1S
5 %\)vT UVpO

Yv 4
S) A
= =
=) =
% N
ITag MASS

Faculty of Informatics
Masaryk University

Logical Markup from RTF

by

Michal Chocholac

FI MU Report Series FIMU-RS-2000-02
Copyright (© 2000, FI MU February 2000

Logical markup from RTF

Michal Chocholaé

Abstract

The paper is an overview of ways how to get logical structure from
documents created by proprietary word-processors and stored into
an RTF file. It describes and evaluates all steps of conversion process
from RTF to SGML/XML. One of the submitted ways is demonstrated
on a simple example. All used tools exist and are publicly available.

Contents
Introduction 2
Motivation 2
Validation tool 3
31 Nsgmls 3
Conversion 4
41 FromRTFtoSGML 4
4.2 SGML to SGML transformations 6
Example of usage 7
5.1 Sourcedocument 8
5.2 Intermediatedocument. 8
5.3 Targetdocument, 10
5.4 Validation 16
Comparison 17
6.1 Rainbow Maker vs. rtf2xml 17
6.2 Jadevs.sgmispl 17
Summary 17

1 Introduction

The Rich Text Format (RTF) is a format for text and graphics interchange
that can be used with different output devices, operating environments,
and operating systems. RTF uses the ASCII (or other) character set to con-
trol the representation and formatting of a document. Thus, documents cre-
ated under different operating systems (MS-DOS, Windows, UNIX, OS/2,
Macintosh, Power Macintosh) and with different software (T602, Microsoft
Word 6.0, ...) applications can be transferred between those operating sys-
tems and applications.

RTF Version 1.5 has been updated to include all new control words in-
troduced by Microsoft Word for Windows 95 version 7.0 and Word 97 for
Windows. For more information about RTF see [1].

2 Motivation

All documents stored on computer systems have instructions or codes em-
bedded in the text that indicate how the text should be processed. These
instructions are called markup. The basic types of the markup are as fol-
lows:

e Procedural markup supplies detailed instructions for actions that soft-
ware must follow in processing the data. It says, “Do x”.

e Declarative markup (or descriptive or logical markup) supplies only
high-level logical descriptions of the data’s role or purpose, ex-
pecting that separate processing software will map the markup
to the precise actions to be performed as well as actually perform
the actions. It says, “lamay”.

Procedural markup is efficient because it allows a computer to follow
the supplied instructions without doing additional interpretive work. How-
ever, it binds the data closely to a single kind of manipulation.

Declarative markup requires an additional interpretation step, but al-
lows document data that is stored in a single form to be formatted, ana-
lyzed, and manipulated many different ways, increasing the value of the
data once it has been described thoroughly and abstractly.

RTF is procedural because it represents only a visual form of the doc-
ument. By contrast, The Standard Generalized Markup Language (SGML)
can be highly declarative. If an SGML markup language is well designed

and properly used, it is independent of procedures and processing and
does not allow the data’s value for multiple purpose to be compromised.

So, let we try to find ways how to convert an RTF document to an SGML
(or XML) document with logical markup using existing and free tools.

3 Validation tool

Software, which reads SGML document and recognizes the markup in them
so that other software components can process the markup and data is
called parser. Validating SGML parser is a special kind of parser that reads
DTDs! and document instances and finds any markup errors in them. It
must be able to find and report a reportable markup error if (and only if)
one exists.

Several public-domain validating parsers are available.

3.1 Nsgmls

Nsgmls is a component of an SGML Parser (SP) [8]. It is a free, object-
oriented toolkit for SGML parsing and entity management created by James
Clark. Included parts are as follows:

e Nsgmls -a parser and validator of SGML documents

e Spam (SP Add Markup) —an SGML markup stream editor
e Sgmlnorm —a normalizer of SGML documents

e Sx —aconverter from SGML to XML

e Spent (SGML Print Entity) — concatenator of SGML entities
The source codes are available. Thus, it is possible to compile the SP

for any operating system. However, you can get binaries for DOS, Win-
dows 95/NT, OS/2 and all major Unix variants.

Usage: SP (version 1.3.3) is installed on all faculty UNIX platforms (Irix,
Solaris and Linux) in the module sp.

$ module add sp

'Document Type Definition. See [3].

$ nsgmis sysid...

Nsgmls parses and validates an SGML document whose document en-
tity is specified by the system identifiers® sysid... and prints on the
standard output a simple text representation of its ESIS2. If more than one
system identifier is specified, then the corresponding entities will be con-
catenated to form the document entity. A command line system identifier
of - can be used to refer to the standard input. For using nsgmls’s options
see [8].

The output is a series of lines. Each line consists of an initial command
character and one or more arguments. There is no space between the com-
mand character and the first argument. Complete set of command charac-
ters and its arguments are listed in [8]. If the last command on the output
is C, it indicates that the document was a conforming SGML document.

4 Conversion

A mechanism of conversion is composed of two phases:

The first step is to read the source document, decode whatever pattern
of markup there is and translate it into an intermediate conversion DTD.
The conversion DTD might also include presentation-related elements and
elements that hold conversion data, which don’t appear in the target DTD.
It allows clarification of the original markup (without loosing any of the
source information) by translating it into a simple SGML form, which is
much easier to process than source markup in further conversion.

The second step is to interpret the results of the first step and generate
an instance conforming to the target DTD, i.e. to transform the intermediate
document from the intermediate conversion DTD to a target DTD.

4.1 From RTF to SGML

Here we present the tools that allow document conversion from RTF to an
intermediate DTD. All tools listed below are installed on faculty computers
and many others are available on the Internet.

’The following system identifiers are available: filename, file descriptor and URL (only
the http scheme is currently supported).
Element Structure Information Set, 1ISO 13673.

41.1 Rainbow Maker

Rainbow Maker is a software program designed to convert documents in
a proprietary word-processor (WP) format to Rainbow documents.

The Rainbow format [4] is actually an SGML DTD. It represents a uni-
fication of the wide spectrum of proprietary formats. It was developed by
Electronic Book Technologies (EBT), in conjunction with several other key
SGML vendors and promoters. The Rainbow DTD is publicly available,
and can be used and modified by organizations and individuals freely.

EBT has developed public-domain Rainbow Makers for some key WP
formats (RTF, MIF, ...). Unfortunately, EBT will distribute only executable
versions (PC and several UNIX platforms) of these Makers, but when the
versions become more stable, EBT will make the source code available.

Usage: Rainbow Maker is installed on Solaris platform in the module
romaker . The program requires two directories called fcm and pem The
Sun version looks for them in the “current directory” at launch time. If it
cannot find these directories, it crashes! Thus, you must specify path to
these directories in the command line:

$ module add rbmaker

$ rbmaker -in in.rtf -out out.rbw \

-figdir /packages/share/rbmaker-2.5/data \
-datadir /packages/share/rbmaker-2.5/data \
-tempdir /tmp

Shell script gorbmaker can simplify the notation of this command. Thus,
you can use it as follows:

$ gorbmaker in.rtf out.rbw

This Rainbow Maker release supports RTF documents from MacWord
5.x, WinWord 2.x/6.0. AmiPro RTF from any other source is subject to
data/formatting loss, or even premature program termination.

41.2 rtf2xml

Filter rtf2xml is an OmniMark’s* script which translates RTF to a paragraph
structured XML document. It was created by Rick Geimer.

*OmniMark is a streaming programming language. See [6].

This program is free distributed and portable across all operating sys-
tems where OmniMark available.

Usage: The OmniMark is installed on Solaris and Linux platforms in the
module omnimark .

$ module add omnimark

$ cp -r /packages/share/omnimark-5.1/rtf2xml/ .
$ cd rtf2xml/

$ omnimark -s rtf2xml.xom -of ../out.xml ../in.rtf

You can pass multiple RTF files as input, and they will be concatenated
into a single XML file.

4.2 SGML to SGML transformations

The transformation process is based on the parsing of the SGML instance
and the use of application languages. The parser reads the instance and
transforms it into a sequence of events consisting minimally of the ESIS.
This sequence of events is then read by an application language that is pro-
grammed to recognize each markup and to trigger the appropriate action.

The difficulty of transformation lies in the convergence or divergence
of the markup models.

421 Jade

James’ DSSSL Engine (Jade) is an implementation of the DSSSL® style lan-
guage. It was created by James Clark. The program is distributed for UNIX
and MS/Windows (32-bit) operating systems, the source code is available.

With Jade SGML documents can be formatted to the users needs using
DSSSL-stylesheets. The output documents can be in HTML, in RTF and in
TeX. Jade can also perform SGML to SGML and SGML to XML transforma-
tions.

Usage: The Jade is installed on all faculty UNIX platforms (Irix, Solaris
and Linux) in the module jade .

$ module add jade

*Document Style Semantics and Specification Language, 1SO/IEC 10179:1996.

$ jade -t sgml in.sgml

By default, the DSSSL specification is expected in the file with the same
name as the input file and with dsl extension instead of the original (i.e.
in.dsl). If you want use some other name of the DSSSL specification file,
use -d option. For example:

$ jade -t sgml -d spec.dsl in.sgml

Only a limited set of DSSSL flow objects are implemented in the Jade®,
so you would not always be able to get everything exactly as you want it.

4.2.2 sgmispl

A simple post-processor for Nsgmis sgmlspl is a sample application dis-
tributed with the SGMLS.pm perl5 class library. It can be used to convert
SGML documents to other formats by providing a specification file detail-
ing exactly how you want to handle each element, external data entity, sub-
document entity, CDATA string, record end, SDATA string, and processing
instruction.

Sgmispl using SGMLS.pm repackages the ESIS output of Nsgmls into
perl5 objects. It exports a single subroutine sgml(event, handler)
from a specification file into the main package and execute handler every
time when the event occurs. You may use sgml to declare a handler for
ageneric event, like 'start_element’ , or aspecific event, like '<TAG>’ .
A specific event will always take precedence over a generic event.

Usage: Filter sgmlspl is installed on all faculty UNIX platforms (Irix, So-
laris and Linux) in the module sgmispl

$ module add sp perl5 sgmispl
$ nsgmils in.sgml | sgmispl specification.pl >out.sgml

5 Example of usage

This example presents a conversion way from RTF to Rainbow DTD to tar-
get DTD using Rainbow Maker and sgmlspl (Figure 1). | chose the Rain-

SComplete set of of DSSSL flow objects supported by Jade are listed in [7].

bow DTD because it has better support as the Rick Geimer’s DTD. Since
my knowledges of the DSSSL are only on the basic level, so | decided to
use the sgmlspl tool for SGML transformations.

The example is only demonstration of the usage all necessary tools. So,
I will try to do it simply and synoptical. Real use will require more compli-
cated solutions (especially in error correction domain).

Two-lined content of the source document is used because more lines
imply only longer contents afterwards generated files and it reduce the lu-
cidity of this paper.

5.1 Source document

The source document was written by Microsoft Word 97 and exported into
an RTF file named addressbook.rtf . It represents an easy address book.
A line contains:

id-number, name, address, phone-number

Standard options are: Times New Roman font, 10 pt. The id-number is
written by Arial font, name is bold, address s italic and phone-number
uses 8 pt size of font.

Content:

01234, Antonov Adam, Aladinova 12, 432 10 Adamov, 01/123456
12340, Bojarova Blanka, Bayerova 23, 333 22 Brno, 02/234561

5.2 Intermediate document
artemis$ module add rbmaker
artemis$ gorbmaker addressbook.rtf rb.sgml

Shell script gorbmaker was created for easier usage of romaker . File
specified by the first parameter will be converted to Rainbow DTD con-
forming document and stored into file specified by the second parameter.

Content:

<IDOCTYPE rainbow PUBLIC "-//EBT//DTD Rainbow 2.5//EN"
[>

<RAINBOW>
<FILEINFO ORIGIN="WinWord-RTF1" DTDVER="2.5">
<STYINFO>
<PARATYPE FONT-FAMILY="Times New Roman"
FONT-SIZE="10"
LINE-SPACING="12"
CHARSET="ISO-8859"
JUSTIFICATION="LeftJust"
FIRST-INDENT="0"
LEFT-INDENT="0"
RIGHT-INDENT="0"
SPACE-BEFORE="0"
SPACE-AFTER="0"
FONT-WEIGHT="Medium"
FONT-SLANT="Roman"
NAME="Normal">
<CLFTYPE NAME="Default Paragraph Font">
</STYINFO>
<DOC>
<WPLOC wp-addr="1">
<PARA FONT-SIZE="10"
LINE-SPACING="12"
PARATYPE="Normal">
<PARACONT>
<CLF FONT-FAMILY="Arial">01234</CLF>,
<CLF FONT-WEIGHT="Bold">Antonov Adam</CLF>,
<CLF FONT-SLANT="ltal">Aladinova 12, 432 10 Adamov</CLF>,
<CLF FONT-SIZE="8">01/123456</CLF>
</PARACONT>
</PARA>
<WPLOC wp-addr="2">
<PARA FONT-SIZE="10"
LINE-SPACING="12"
PARATYPE="Normal">
<PARACONT>
<CLF FONT-FAMILY="Arial">12340</CLF>,
<CLF FONT-WEIGHT="Bold">Bojarova Blanka</CLF>,
<CLF FONT-SLANT="ltal">Bayerova 23, 333 22 Brno</CLF>,
<CLF FONT-SIZE="8">02/234561</CLF>
</PARACONT>
</PARA>
</DOC>
</RAINBOW>

5.3 Target document
5.3.1 TargetDTD
The target DTD is stored in the external file target.dtd

Content:

<IELEMENT addressbook - - (person+)>

<IELEMENT person - - (name, surname, address, phone*)>
<IATTLIST person
id NUMBER #IMPLIED >

<IELEMENT name - - (#PCDATA)>
<IELEMENT surname - - (#PCDATA)>
<IELEMENT address - - (#PCDATA)>
<IELEMENT phone - - (forenum?, num)>
<IELEMENT forenum - - (#PCDATA)>
<IELEMENT num - - (#PCDATA)>

5.3.2 The specification file

The specification file spec.pl contains instructions for processing the in-
termediate SGML document stored in rb.sgml

For easier creating specification files is available a program skel.pl
It is an sgmlispl specification which writes a specification.

aisa$ module add perl5 sp sgmispl
aisa$ cp /packages/share/sgmispl/doc/skel.pl .
aisa$ nsgmls rb.sgml | sgmispl skel.pl > spec.pl

This command will generate a skeleton of potential events appropriate for
the document rb.sgml . It can be used as a starting point for writing real
spec.pl

Content:

use SGMLS;
use SGMLS::Output;

#

Initializing
#

10

$doc = 0;
$para = O;
$paracont = O;
$clf = 0;
$output[0] = "

#

Subprograms

#

sub begin_doc {

}

print '<IDOCTYPE addressbook SYSTEM "target.dtd">’ .

sub begin_change {

}

my $hip;

$hip = $_[0]->attribute(FONT-FAMILY’)->value;
unless ($hip) { $hip = $FAMILY[$#FAMILY];}
push @FAMILY, $hip;

$hip = $_[0]->attribute(FONT-WEIGHT’)->value;
unless ($hip) { $hlp = $SWEIGHT[$#WEIGHT];}
push @WEIGHT, $hlp;

$hip = $_[0]->attribute(FONT-SLANT’)->value;
unless ($hip) { $hip = $SLANT[S#SLANT];}
push @SLANT, $hip;

$hip = $_[0]->attribute(FONT-SIZE’)->value;
unless ($hip) { $hip = $SIZE[$#SIZE];}

push @SIZE, $hip;

sub end_change {

}

my $hlp;

$hlp = pop @FAMILY;
$hlp = pop @WEIGHT;
$hlp = pop @SLANT;

$hlp = pop @SIZE;

sub begin_rb {

}

print "<addressbook>\n";

sub end_rb {

print "</addressbook>\n";

11

"\n";

}

sub begin_paratype {
$FAMILY[0] = $_[0]->attribute(FONT-FAMILY’)->value;
SWEIGHT[0] = $_[0]->attribute(FONT-WEIGHT")->value;
$SLANT[O0] = $_[0]->attribute(FONT-SLANT’)->value;
$SIZE[0] = $_[O]->attribute(FONT-SIZE’)->value;

}

sub begin_para {
$para = 1;
&begin_change;

}

sub end_para {
$para = 0;
&end_change;

}

sub begin_paracont {
$paracont = 1;
push @output,
ggq(<person id="#id#">\n<name>#name#</name>\n) .
gg(<surname>#surname#</surname>\n) .
gg(<address>#address#</address>\n) .
gq(<phone>\n#phone#</phone>\n</person>\n);

}

sub end_paracont {
$paracont = O;
my $hip = pop @output;
print "$hip";

}

sub begin_clf {
$clf = 1;
&begin_change;
}

sub end_clf {
$clf = 0;
&end_change;

}

sub begin_element {

12

die "Unknown element: " . $_[0]->name;

}

sub cdata {
if ($doc && $para && S$paracont && Sclf) {
if (SFAMILY[$#FAMILY] eq "Times New Roman") &&
(SWEIGHT[$#WEIGHT] eq "MEDIUM") &&
(SSLANT[$#SLANT] eq "ITAL") &&
($SIZE[$#SIZE] eq "10") {
my $hip = pop @output;
$hip =~ s/#address#/$_[0]/g;
push @output, $hip;
}
elsif ((BFAMILY[$#FAMILY] eq "Arial") &&
(SWEIGHT[$#WEIGHT] eq "MEDIUM") &&
($SLANT[$#SLANT] eq "ROMAN") &&
($SIZE[$#SIZE] eq "10") {
my $hip = pop @output;
$hip =~ s/#id#/$_[0]/g;
push @output, $hip;
}
elsif ((BFAMILY[$#FAMILY] eq "Times New Roman") &&
(SWEIGHT[$#WEIGHT] eq "MEDIUM") &&
($SLANT[$#SLANT] eq "ROMAN") &&
($SIZE[$#SIZE] eq "8") {
my $hip = pop @output;
(my $forenum, my $num) = split N/, $_[O];
$hlp =~ s/#phone#/<forenum>$forenum<\/forenum>\n#¥num#/g;
$hlp =~ s/#num#/<num>$num<\V/num>\n/g;
push @output, $hip;
}
elsif ((BFAMILY[$#FAMILY] eq "Times New Roman") &&
(SWEIGHT[$#WEIGHT] eq "BOLD") &&
($SLANT[$#SLANT] eq "ROMAN") &&
($SIZE[$#SIZE] eq "10") {
my $hip = pop @output;
(my $surname, my $name) = split / /, $_[O];
$hip =~ s/#name#/$name/q;
$hlp =~ s/#surname#/$surname/q;
push @output, $hip;
}
else {
my $hip = $_[0];
$hlp =~ si\s+/ /g;
if ($hlp ne " ") {

13

print "<unknown>$hlp</unknown>";

}
}
}
}
#
Handlers for specific events
#

Element: RAINBOW
sgmlI(<RAINBOW>', \&begin_rb);
sgml(</RAINBOW>’, \&end_rb);

Element: FILEINFO
sgmI(<FILEINFO>’, "™);
sgmI(</FILEINFO>’, ™;

Element: STYINFO
sgmIC<STYINFO>', ™),
sgmI(</STYINFO>’, ™),

Element: PARATYPE
sgmlI(<PARATYPE>', \&begin_paratype);
sgml(</PARATYPE>’, ™);

Element;: CLFTYPE
sgmI(<CLFTYPE>', ™);
sgmlI(</CLFTYPE>', ™),

Element. DOC
sgml('<DOC>’, sub {$doc =
sgml(’</DOC>’, sub {$doc =

1, B
0, b

Element: WPLOC
sgml(<WPLOC>’, ™),
sgml('</WPLOC>’, ");

Element. PARA
sgml(<PARA>’, \&begin_para);
sgml('</PARA>', \&end_para);

Element: PARACONT

sgmI(<PARACONT>’, \&begin_paracont);
sgml(</PARACONT>’, \&end_paracont);

14

Element: CLF
sgml('<CLF>’, \&begin_clf);
sgml(’</CLF>’, \&end_clf);

#
Handlers for generic events
#

sgml(’start’, \&begin_doc);
sgmi(end’, ");

sgml(’start_element’, \&begin_element);
sgml(’end_element’, ");

sgml(’cdata’, \&cdata);
sgml(re’, ");

1;

5.3.3 Document entity

aisa$ module add perl5 sp sgmispl
aisa$ nsgmls rb.sgml | sgmispl spec.pl > addressbook.sgml

Content:

<IDOCTYPE addressbook SYSTEM "target.dtd">
<addressbook>

<person id="01234">

<name>Adam</name>
<surname>Antonov</surname>
<address>Aladinova 12, 432 10 Adamov</address>
<phone>

<forenum>01</forenum>

<num>123456</num>

</phone>

</person>

<person id="12340">

<name>Blanka</name>

15

<surname>Bojarova</surname>
<address>Bayerova 23, 333 22 Brno</address>
<phone>

<forenum>02</forenum>

<num>234561</num>

</phone>

</person>

</addressbook>

5.4 Validation

aisa$ module add sp

Intermediate document: aisa$ nsgmis rb.sgml

Target document: aisa$ nsgmls addressbook.sgml

If the last character on the standard output of nsgmls is C, it means that
the document is a conforming SGML document.

5.4.1 Error correction

This example uses very simply method of error correction because of the
need for lucidity of the report. By contrast, in the real use is necessary to
create proper aid for finding and/or correction of maximum count of errors
as possible. The subcode in the sgmlspl specification file:

else {
my $hip = $ _[0];
$hlp =~ si\s+/ [g;
if ($hlp ne " ") {
print "<unknown>$hlp</unknown>";

}

inserts any unidentified incoming non-whitespace #PCDATAInto an ele-
ment unknown . A parser will notify of unknown element unknown during

16

validation and it will indicate an error in source document. This solution
provides only elementary error prevention of input data.

General prevention should be allowed by two-level hierarchy. The first
level is to embed any unidentified incoming data into an unknown element
and detect this errors during validation process. The second level is to
create auxiliary structures for context logging which allows to report any
identified incoming data in bad context. This errors can be detected and
reported during conversion process, i.e. immediately when they occur.

6 Comparison

6.1 Rainbow Maker vs. rtf2xml

The Rainbow DTD represents unification of the wide spectrum of propri-
etary formats. It is better supported by the authors and other SGML devel-
opers. Filter rtf2xml has insufficient documentation.

Filter rtf2xml is a script. It must be executed under OmniMark C/VM.
So, its run time is several time longer’ than run time of binary Rainbow
Maker. In addition, rtf2xml generates much longer® output. The Rain-
bow Maker is easier for use and has more intuitive interface (especially
gorbmaker).

6.2 Jade vs. sgmispl

Jade is a good product to use. It is fast and functional. It has some draw-
backs too: a lot of features which could be implemented according to the
DSSSL specification are not yet implemented. Also, it takes a lot of time to
learn DSSSL. Jade is a program for expert users only.

Sgmlspl will pass any additional arguments on to the specification file,
it can process them in the regular perl5 fashion. While sgmlspl is fully
functional, it is not always particularly intuitive or pleasant to use. But it
has the virtue that perl5 is very widely supported.

/7 Summary

Within the framework of this project were installed a number of free and
powerfull tools for SGML documents processing. Especially, the package

"Conversion of an Italian - Czech dictionary (930 kB) was about three times slower.
8Length of output from an Italian - Czech dictionary (930 kB) was about 150%.

17

RTF

rtf2xmil

Y

Geimer’s DTD

sgmlspl

rbm

aker -

A

/

Rainbow DTD

sgmlspl

Target DTD

Figure 1: Data flow diagram

18

SP and the streaming programming language OmniMark provide wide
spectrum of potential exploitation. Rainbow Maker and the filter rtf2xml
allow two different view of RTF structure and their SGML or XML presen-
tation. Jade and sgmlspl represent two different ways how to understand
and to do SGML transformations.

There are two basic ways how to get a logical markup from a procedural
markup of RTF documents.

The first way is to find direct relation between source and target markup.
It is mostly very difficult and often impossible.

The major part of conversion engines that specialize in converting non-
SGML documents to SGML documents use the second way. It is composed
of two phases: the decoding of the source document, followed by its in-
terpretation. In the concrete, the Rainbow Maker and rtf2xml allow de-
coding of the source markup into an existing presentation (Rainbow DTD)
or specifically designed DTD (Geimer’s DTD). This simple SGML or XML
representation of source document allows easier processing in further con-
version step. The interpretation of the first step is represented by transfor-
mation from an intermediate DTD to target DTD. It is possible using Jade
(DSSSL — flow objects) or sgmlspl (Perl5 — nsgmls events).

Rainbow DTD has good support of the authors and other SGML de-
velopers. In addition, it represents universal view of several proprietary
formats. Thus, it allows multiple exploitation of one and the same DTD.
From this view Rainbow DTD looks as a better way. However, final choice
will depend on better convergence of its markup model to target markup
model.

Jade is an implementation of the DSSSL style language. If you have the
knowledge of DSSSL (based on the Scheme programming language), it is
easy and functional. But, it allows you to use only the implemented fea-
tures of DSSSL. Sgmlspl is not always particularly pleasant to use. How-
ever, it allows you to use any programming constructions available in perl5
and only basic knowledges of programming language Perl are sufficient
to understanding basic sgmlspl’s functionality. Capabilities of sgmlspl are
fully dependend on programmer’s knowledges of Perl.

References

[1] Microsoft Technical Support: Rich Text Format (RTF) Specification and
Sample RTF Reader Program, 4/97.

19

[2] Simon St. Laurent: Tvorba internetovych aplikaci v XML, Computer
Press, 1999.

[3] Eve Maler, Jeanne ElI Andaloussi: Developing DTDs — from text to
model to markup, Prentice Hall, 1996.

[4] David Sklar: The Annotated Rainbow DTD, Rainbow version 2.5,
Electronic Book Technologies, 2/95.

[5] rtf2xml — The Free RTF to XML Convertor, version 0.7:
http://www.xmeta.com/omlette/rtf2xml/

[6] OmniMark C/VM 5.1 — An integrated OmniMark compiler and vir-
tual machine:
http://www.omnimark.com/

[7] Jade — James Clark’s DSSSL Engine:
http://www.jclark.com/jade/

[8] SP — James Clark’s SGML Parser:
http://www.jclark.com/sp/

[9] Electronic Publishing Centre: Software evaluations
http://www.rug.nl/etc/eval/index_gb.htm

20

Copyright (© 2000, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanicka 68a

60200 Brno

Czech Republic

