is known to be EXPTIME-complete). An

alternating LBA is a tuple M = (Q;Σ; �; q0;`;a; p) where Q;Σ; �; q0;`; and a

are defined as for ordinary non-deterministic LBA (in particular, ` and a

are the left-end and right-end markers, resp.), and p : Q ! f8; 9; acc; rej g is

a function which partitions the states of Q into universal, existential, accept-

ing, and rejecting, respectively. We assume (w.l.o.g.) that � is defined so that

‘terminated’ configurations (i.e., the ones from which there are no further

computational steps) are exactly accepting and rejecting configurations. A

computational tree for M on a word w 2 Σ� is any (finite or infinite) tree T

satisfying the following: the root of T is (labeled by) the initial configura-

tion q0`wa of M, and if N is a node of M labeled by a configuration uqv

where u; v 2 Σ� and q 2 Q, then the following holds:

• if q is accepting or rejecting, then T is a leaf;

• if q is existential, then T has one successor whose label is (some) con-

figuration which can be reached from uqv in one computational step

(according to �);

• if q is universal, then T has m successors where m is the number of all

configurations which can be reached from uqv in one step; those con-

figurations are used as labels of the successors in one-to-one fashion.

M accepts w iff there is a finite computational tree T such that all leaves of T

are accepting configurations.

8

Now we describe a polynomial algorithm which for a given alternating

LBA M = (Q;Σ; �; q0;`;a; p) and a word w 2 Σ� constructs a process P of a

PDA system ∆ and a process F of a finite-state system F such that

• P vs F, and

• F vs P iff M does not accept w.

Hence, M accepts w iff P 6=s F and we are (virtually) done.

Intuition: The underlying system F of F looks as follows (note the F is

deterministic):

F F F0 1 F2 Fa a a a Fnext i
b

H
again

n+1 n+2 check j

Intuitively, the goal of F is to demonstrate that there is an accepting com-

putational tree for M on w, while P aims to show the converse. The game

starts with the initial configuration q0`wa stored in the stack of P. Now F

‘chooses’ the next configuration (i.e., the rule of � which is to be applied

to the current configuration stored at the top of stack) by emitting one of

the next i actions. The quotes are important here because P is constructed in

such a way that it has to accept the choice of F only if the control state of the

current configuration is existential. If it is universal, P can ‘ignore’ the dic-

tate of F and choose the next configuration according to its own will. The

new configuration is then pushed to the stack of P (technically, it is done

by guessing individual symbols and an auxiliary verification mechanism

is added so that P cannot gain anything if it starts to cheat). As soon as

P enters an accepting configuration, it ‘dies’ (i.e., it is not able to emit any

action); and as soon as it enters a rejecting configuration, it starts to behave

identically as F. Hence, if there is an accepting computational tree for M

on w, then F can force P to enter an accepting configuration in finitely many

rounds (and hence F 6vs P). If there is no accepting computational tree, then

P can successfully defend; it either enters a rejecting configuration or the

game goes forever. It means, in both cases, that F vs P. Moreover, a careful

9

design of P ensures that P vs F regardless whether M accept w or not. A

full (somewhat technical) proof can be found in appendix.

In the proof of our next theorem we use the technique for encoding

assignments of Boolean variables in the structure of one-counter automata

discovered in [Kuč00].

Theorem 2.2. The problem of simulation equivalence between OC-A processes

and FS processes is coNP-hard.

Proof. We show coNP-hardness by reduction of the coNP-complete prob-

lem UNSAT. An instance is a Boolean formula in CNF. The question is

whether is unsatisfiable.

Let � C1 ^ � � � ^ Cm be a formula in CNF where Ci are clauses over

propositional variables x1; � � � ; xn. We construct (in polynomial time) a pro-

cess P of a OC-A system ∆ and a process F of a finite-state system F such

that P vs F iff is unsatisfiable. Then we simply consider the processes

P0 and F0 which have the following outgoing transitions: P0
x
! P;P0

x
! F,

and F0
x
! F where x is a fresh action. Observe that P0 is easily definable in

the syntax of one-counter processes and F0 in the syntax of finite-state pro-

cesses. Clearly F0 vs P0, and P0 vs F0 iff P vs F. In other words, P0 =s F0 iff

is unsatisfiable and it proves our theorem.

It remains to show the construction of P, ∆, F, and F. The set of actions

of ∆ and F is Act = fa; b; c1; : : : ; cmg. Let Ai = Act � fa; cig. The set of states

of F is fF; F1; : : : ; Fmg and its transitions are F
a
! F, F

b
! Fi for each 1 � i � m,

and Fi
y
! Fi for each y 2 Ai and each 1 � i � m. Hence, the system F looks

as follows:

F

FF F1 2 m

a

b b b

A A A1 2 m

In the construction of ∆ we rely on the following theorem of number

theory (see, e.g., [BS96]): Let pi be the ith prime number, and let f : N ! N

10

be a function which assigns to each n the sum
Pn

i=1 pi. Then f is O(n3). This

fact ensures that ∆ has only polynomially-many control states (see below).

The set of control states Q of ∆ is fs; rg[fshpi;ji j 1 � i � n; 0 � j < pig. For

each 1 � i � n we now define two sets of actions.

• Bi = fcj j 1 � j � m; the variable xi appears positively in the clause Cjg

• Bi = fcj j 1 � j � m; the variable xi appears negatively in the clause Cjg

Transitions of ∆ are defined as follows:

• sZ
a
! sIZ, sI

a
! sII, sI

b
! rI,

• rI
b
! shpi;0iI for each 1 � i � n,

• shpi;jiI
b
! shpi;(j+1) mod pii" for each 1 � i � n and each 0 � j < pi,

• shpi;0iZ
y
! shpi;0iZ for each 0 � i � n and each y 2 Bi.

• shpi;jiZ
y
! shpi;jiZ for each 0 � i � n, each 1 � j < pi, and each y 2 Bi.

The structure of the transition system associated to ∆ is depicted in the fol-

lowing figure (transition systems associated to OC systems can be viewed

as two-dimensional ‘tables’ with an infinite height where control states are

used as column indexes and counter values as row indexes; as the outgoing

transitions of a process p(i) for i > 0 do not depend on the exact value of

i, it suffices to depict the out-going transitions at the zero level and (some)

non-zero level):

B B B B B B B B1 1 22 2

s r s<2,0> s<2,1> s s s<3,0> <3,1> <3,2> s s

b
bb

b

ba

a

b b

b

b b b b

n n n

s
n<p ,0> n<p ,1> n<p ,n-1>

0:

>0:

11

The initial state is s(0). Intuitively, P first increases its counter, emitting

a sequence of a’s. Then it emits the first b action and changes its control

state to r (preserving the value stored in the counter). To each state r(l)

we associate the (unique) assignment �l defined by �l(xi) = tt iff r(l) !�

shpi;0i(0) (i.e., �l(xi) = ff iff r(l) !� shpi;ji(0) for some 1 � j < pi). Conversely,

for each assignment � there is l 2 N such that � = �l (for example, we can

put l = Πn
j=0

f (j), where f (j) = pj if �(xj) = tt, and f (j) = 1 otherwise). Now

it is easy to check that a clause Ck is true for an assignment �l iff at least

one of the ‘bottom’ states shpi;ji(0) where a ck-loop is enabled (see above) is

reachable from r(l).

Let s(l) be a state of P such that �l() = ff. It means that there is 1 �

k � m such that �l(Ck) = ff. Hence, the process F can safely match the

transition s(l)
b
! r(l) by F

b
! Fk (from that point on it can do everything

except ck). However, if there is some l such that �l() = tt, then F does not

have any ‘safe’ matching move for the transition s(l)
b
! r(l) because none

of its Fk successors can do all of the ci actions. Hence, is unsatisfiable iff

s(0) vs F.

Now we prove that simulation preorder and simulation equivalence

between processes of one-counter nets and finite-state processes can be de-

cided in polynomial time. To the best of our knowledge, these are the first

polynomiality results for simulation with infinite-state systems. Intuitively,

the crucial property which makes our proofs possible (and which does not

hold for general one-counter automata) is the following kind of ‘mono-

tonicity’ — if p(i) is a process of a one-counter net, then p(i) vs p(j) for

every j � i.

It should be noted that in our next constructions we prefer simplicity to

optimality. Therefore, it does not pay to evaluate the degrees of polynomi-

als explicitly (though it would be of course possible) because they would

considerably decrease after some straightforward optimizations. Our only

aim here is to prove the membership to P.

12

Let T = (S;Act ;!) be a transition system. A family of vi
s, i 2 N0 rela-

tions is defined inductively as follows:

• s v0
s t for all s; t 2 S;

• s vi+1
s t iff s vi

s t and for each s
a
! s0 there is some t

a
! t0 such that

s0 vi
s t0.

Intuitively, s vi
s t iff Ex has a defending strategy for the first i rounds of the

simulation game. If we restrict ourselves to processes of finitely-branching

transition systems (where each state has only finitely many a-successors for

every action a), then s vs t iff s vi
s t for every i 2 N0 (observe that transi-

tion systems generated by PDA are finitely-branching). This enables the

following (straightforward) polynomial-time algorithm for checking simu-

lation between finite-state processes:

Lemma 2.3. Let F = (F;Act ;!) and G = (G;Act ;!) be finite-state systems

with m and n states, respectively. Let k = m � n. For all f 2 F and g 2 G we have

that f vk
s g iff f vk+1

s g iff f vs g. Moreover, the relation vk
s can be computed in

time which is polynomial in the size of F and G.

Proof. If we start to construct the family of ‘vi
s’ relations according to the

above stated definition, we must reach the greatest fixed-point after (at

most) k refinement rounds, because ‘v0
s ’ contains only k elements and vi

s

�vi+1
s for each i 2 N0. It is clear that each refinement step can be computed

in time which is polynomial in the size of F and G.

Lemma 2.4. The problem whether a OC-N process can be simulated by a finite-

state process is in P.

Proof. Let N = (Q; fI;Zg;Act; �) be a one-counter net and F = (F;Act ;!) a

finite-state system. We show that (a description of) the simulation preorder

between processes of N and F can be computed in time which is polyno-

mial in the size of N and F.

The first step of our algorithm is a construction of a characteristic finite-

state system ofN , denoted FN , which is defined as follows: FN = (Q;Act ;!)

13

where Q = fp j p 2 Qg and p
a
! q iff pI

a
! qIi 2 �(p; I) for some i 2 N0. Hence,

a process p of FN intuitively corresponds to a ‘limit process’ p(1) of N (in

particular, observe that p(i) vs p for all p 2 Q and i 2 N0). It is obvious that

the system FN can be constructed in linear time.

Next, for all p 2 Q and f 2 F we check whether p vs f . It can be done

in polynomial time (see Lemma 2.3). Now observe that if p vs f for given

p and f , we can conclude that p(i) vs f for any i 2 N0, because p(i) vs p.

If p 6vs f , then p 6vk
s f where k = jQj � jFj (see Lemma 2.3). Hence, p can

win the simulation game over f in (at most) k steps. It is clear that the

process p(k) can ‘mimic’ this winning strategy of p, because the counter can

be decreased at most by k within the first k moves (note that if we allowed

to test the counter for zero, then p(k) could not mimic the first k moves of p

in general). The same applies to any process p(i) where i � k, because then

p(k) vs p(i). To sum up, at this point we know if p(i) vs f for all p 2 Q; f 2 F,

and i � k. It remains to decide simulation between pairs of the form (p(i); f)

where 0 � i < k. As there are only jQj�jFj�k = jQj2 �jFj2 such states, we can use

a simple refinement technique similar to the one of Lemma 2.3. Formally,

we define a family of Rj relations inductively as follows:

• R0 = f(p(i); f) j i < k; p 2 Q; f 2 Fg

• Rj+1 consists of those pairs of the form (p(i); f) for which we either

have that p vs g, or (p(i); f) 2 Rj and for each move p(i)
a
! q(l) there is

a move f
a
! g such that q vs g or (q(l); g) 2 Rj.

Let R be the greatest fixed point of this refinement procedure. First, ob-

serve that R is computable in P because it is reached in (at most) jQj2 � jFj2

refinement steps and each step can be obviously computed in polynomial

time. Now let us consider a pair of the form (p(i); f) where p 2 Q, i < k,

and f 2 F. If (p(i); f) 62 R, then obviously p(i) 6vs f . On the other hand, if

(p(i); f) 2 R, then p(i) vs f because we can readily confirm that the relation

R[f(q(l); g) j q 2 Q; l 2 N0; g 2 F; q vs gg is a simulation.

Lemma 2.5. The problem whether a finite-state process can be simulated by a OC-

N process is in P.

14

Proof. Let N = (Q; fI;Zg;Act ; �) be a one-counter net and F = (F;Act ;!)

a finite-state system. Similarly as in the previous lemma we show that (a

description of) the simulation preorder between processes of F and N can

be computed in time which is polynomial in the size of N and F. However,

the argument is slightly more complicated in this case.

We start with one auxiliary definition. For all f 2 F and p 2 Q we define

the frontier counter value, denoted V(f; p), to be the least i 2 N0 such that

f vs p(i); if there is no such i, we put V(f; p) = �1. Our aim is to show that

every frontier counter value is bounded by jQj � jFj, i.e., V(f; p) � jQj � jFj for

all f 2 F and p 2 Q. Let m be the maximal frontier value. It suffices to prove

that for each n such that 1 � n � m there are f 2 F and p 2 Q such that

V(f; p) = n. Let us suppose the converse, i.e., there is some n � 1 such that

there is at least one frontier value greater then n, some frontier values are

(possibly) less than n, but no frontier value equals to n. It follows directly

from the definition of frontier points that the greatest simulation among the

processes of F and N is the following relation R:

R = f(f; p(i)) j f 2 F; p 2 Q;V(f; p) � 0; i � V(f; p)g

Now we show that if there is some n with the above stated properties, than

we can actually construct a simulation which is strictly larger thanR, which

is a contradiction. Let R0 be the following finite relation:

R0 = f(g; q(c)) j g 2 F; q 2 Q;V(g; q) > n; c = V(g; q)� 1g

As n < m, R0 is clearly nonempty. We show that R [R0 is a simulation. To

do that, it suffices to check the simulation condition for pairs ofR0, because

R itself is a simulation. Let (g; q(c)) 2 R0 and g
a
! h. We need to find some

move q(c)
a
! � such that the pair (h; �) is related by R [R0. However,

as (g; q(c)) 2 R0, we have that c = V(g; q) � 1 and hence (g; q(c + 1)) 2 R.

Therefore, there must be some move q(c + 1)
a
! r(l) such that (h; r(l)) 2 R

(also observe that l � n). It means that q(c)
a
! r(l � 1) (here we use the fact

that c � 1). Now if (h; r(l � 1)) 2 R, we are done immediately. If it is not

the case, then l is the frontier counter value for h and r by definition, i.e.,

15

l = V(h; r). As l � n and there is no frontier value which equals to n, we

conclude that l > n — but it means that (h; r(l� 1)) 2 R0 by definition of R0.

Let k = jQj � jFj. Now let us realize that if we could decide simulation

for all pairs of the form (f; p(k)) in polynomial time, we would be done —

observe that if f vs p(k), then clearly f vs p(i) for all i � k. As all frontier

counter values are bounded by k (see above), we can also conclude that if

f 6vs p(k) then f 6vs p(i) for all i � k. Simulation between the k2 remaining

pairs of the form (f; p(i)) where i < k could be then decided in the same

way as the previous lemma, i.e., by computing the greatest fixed-point of a

refinement procedure defined by

• R0 = f(f; p(i)) j f 2 F; p 2 Q; i < kg

• Rj+1 consists of those pairs of the form (f; p(i)) such that (f; p(i)) 2 Rj

and for each move f
a
! g there is a move p(i)

a
! q(l) such that either

(g; q(l)) 2 Rj, or l = k and g vs q(k).

The greatest fixed-point is reached after (at most) k2 refinement steps and

each step can be computed in polynomial time.

Now we prove that simulation for the pairs of the form (f; p(k)) can be

indeed decided in polynomial time. To do that, we show that f vs p(k)

iff f v2k2

s p(k). It clearly suffices — as p(k) cannot increase the counter to

more than 2k2 + k in 2k2 moves, we can decide whether f v2k2

s p(k) simply

by computing the ‘v2k2

s ’ relation between the states of the system F and a

finite-state system (S;Σ;!) where S = f(p; i) j p 2 Q; 0 � i < 2k2 + kg and !

is given by (p; i)
a
! (q; j) iff p(i)

a
! q(j); then we just look if f v2k2

s (p; k). This

can be of course done in polynomial time (see Lemma 2.3).

Let j 2 N0 be the least number such that f 6vj
s p(k). Then Al can win the

simulation game in j rounds, which means that there is a sequence

(fj; pj(lj))
aj
�! (fj�1; pj�1(lj�1))

aj�1
�! � � �

a2
�! (f1; p1(l1))

a1
�! (f0;�)

of game positions where f = fj, p(k) = pj(lj), and fi 6vi
s pi(li) for each 1 � i � j.

The Al’s attack at a position (fi; pi(li)) is fi
ai
! fi�1, and Ex’s defending move

is pi(li)
ai
! pi�1(li�1) (observe that, in particular, f1 6v1

s p1(l1) and hence p1(l1)

16

cannot emit the action a1). Moreover, we assume (w.l.o.g.) that Ex defends

‘optimally’, i.e., fi v
i�1
s pi(li) for each 1 � i � j. The first step is to show that

li � 2k for each 1 � i � j. Suppose the converse, i.e., there is some i with

li > 2k. As the counter can be increased at most by one in a single transition,

we can select a (strictly) increasing sequence of indexes s0; s1; : : : ; sk such

that lsi = k + i for each 0 � i � k. Furthermore, as k = jQj � jFj, there must

be two indexes su; sv where u < v such that fsu = fsv and psu = psv . Let us

denote fsu = fsv by f 0 and psu = psv by p0. Now we see (due to the optimality

assumption) that f 0 vsu�1
s p0(k + u) and f 0 6vsv

s p0(k + v). As su � 1 � sv, we

also have f 0 6vsu�1
s p0(k + v). However, as u < v we obtain f 0 vsu�1

s p0(k + u) vs

p0(k + v), hence f 0 vsu�1
s p0(k + v) and we derived a contradiction. The rest

is now easy — if j > 2k2 (i.e., if Al cannot win in 2k2 rounds) then there

must be some u > v such that fu = fv, pu = pv, and lu = lv. It follows

directly from the fact that k = jQj � jFj and that each li is at most 2k. Now

we can derive a contradiction in the same way as above — denoting fu = fv

by f 0, pu = pv by p0, and lu = lv by l0, we obtain (due to the optimality

assumption) that f 0 vu�1
s p0(l0) and f 0 6vv

s p0(l0). As u � 1 � v, we have the

desired contradiction.

An immediate consequence of Lemma 2.4 and Lemma 2.5 is the following

theorem:

Theorem 2.6. The problem of simulation equivalence between OC-N processes

and FS processes is in P.

3 Results about Model-Checking

In this section we show that there is a close relationship between simulation-

checking problems and the model-checking problem for the formula ' �

�X:[z]hziX of the modal �-calculus. It is essentially a simple observation

which was (in a similar form) used already in [And93, KM99a, LS00].

As we omitted a formal definition of syntax and semantics of this logic,

we clarify the meaning of ' at this point. Let T = (S;Act ;!) be a transition

17

system. Let f' : 2S ! 2S be a function defined as follows:

f'(M) = fs 2 S j 8(s
z
! s0) we have that 9(s0

z
! s00) such that s00 2 Mg

The denotation of ' (i.e., the set of states where ' holds), written [[']], is

defined by

[[']] =
[
fU � S j U � f'(U)g

Hence, [[']] is the greatest fixed-point of the (monotonic) function f'. As

usual, we write t j= ' instead of t 2 [[']].

Theorem 3.1. Let P be a process of a PDA system ∆ = (Q;Γ;Act ; �), and F a

process of a finite-state system F = (S;Act ;!). Then it possible to construct (in

polynomial time) processes A;B of a PDA system ∆1 and a process C of a PDA

system ∆2 such that P vs F iff A j= ', F vs P iff B j= ', and P =s F iff C j= '.

Proof. Intuitively, the processes A;B and C ‘alternate’ the transitions of P

and F in an appropriate way. We start with the definition of ∆1. The set of

control states of ∆1 is Q�S� (Act [f?g)�f0; 1g, the set of actions is Act , the

stack alphabet Γ is Γ [fZg where Z 62 Γ is a fresh symbol (bottom of stack).

The set of transitions is the least set � satisfying the following:

• if pX
a
! q� is a rule of �, then (p; F; ?; 0)X

z
! (q; F; a; 1)� and (p; F; a; 0)X

z
!

(q; F; ?; 1)� are rules of � for each F 2 S;

• if F
a
! F0, then (p; F; ?; 1)X

z
! (p; F0; a; 0)X and (p; F; a; 1)X

z
! (p; F0; ?; 0)X

are rules of � for all p 2 Q and X 2 Γ;

Let P � p�. We put A � (p; F; ?; 0)�Z and B � (p; F; ?; 1)�Z. Observe that A

alternates the moves of P and F — first P performs a transition whose label

is stored in the finite control and passes the token to F (by changing 0 to

1); then F emits some transition with the same (stored) label and passes the

token back to P. The new bottom symbol Z is added to ensure that F cannot

‘die’ within A just due to the emptiness of the stack. Now it is obvious that

P vs F iff A j= '; the fact that Q vs P iff B j= ' can be justified in the same

way.

18

The way how to define C is now easy to see – it suffices to ensure that

the only transitions of C are C
z
! C0 and C

z
! C00 where C0

z
! A and C00 z

! B.

It can be achieved by a straightforward extension of ∆1.

The proof of Theorem 3.1 carries over to processes of one-counter automata

and one-counter nets immediately (observe there is no need to add a new

bottom symbol when constructing ∆1 and ∆2 because the zero-marker of

one-counter systems is never removed from the stack by definition.

Corollary 3.2. The model-checking problem for ' is

• EXPTIME-complete for PDA processes;

• coNP-hard for OC-A processes;

As simulation between OC-N and FS processes is in P, Theorem 3.1 does

not imply any hardness result for model-checking with OC-N processes.

Therefore, we examine this problem ‘directly’ by showing that a simple

fixed formula 3[a]3[b]ff of the logic EF is NP-hard for OC-N processes. In

our proof we use a slightly modified version of the construction which was

given in [Kuč00] to prove DP-hardness of weak bisimilarity between OC-

N and FS processes. To make this paper self-contained, we present a full

proof here.

Theorem 3.3. Let p(0) be a process of a one-counter netN . The problem if p(0) j=

3[a]3[b]ff is NP-hard.

Proof. Let ' � C1 ^ � � � ^ Cm be a formula in CNF where Ci are clauses

over propositional variables x1; � � � ; xn. We construct a OC-N system N =

(Q; fI;Zg; fa; b; �g; �) and its process p(0) such that ' is satisfiable iff p(0) j=

3[a]3[b]ff. The construction of N will be described in a stepwise manner.

The sets Q and � are initialized as follows: Q = fqg, � = fqI
b
! qI; qZ

b
! qZg.

Now, for each clause Ci, 1 � i � m, we do the following:

• Let �j denote the jth prime number. We add a new control state ci to

Q. Moreover, for each variable xj and each k such that 0 � k < �j we

add to Q a control state hCi; xj; ki.

19

• For each newly added control state s we add to � the transitions sI
a
!

qI; sZ
a
! qZ.

• For each 1 � j � n we add to � the transitions ciI
�
! hCi;Xj; 0iI.

• For all j; k such that 1 � j � n and 0 � k < �j we add to � the transition

hCi; xj; kiI
�
! hCi; xj; (k + 1) mod �ji".

• We add to � the ‘loops’ ciI
b
! ciI; ciZ

b
! ciZ.

• For all j; k such that 1 � j � n and 0 � k < �j we add to � the loop

hCi; xj; kiI
b
! hCi; xj; kiI.

• If a variable xj does not appear positively in a clause Ci, then we add

to � the loop hCi; xj; 0iZ
b
! hCi; xj; 0iZ.

• If a variable xj does not appear negatively in a clause Ci, then we add

to � the loops hCi; xj; kiZ
b
! hCi; xj; kiZ for every 1 � k < �j.

If we draw the transition system which is generated by the current approx-

imation of N , we obtain a collection of Gi graphs, 1 � i � m; each Gi corre-

sponds to the ‘subgraph’ of the transition system associated to N which is

obtained by restricting Q to the set of control states which have been added

for the clause Ci. The structure of Gi is shown in the following picture (the

a-transitions to the states of the form q(j) are omitted as the picture would

become too complicated).

c i

b

b

b

b

b

<C ,X ,0> <C ,X ,1>1 2 2 21 n n

0:

τ τ τ τ τ τ τ τ

<C ,X ,1><C ,X ,0>

>0:

<C ,X ,0> <C ,X ,1> <C ,X ,2> iiiiiii n πn<C , X , -1>i

b b b b b b

bbbbbb bτ

τ

τ

q

Now we can observe the following:

20

• For each l > 0, the state ci(l) ‘encodes’ the (unique) assignment �l in

the same way as in the proof of Theorem 2.2, i.e., �l is defined by

�l(xj) = tt iff ci(l) !� hCi; xj; 0i(0); conversely, for each assignment �

there is l 2 N such that � = �l (for example, we can put l = Πn
j=0

f (j),

where f (j) = �j if �(xj) = tt, and f (j) = 1 otherwise).

• For each l > 0 we have that �l(Ci) = tt iff ci(l) j= 3[b]ff. Indeed,

observe that �l(Ci) = tt iff ci(l) can reach some of the ‘zero-states’

where the action b is disabled.

We finish the construction of N by connecting the Gi components together.

To do that, we add two new control states p and r to Q, and enrich � by

adding the transitions pZ
�
! pIZ, pI

�
! pI I, pI

a
! qI, pZ

a
! qZ, pI

�
! rI, and

rI
a
! ciI for every 1 � i � m. The structure of of the transition system

associated to N is shown below (again, the a-transitions to the states of the

form q(j) are omitted).

0:

G G G1 2 m

>0:
a a

a

a

r c c

τ

τ

cm21p

Now we can observe the following:

• The only states which can (potentially) satisfy the formula [a]3[b]ff

are those of the form r(l), because all other states have an a-transition

to a state of the form q(j) where is it impossible to get rid of b’s.

• A state r(l) satisfies the formula [a]3[b]ff iff ci(l) j= 3[b]ff for all

1 � i � m iff �l(Ci) = tt for each 1 � i � m (due to the previous

observations) iff �l(') = tt.

21

Hence, ' is satisfiable iff there is l 2 N such that r(l) satisfies [a]3[b]ff iff

p(0) j= 3[a]3[b]ff.

Corollary 3.4. Let p(0) be a process of a one-counter netN . The problem if p(0) j=

2hai2hbitt is coNP-hard.

4 Conclusions

This paper fills some gaps in our knowledge on complexity of simulation-

checking and model-checking with (subclasses of) pushdown automata.

The following table gives a summary of known results (contributions of

this paper are in boldface). For comparison, related results about check-

ing strong and weak bisimilarity (denoted by � and �, respectively) with

finite-state processes are also shown. The overview supports the claim that

simulation tends to be computationally harder than bisimilarity; to the best

of our knowledge, there is so far no result violating this ‘rule of thumb’.

� FS � FS =s FS

PDA PSPACE-complete [May00] PSPACE-hard [May00] EXPTIME-complete

2 EXPTIME [JKM98]

BPA 2 P [KM99b] 2 P [KM99b] coNP-hard [KM99a]

OC-A 2 P [Kuč00] DP-hard [Kuč00] coNP-hard

OC-N 2 P [Kuč00] DP-hard[Kuč00] 2 P

References

[AČ98] P.A. Abdulla and K. Čerāns. Simulation is decidable for one-

counter nets. In Proceedings of CONCUR’98, volume 1466 of Lec-

ture Notes in Computer Science, pages 253–268. Springer, 1998.

[And93] H.R. Andersen. Verification of Temporal Properties of Concurrent

Systems. PhD thesis, Arhus University, 1993.

22

[BS96] E. Bach and J. Shallit. Algorithmic Number Theory. Vol. 1, Efficient

Algorithms. The MIT Press, 1996.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in

Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, 1990.

[Chr93] S. Christensen. Decidability and Decomposition in Process Algebras.

PhD thesis, The University of Edinburgh, 1993.

[EK99] J. Esparza and J. Knop. An automata-theoretic approach to in-

terprocedural data-flow analysis. In Proceedings of FoSSaCS’99,

volume 1578 of Lecture Notes in Computer Science, pages 14–30.

Springer, 1999.

[Eme91] E.A. Emerson. Temporal and modal logic. Handbook of Theoretical

Computer Science, B, 1991.

[GH94] J.F. Groote and H. Hüttel. Undecidable equivalences for ba-

sic process algebra. Information and Computation, 115(2):353–371,

1994.

[Hir94] Y. Hirshfeld. Petri nets and the equivalence problem. In Proceed-

ings of CSL’93, volume 832 of Lecture Notes in Computer Science,

pages 165–174. Springer, 1994.

[JKM98] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-

like equivalences with finite-state processes. In Proceedings of

ICALP’98, volume 1443 of Lecture Notes in Computer Science, pages

200–211. Springer, 1998.

[JM95] P. Jančar and F. Moller. Checking regular properties of Petri nets.

In Proceedings of CONCUR’95, volume 962 of Lecture Notes in Com-

puter Science, pages 348–362. Springer, 1995.

23

[JMS99] P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-

counter machines. In Proceedings of SOFSEM’99, volume 1725 of

Lecture Notes in Computer Science, pages 404–413. Springer, 1999.

[KM99a] A. Kučera and R. Mayr. Simulation preorder on simple process

algebras. In Proceedings of ICALP’99, volume 1644 of Lecture Notes

in Computer Science, pages 503–512. Springer, 1999.

[KM99b] A. Kučera and R. Mayr. Weak bisimilarity with infinite-state sys-

tems can be decided in polynomial time. In Proceedings of CON-

CUR’99, volume 1664 of Lecture Notes in Computer Science, pages

368–382. Springer, 1999.

[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical

Computer Science, 27:333–354, 1983.

[Kuč00] A. Kučera. Efficient verification algorithms for one-counter pro-

cesses. In Proceedings of ICALP 2000, volume 1853 of Lecture Notes

in Computer Science, pages 317–328. Springer, 2000.

[LS00] F. Laroussinie and Ph. Schnoebelen. The state explosion problem

from trace to bisimulation equivalence. In Proceedings of FoSSaCS

2000, volume 1784 of Lecture Notes in Computer Science, pages 192–

207. Springer, 2000.

[May00] R. Mayr. On the complexity of bisimulation problems for push-

down automata. In Proceedings of IFIP TCS’2000, volume 1872 of

Lecture Notes in Computer Science. Springer, 2000.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences.

In Proceedings 5th GI Conference, volume 104 of Lecture Notes in

Computer Science, pages 167–183. Springer, 1981.

[Rei85] W. Reisig. Petri Nets—An Introduction. Springer, 1985.

24

[Sti92] C. Stirling. Modal and temporal logics. Handbook of Logic in Com-

puter Science, 2:477–563, 1992.

[vG90] R.J. van Glabbeek. The linear time—branching time spectrum. In

Proceedings of CONCUR’90, volume 458 of Lecture Notes in Com-

puter Science, pages 278–297. Springer, 1990.

[Wal96] I. Walukiewicz. Pushdown processes: Games and model check-

ing. In Proceedings of CAV’96, volume 1102 of Lecture Notes in

Computer Science, pages 62–74. Springer, 1996.

25

A Proofs

Theorem A.1. The problem of simulation equivalence between PDA processes

and deterministic FS processes is EXPTIME-hard.

Proof. We show EXPTIME-hardness by reduction from the acceptance prob-

lem for alternating LBA (which is known to be EXPTIME-complete). An

alternating LBA is a tuple M = (Q;Σ; �; q0;`;a; p) where Q;Σ; �; q0;`; and a

are defined as for ordinary non-deterministic LBA (in particular, ` and a

are the left-end and right-end markers, resp.), and p : Q ! f8; 9; acc; rej g is

a function which partitions the states of Q into universal, existential, accept-

ing, and rejecting, respectively. We assume (w.l.o.g.) that � is defined so that

‘terminated’ configurations (i.e., the ones from which there are no further

computational steps) are exactly accepting and rejecting configurations. A

computational tree for M on a word w 2 Σ� is any (finite or infinite) tree T

satisfying the following: the root of T is (labeled by) the initial configura-

tion q0`wa of M, and if N is a node of M labeled by a configuration uqv

where u; v 2 Σ� and q 2 Q, then the following holds:

• if q is accepting or rejecting, then T is a leaf;

• if q is existential, then T has one successor whose label is (some) con-

figuration which can be reached from uqv in one computational step

(according to �);

• if q is universal, then T has m successors where m is the number of all

configurations which can be reached from uqv in one step; those con-

figurations are used as labels of the successors in one-to-one fashion.

M accepts w iff there is a finite computational tree T such that all leaves of T

are accepting configurations.

Now we describe a polynomial algorithm which for a given alternating

LBA M = (Q;Σ; �; q0;`;a; p) and a word w 2 Σ� constructs a process P of a

PDA system ∆ and a process F of a finite state system F such that

• P vs F, and

26

• F vs P iff M does not accept w.

Hence, M accepts w iff P 6=s F and we are (virtually) done.

Intuition: The underlying system F of F looks as follows (note the F is

deterministic):

F F F0 1 F2 Fa a a a Fnext i
b

H
again

n+1 n+2 check j

Intuitively, the goal of F is to demonstrate that there is an accepting com-

putational tree for M on w, while P aims to show the converse. The game

starts with the initial configuration q0`wa stored in the stack of P. Now F

‘chooses’ the next configuration (i.e., the rule of � which is to be applied

to the current configuration stored at the top of stack) by emitting one of

the next i actions. The quotes are important here because P is constructed in

such a way that it has to accept the choice of F only if the control state of the

current configuration is existential. If it is universal, P can ‘ignore’ the dic-

tate of F and choose the next configuration according to its own will. The

new configuration is then pushed to the stack of P (technically, it is done

by guessing individual symbols and an auxiliary verification mechanism

is added so that P cannot gain anything if it starts to cheat). As soon as

P enters an accepting configuration, it ‘dies’ (i.e., it is not able to emit any

action); and as soon as it enters a rejecting configuration, it starts to behave

identically as F. Hence, if there is an accepting computational tree for M

on w, then F can force P to enter an accepting configuration in finitely many

rounds (and hence F 6vs P). If there is no accepting computational tree, then

P can successfully defend; it either enters a rejecting configuration or the

game goes on forever. It means, in both cases, that F vs P. Moreover, a

careful design of P ensures that P vs F regardless whether M accept w or

not.

A formal proof: Let n be the length of w, and let k be the branching

degree of M (i.e., k = maxfcard(�(q;X)) j q 2 Q;X 2 Σg). The FS system F

of F (see the figure above) has the set of states SF = fF; F0; : : : ; Fn+2;Hg, the

27

set of actions is fa; b;next1; : : : ;nextk; check1; : : : ; checkng, and the transition

relation contains (exactly) the following items:

• F
next i
�! F0 for each 1 � i � k,

• Fi
a
! Fi+1 for each 0 � i � n + 1,

• Fn+2
again
�! F, and Fn+2

check j
�! H for each 1 � j � n,

• H
b
! H.

We proceed with a formal definition of the PDA system ∆ of P. Let Γ =

(Q� Σ) [Σ and Γ = (Q� Σ) [f?g where ? 62 Γ. The set of control states of

∆ is formed by SF unified with the following product:

fC;G;Vg � Γ� Γ� f?; r1; : : : ; rkg � fc0; : : : ; cn+2g � fd0; : : : ; dn+2g � Γ3 � Γ3

The set SF was added to the set of control states of ∆ to ensure that P can

(at an appropriate point) start to behave identically as F. The other con-

trol states were designed with an eye towards achieving the intended func-

tionality of P described in the previous paragraph; we ‘remember’ certain

pieces of information about the current and the next configuration of M,

together with some ‘auxiliary’ data. More specifically, in each control state

we store

• the ‘mode’ of P (one of C;G;V); the process P can be either at the point

when it Chooses the rule of � which is then applied to the current

configuration ofM (stored at the top of the stack), or it is Guessing the

string of symbols which form the new configuration, or it is Verifying

that the guess was correct (i.e., there was no ‘cheating’ during the

guessing);

• the ‘compound’ symbol (an element of Q�Σ) which has been pushed

to the stack as a part of the string which represents the current config-

uration of M. This piece of information is updated during the guess-

ing phase. When the guessing procedure starts, it is initiated to ‘?’;

28

and whenever a compound symbol [q;Y] is pushed to the stack, it is

updated to [q;Y];

• the compound symbol of the previous (last but one) configuration of

M;

• the (number of the) rule which is to be applied to the current con-

figuration to obtain the next one (the string which encodes the next

configuration is then guessed and pushed to the stack of P). When

the mode of P is C (see above), this piece of information is set to ‘?’.

Then the rule is chosen (in one transition), its number is stored, and

the mode is set to G;

• two auxiliary ‘counters’ formed by the families of ci and di symbols

which can count from 0 to n + 2;

• two triples of symbols which are used in the ‘verification procedure’

which checks that that there was no cheating during the guessing (i.e.,

that P has indeed guessed the string which encodes the ‘right’ config-

uration of M). Intuitively, for a selected position i, where 1 � i � n,

we find the symbols at positions i � 1; i; i + 1 in the just guessed and

the previously stored configuration (we pop symbols from the stack

of P, employing the aforementioned counters). If the two triples are

‘incompatible’, the process P is ‘punished’ by entering a state where

it cannot emit anything.

The set of actions of ∆ is the same as the one of F, and the stack alphabet is

Γ [fZg where Z 62 Γ is a bottom symbol. The initial configuration of P is

hC; [q0;`]; [q0;`]; c0; d0; ?; (?; ?; ?); (?; ?; ?)i [q0;`]waZ

and the transitions are determined as follows:

• hC; [q;A]; [r;B]; c0; d0; ?; (?; ?; ?); (?; ?; ?)iX
next i
�!

hG; ?; [q;A]; c0; d0; ri; (?; ?; ?); (?; ?; ?)iX

for all [q;A]; [r;B] 2 (Q�Σ) such that p(q) = 9, each X 2 Γ, and each 1 �

29

i � k. In other words, if the control state of the current configuration

of M is existential, P has to follow the action nexti emitted by F and

store ri in its finite control. The current configuration becomes the

‘previous’ one; it is reflected by shifting [q;A] to the third position and

writing ‘?’ instead.

• hC; [q;A]; [r;B]; c0; d0; ?; (?; ?; ?); (?; ?; ?)iX
next i
�!

hG; ?; [q;A]; c0; d0; rj; (?; ?; ?); (?; ?; ?)iX

for all [q;A]; [r;B] 2 (Q�Σ) such that p(q) = 8, each X 2 Γ, each 1 � i �

k, and each 1 � j � k. If the control state of the current configuration

of M is universal, P can choose the rule itself by storing an (arbitrary)

rj.

• hC; [q;A]; [r;B]; c0; d0; ?; (?; ?; ?); (?; ?; ?)iX
next i
�! F0 X for each q 2 Q such

that p(q) = rej and each X 2 Γ. From that point on, P is supposed to

behave exactly as F. To achieve that, for each transition A
y
! B of F

and each X 2 Γ we also add the transition A X
y
! B X.

As there are no transitions of the form hC; [q;A]; [r;B]; c0; d0; ?; (?; ?; ?); (?; ?; ?)iX
y
!

� where p(q) = acc, P ‘dies’ at this point. Now we present a set of rules

which implement the ‘guessing’ of the next configuration.

• hG; �; [r;B]; ci; d0; rj; (?; ?; ?); (?; ?; ?)iX
a
!

hG; �; [r;B]; ci+1; d0; rj; (?; ?; ?); (?; ?; ?)iYX

for each � 2 Γ, each 0 � i � n + 1, each 1 � j � k, and each Y 2 Γ. Here

� is determined as follows: if Y 2 Σ then � = �; and if Y 2 Q�Σ, then

� = Y.

Observe that P emits the action a exactly n + 2 times during the guessing,

and it is not able to emit anything else. After the guess is completed, F can

decide either to continue with another round (by emitting the action again)

or it can verify that P was not cheating during the guess (by emitting one

of the check j actions). P has to follow the decision of F.

• hG; [q;A]; [r;B]; cn+2; d0; rj; (?; ?; ?); (?; ?; ?)iX
again
�!

hC; [q;A]; [r;B]; c0; d0; ?; (?; ?; ?); (?; ?; ?)iX

30

for all [q;A]; [r;B] 2 Q�Σ, each 1 � j � n, and each X 2 Γ.

• hG; [q;A]; [r;B]; cn+2; d0; rj; (?; ?; ?); (?; ?; ?)iX
check i
�!

hV; [q;A]; [r;B]; c0; di; rj; (?; ?; ?); (?; ?; ?)iX

for all [q;A]; [r;B] 2 Q�Σ, each 1 � j � n, each 1 � i � n, and each X 2 Γ.

The middle position of the triple which is to be verified is stored in

the second counter and the first counter is reset to 0.

Note that the above transitions are possible only if a compound symbol

has been pushed during the guessing phase; if not (i.e., if P ‘obviously’

cheated), no further transitions are enabled. The next transitions are re-

sponsible for ‘verification’ – we read the two triples and find out whether

they are ‘compatible’ w.r.t. the chosen rule rj. Here the compatibility re-

lation is defined in a pretty standard way: First, for all q 2 Q and X 2

Σ we fix some surjective function mapq;X : fr0; : : : ; rkg ! �(q;X). Triples

(O;P;R); (M;N;U) 2 Γ3 are compatible w.r.t. given q 2 Q, X 2 Σ, 1 � rj � k,

and 1 � di � n iff there is some configuration � of M (written as a string

of n + 2 symbols of Γ) such that the finite control is in the state q, the in-

put/output head scans X, the symbols at positions di � 1; di; di + 1 of � are

O;P;R, resp., and the configuration �0 which is obtained from � by applying

the rule mapq;X(rj) has the symbols M;N;U at positions di � 1; di; di + 1, resp.

The set of all compatible triples is easy to construct w.r.t. each choice of

q;X; rj, and di. It is important to realize that if we are given a configuration

� satisfying the above stated properties and a string � 2 Γ� of length n + 2

such that all triples (for each middle position di ranging from 1 to n) of �

and � are compatible, then � = �0.

• hV; [q;A]; [r;B]; cl; di; rj; (?; ?; ?); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; cl+1; di; rj; (?; ?; ?); (?; ?; ?)i "

for all [q;A]; [r;B] 2 Q�Σ, each 1 � i � n, each 0 � l � i� 2, each X 2 Γ,

and each 1 � j � k. Here we pop all symbols preceding the leftmost

symbol of the first triple.

31

• hV; [q;A]; [r;B]; ci�1; di; rj; (?; ?; ?); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; ci; di; rj; (X; ?; ?); (?; ?; ?)i "

for all [q;A]; [r;B] 2 Q � Σ, each each 1 � i � n, each X 2 Γ, and each

1 � j � k. The first symbol of the first triple is read and stored.

• hV; [q;A]; [r;B]; ci; di; rj; (M; ?; ?); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; ci+1; di; rj; (M;X; ?); (?; ?; ?)i "

for all [q;A]; [r;B] 2 Q � Σ, each each 1 � i � n, all M;X 2 Γ, and each

1 � j � k. The second symbol of the first triple is read and stored.

• hV; [q;A]; [r;B]; ci+1; di; rj; (M;N; ?); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; ci+2; di; rj; (M;N;X); (?; ?; ?)i "

for all [q;A]; [r;B] 2 Q�Σ, each each 1 � i � n, all M;N;X 2 Γ, and each

1 � j � k. The third symbol of the first triple is read and stored.

• hV; [q;A]; [r;B]; cl; di; rj; (M;N;U); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; cl+1; di; rj; (M;N;U); (?; ?; ?)i "

for all [q;A]; [r;B] 2 Q � Σ, each 1 � i � n, each i + 2 � l � n + 1, each

X 2 Γ, and each 1 � j � k. We pop all symbols after the rightmost

symbol of the first triple which are a part of the first configuration.

We also add similar transitions which read and store the symbols of the

second triple. If the bottom of stack is reached, P enters an infinite b-loop.

• hV; [q;A]; [r;B]; cn+2; di; rj; (M;N;U); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; c0; di; rj; (M;N;U); (?; ?; ?)iX

for all [q;A]; [r;B] 2 Q � Σ, each 1 � i � n, each 1 � j � k, and all

M;N;U;X 2 Γ. The first counter is reset to 0.

• hV; [q;A]; [r;B]; c0; di; rj; (M;N;U); (?; ?; ?)iZ
b
!

hV; [q;A]; [r;B]; c0; di; rj; (M;N;U); (?; ?; ?)iZ

for all [q;A]; [r;B] 2 Q � Σ, each 1 � i � n, each 1 � j � k, and all

M;N;U;X 2 Γ. If we reach the bottom of stack, we enter an infinite

b-loop.

32

• hV; [q;A]; [r;B]; cl; di; rj; (M;N;U); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; cl+1; di; rj; (M;N;U); (?; ?; ?)i "

for all [q;A]; [r;B] 2 Q � Σ, each 0 � l � i � 2, each 1 � i � n, each

1 � j � k, and all M;N;U;X 2 Γ.

• hV; [q;A]; [r;B]; ci�1; di; rj; (M;N;U); (?; ?; ?)iX
b
!

hV; [q;A]; [r;B]; ci; di; rj; (M;N;U); (X; ?; ?)i "

for all [q;A]; [r;B] 2 Q � Σ, each 1 � i � n, each 1 � j � k, and all

M;N;U;X 2 Γ. The first symbol of the second triple is read and stored.

• hV; [q;A]; [r;B]; ci; di; rj; (M;N;U); (O; ?; ?)iX
b
!

hV; [q;A]; [r;B]; ci+1; di; rj; (M;N;U); (O;X; ?)i "

for all [q;A]; [r;B] 2 Q � Σ, each 1 � i � n, each 1 � j � k, and all

M;N;U;O;X 2 Γ. The second symbol of the first triple is read and

stored.

• hV; [q;A]; [r;B]; ci+1; di; rj; (M;N;U); (O;P; ?)iX
b
!

hV; [q;A]; [r;B]; ci+2; di; rj; (M;N;U); (O;P;X)i "

for all [q;A]; [r;B] 2 Q � Σ, each 1 � i � n, each 1 � j � k, and all

M;N;U;O;P;X 2 Γ. The third symbol of the first triple is read and

stored.

Observe that during this procedure, only finitely many b’s are emitted, un-

less we reached the bottom of stack which means that the verification pro-

cedure was started right from the initial state (which is of course correct).

If the stored triples are compatible, P enters an infinite b-loop; otherwise, it

‘dies’.

• hV; [q;A]; [r;B]; cl; di; rj; (M;N;U); (O;P;R)iX
b
!

hV; [q;A]; [r;B]; cl; di; rj; (M;N;U); (O;P;R)iX

for all [q;A]; [r;B] 2 Q� Σ, each 0 � l � n + 2, each 1 � i � n, each 1 �

j � k, and all M;N;U;O;P;R 2 Γ such that the triples (O;P;R); (M;N;U)

are compatible w.r.t. r, B, rj, and di.

33

Now we can readily check that all properties of P and F pointed out in

the previous paragraph indeed hold; in particular, observe that P vs F re-

gardless whether M accepts w or not because the behaviour of P is quite

restricted – even if it starts to cheat, it has to (due to the employed coun-

ters) preserve the length of its guesses; and if P decides to verify, it can emit

(one of) the check j actions just once and then only do a finite or infinite

number of b’s.

34

Copyright c© 2000, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

