
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University, Brno

The Million-Key Question - Investigating
the Origins of RSA Public Keys

by

Petr Švenda
Matúš Nemec
Peter Sekan

Rudolf Kvašňovský
David Formánek
David Komárek
Václav Matyáš

FI MU Report Series FIMU-RS-2016-03

Copyright c© 2016, FI MU July 2016

Copyright c© 2016, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

The Million-Key Question - Investigating the
Origins of RSA Public Keys

Petr Švenda, Matúš Nemec, Peter Sekan, Rudolf Kvašňovský,

David Formánek, David Komárek and Vashek Matyáš

Masaryk University, Czech Republic

August 5, 2016

Abstract

Can bits of an RSA public key leak information about design and implementation

choices such as the prime generation algorithm? We analysed over 60 million freshly

generated key pairs from 22 open- and closed-source libraries and from 16 different

smartcards, revealing significant leakage. The bias introduced by different choices

is sufficiently large to classify a probable library or smartcard with high accuracy

based only on the values of public keys. Such a classification can be used to decrease

the anonymity set of users of anonymous mailers or operators of linked Tor hidden

services, to quickly detect keys from the same vulnerable library or to verify a claim

of use of secure hardware by a remote party. The classification of the key origins

of more than 10 million RSA-based IPv4 TLS keys and 1.4 million PGP keys also

provides an independent estimation of the libraries that are most commonly used

to generate the keys found on the Internet.

Our broad inspection provides a sanity check and deep insight regarding which

of the recommendations for RSA key pair generation are followed in practice, in-

cluding closed-source libraries and smartcards. The inspection was not limited only

to public part of a RSA keypair – the properties of private key were inspected in-

cluding factorization of p−1 and p+1 for large number of 512-bit RSA keys followed

by discussion of relevant factorization attacks 1.
1Full details, paper supplementary material, datasets and author contact information can be found at

http://crcs.cz/papers/usenix2016. This technical report is an extended version of the paper published

at the 25th USENIX Security Symposium 2016 [49].

1

Contents

1 Introduction 4

1.1 RSA cryptosystem . 6

1.2 The RSA cryptographic primitives . 7

1.3 Card usage scenarios . 7

1.4 Analysis methodology . 8

1.5 Analysis of black-box implementations . 9

2 Attacks against RSA cryptosystem 11

2.1 Attacks on RSA keys in more details . 11

2.1.1 Pollard’s p− 1 factorization algorithm 12

2.1.2 Williams’ p+ 1 factorization algorithm 13

2.1.3 Fermat’s factorization method . 14

2.1.4 Lehman’s improvement to Fermat’s method 14

2.1.5 General-purpose factorization methods 15

2.1.6 Attacks on small private exponent 16

2.1.7 Cycling attacks . 16

2.1.8 Small public exponents and Coppersmith’s attack 16

2.1.9 Attacks on keys generated with low entropy 17

3 RSA keypair generation in source code and literature 18

3.1 Prime generation . 18

3.1.1 Probable primes . 18

3.1.2 Provable primes . 19

3.1.3 Strong primes . 20

3.2 Key generation – prime pairs . 20

3.2.1 Rejection sampling . 20

3.2.2 “Square” regions . 21

4 Analysis of the generated RSA key pairs 22

4.1 Distributions of the primes . 22

4.2 Distributions of the moduli . 29

4.3 Factorization of p− 1 and p+ 1 . 34

4.4 Sanity check . 39

2

5 Key source detection 42

5.1 The classification process . 42

5.1.1 Evaluation of the classification accuracy 43

5.2 Classifying real-world keys . 47

5.2.1 Sources of Internet TLS keys . 47

5.2.2 Sources of PGP keys . 50

5.3 Practical impact of origin detection . 53

5.4 How to mitigate origin classification . 54

6 Random numbers generated on cards 56

6.1 Biased random number generator . 56

7 Key generation process on cards 60

7.1 Malfunctioning generator . 60

7.2 Time distribution . 61

7.3 Power analysis . 63

8 Conclusions 66

A Tested corrupted keys 72

B Classification matrix for 13 groups of sources 74

C Online classification tool 83

3

1 Introduction

The RSA key pair generation process is a crucial part of RSA algorithm usage, and

there are many existing (and sometimes conflicting) recommendations regarding how

to select suitable primes p and q [17, 21, 36, 31, 32] to be later used to compute the private

key and public modulus. Once these primes have been selected, modulus computation

is very simple: n = p · q, with the public exponent usually fixed to the value 65 537.

But can the modulus n itself leak information about the design and implementation

choices previously used to generate the primes p and q? Trivially, the length of the used

primes is directly observable. Interestingly, more subtle leakage was also discovered by

Mironov [34] for primes generated by the OpenSSL library, which unwantedly avoids

small factors of up to 17 863 from p − 1 because of a coding omission. Such a property

itself is not a security vulnerability (the key space is decreased only negligibly), but it

results in sufficiently significant fingerprinting of all generated primes that OpenSSL

can be identified as their origin with high confidence. Mironov used this observation to

identify the sources of the primes of factorizable keys found by [20]. But can the origins

of keys be identified only from the modulus n, even when n cannot be factorized and

the values of the corresponding primes are not known?

To answer this question, we generated a large number of RSA key pairs from 22

software libraries (both open-source and closed-source) and 16 different cryptographic

smartcards from 6 different manufacturers, exported both the private and public com-

ponents, and analysed the obtained values in detail. As a result, we identified seven

design and implementation decisions that directly fingerprint not only the primes but

also the resulting public modulus: 1) Direct manipulation of the primes’ highest bits.

2) Use of a specific method to construct strong or provable primes instead of randomly

selected or uniformly generated primes. 3) Avoidance of small factors in p−1 and q−1.

4) Requirement for moduli to be Blum integers. 5) Restriction of the primes’ bit length.

6) Type of action after candidate prime rejection. 7) Use of another non-traditional algo-

rithm – functionally unknown, but statistically observable.

As different design and implementation choices are made for different libraries and

smartcards (cards) with regard to these criteria, a cumulative fingerprint is sufficient to

identify a probable key origin even when only the public key modulus is available. The

average classification accuracy on the test set was greater than 73% even for a single

4

classified key modulus when a hit within the top 3 matches was accepted2. When more

keys from the same (unknown) source were classified together, the analysis of as few as

ten keys allowed the correct origin to be identified as the top single match in more than

85% of cases. When five keys from the same source were available and a hit within the

top 3 matches was accepted, the classification accuracy was over 97%.

We used the proposed probabilistic classifier to classify RSA keys collected from the

IPv4 HTTPS/TLS [15], Certificate Transparency [16] and PGP [54] datasets and iden-

tified probable sources for the listed keys. With no prior assumptions regarding the

source probability for the keys listed in the IPv4 HTTPS/TLS dataset [15], a remarkably

close match to the current market share of web servers with the known underlying soft-

ware library was achieved – providing an independent verification of the classification

success rate of our method.

The optimal and most secure way of generating RSA key pairs is still under dis-

cussion. Our wide-scale analysis also provides a sanity check concerning how closely

the various recommendations are followed in practice for software libraries and smart-

cards and what the impact on the resulting prime values is, even when this impact is

not observably manifested in the public key value. We identified multiple cases of un-

necessarily decreased entropy in the generated keys (although this was not exploitable

for practical factorization) and a generic implementation error pattern leading to pre-

dictable keys in a small percentage (0.05%) of cases for one type of card.

Surprisingly little has been published regarding how key pairs are generated on

cryptographic cards. In the case of open-source libraries such as OpenSSL, one can

inspect the source code. However, this option is not available for cards, for which the

documentation of the generation algorithm is confidential and neither the source code

nor the binary is available for review. To inspect these black-box implementations, we

utilized the sidechannels of time and power consumption (in addition to the exported

raw key values). When this side-channel information was combined with the available

knowledge and observed characteristics of open-source libraries, the approximate key

pair generation process could also be established for these black-box implementations.

This technical report is organized as follows:

After a brief summary of the RSA cryptosystem, the rest of Section 1 describes the

methodology used in this study. Section 2 provides the overview of relevant attacks

2The correct library is listed within the first three most probable groups of distinct sources identified

by the classification algorithm, as described in Section 5.1.1.

5

against the RSA cryptosystem. Review of relevant algorithms for RSA key generation

together with inspection of source code of software libraries are provided in Section 3.

Section 4 provides a discussion of the observed properties of the generated keys. Sec-

tion 5 describes the modulus classification method and its results on large real-world

key sets, the practical impact and mitigation of the discovered information disclosure

vulnerability. Additional analysis performed for black-box implementations on cards

and a discussion of the practical impact of a faulty/biased random number generator

are presented in Section 6. The inspection of keypair generation process in closed-source

smartcard by means of power- and time-consumption side channel is available in Sec-

tion 7. Finally, conclusions are offered in Section 8.

1.1 RSA cryptosystem

To use the RSA algorithm, one must generate a key:

1. Select two distinct large primes3 p and q.

2. Compute n = p · q and ϕ(n) = (p− 1)(q− 1).

3. Choose a public exponent e < ϕ(n) that is coprime to ϕ(n).

4. Compute the private exponent d as e−1 mod ϕ(n).

The pair (e, n) is the public key; either (d, n) serves as the secret private key, or (p, q)

can be used ((d, n) can be calculated from (p, q, e) and vice versa).

The encryption exponent e is typically chosen as a fixed value with low Hamming

weight (e.g., 3, 17, 65537) to speed up encryption. In such case, new primes are gener-

ated until they are coprime to the exponent.

The universal private exponent can be computed as d = e−1 mod λ(p− 1, q− 1), where

λ is the Carmichael function, which is numerically identical to the Euler’s function for

primes. The function of a composite number n = p · q can be computed as the least

common multiple of λ(p) and λ(q), which is p − 1 and q − 1, respectively. Since λ(n)

is a proper divisor of φ(n), the private exponent will be smaller. In fact, any exponent

d+ k · λ(n), k ∈ {0, 1, · · · } will work for RSA decryption.

An alternative representation of the private key is a quintuple (p, q, dP, dQ, qInv).

It is used when the Chinese remainder theorem (CRT) is applied to RSA. The benefits

of CRT for faster decryption were discovered by [42]. The parameters p and q are the

3Generated randomly, but possibly with certain required properties, as we will see later.

6

factors of the modulus, dP and dQ are the CRT exponents of the first and the second

factor, respectively. The CRT coefficient is denoted qInv. Conversion between the two

representations is simple. No additional requirements are placed when generating CRT

keys, hence any key can be used with or without CRT.

Some definitions [45, 23] allow for more factors of the modulus, however the multi-

prime variant of RSA is rarely used in practice, as we observed from the libraries.

1.2 The RSA cryptographic primitives

The RSA scheme is built on the following cryptographic primitives (mathematical op-

erations):

• The RSA encryption takes a messagem represented as a positive integer between 0

and n− 1. The ciphertext c is c = me mod n.

• The RSA decryption converts the ciphertext to the message m = cd mod n, assum-

ing that the RSA private key is valid.

• The RSA signature takes a message m (typically a message digest) represented

as a positive integer between 0 and n − 1. The signature s is computed as s =

md mod n.

• The RSA signature verification converts the signature to the message (message di-

gest)m = se mod n, assuming that the RSA public key is valid.

In practice, the CRT representation of the private key is used to benefit from faster

decryption. The primitives, as described, suffer from several attacks (e.g., the Hastad’s

broadcast attack and the Franklin-Reiter related message attack [8]), therefore padding

schemes are necessary for real implementations [45, 23].

1.3 Card usage scenarios

RSA can be used with or without secure hardware (cards) in following principal modes:

I. No secure hardware – The RSA key pair is generated in a software library on a host

with the private key stored and used without additional protection of a secure hard-

ware. The process of key pair generation can be verified (if an open-source library is

used). Availability of good random generator is crucial. When the host is compromised,

the private key is exposed.

7

II. Generate and export – Both public and private parts are exported to the host. An

on-card truly random number generator is utilized to generate a secure key pair with

enough entropy. The follow-up usage on the host system after export then allows for

fast operations with the private key, but also with the disadvantage of potential host

compromise.

III. Import and use – The RSA key pair is generated in a software library with the

private key later imported into a card. The private key value is then protected by the

card during transport and usage. The private key value is vulnerable during the short

period before the private key is transferred to the card and erased from the host.

IV. Generate and use – Generate key pair on-card and then export only the public part.

The private key is protected against the host compromise, but due to a closed envi-

ronment, the card must be trusted to generate secure keys and handle them correctly

during their use as only very limited checks are possible on the exported public part.

Our analyses of keys with card origin concern mainly modes II and IV, where the key

pair is generated on a card. The analysis of multiple open-source libraries also addresses

modes I and III. We focus on the properties of generate part, not the use part.

1.4 Analysis methodology

Our purpose was to verify whether the RSA key pairs generated from software libraries

and on cards provide the desired quality and security with respect to the expectations

of randomness and resilience to common attacks. This is not an easy task. Leaving

aside the fact that factorization is believed but has not been proven to be an NP-hard

problem, one can show that a key is not secure by factorizing the corresponding modu-

lus or by showing that its security margin against a given factorization method is lower

than claimed, e.g., if the factors of p − 1 prove to be 60 bits or shorter, then the key can

be efficiently factorized using Pollard’s p − 1 method with only modest computation

power regardless of the length of the modulus. We attempted to identify the character-

istics of the generated keys and to verify whether they possessed exploitable properties

that would allow an attacker to recover the private key from a public key or at least

decreased the assumed security level of the key. Furthermore, we wished to deduce the

reason for the presence of these properties and the process responsible for introducing

them. The impact of the techniques used on the properties of the produced public keys

was also investigated. We used the following methodology:

8

1. Establish the characteristics of keys generated from open-source cryptographic

libraries with known implementations.

2. Gather a large number of RSA key pairs from cryptographic software libraries and

cards (one million from each).

3. Compare the keys originating from open-source libraries and black-box imple-

mentations and discuss the causes of any observed similarities and differences

(e.g., the distribution of the prime factors of p− 1).

4. Analyse the generated keys using multiple statistical techniques (e.g., calculate

the distribution of the most significant bytes of the primes).

Throughout this paper, we will use the term source (of keys) when referring to both

software libraries and cards.

1.5 Analysis of black-box implementations

To obtain representative results of the key generation procedures used in cards (for

which we could not inspect the source codes), we investigated 16 different types of

cards from 6 different established card manufacturers (2×Gemalto, 6×NXP, 1×Infineon,

3×Giesecke & Devrient (G&D), 2×Feitian and 2×Oberthur) developed using the widely

used JavaCard platform. The key pair generation process itself is implemented at a

lower level, with JavaCard merely providing an interface for calling relevant meth-

ods. For each type of card (e.g., NXP J2D081), three physical cards were tested to

detect any potential differences among physical cards of the same type (through-

out the entire analysis, no such difference was ever detected). Each card was pro-

grammed with an application enabling the generation and export of an RSA key

pair (using the KeyPair.generateKey() method) and truly random data (using the

RandomData.generate() method).

We focused primarily on the analysis of RSA keys of three different lengths – 512,

1024 and 2048 bits. Each card was repeatedly asked to generate new RSA 512-bit key

pairs until one million key pairs had been generated or the card stopped responding.

The time required to create these key pairs was measured, and both the public (the mod-

ulus n and the exponent e) and private (the primes p and q and the private exponent d)

components were exported from the card for subsequent analyses. No card reset was

performed between key pair generations. In the ideal case, three times one million key

pairs were extracted for every card type. The same process was repeated for RSA key

9

pairs with 1024-bit moduli but for only 50 000 key pairs, as the key generation process

takes progressively longer for longer keys. The patterns observed from the analyses

performed on the 512-bit keys was used to verify the key set with longer keys4.

Surprisingly, we found substantial differences in the intervals from which primes

were chosen. In some cases, non-uniform distributions of the primes hinted that the

prime generation algorithms are also different to those used in the software libraries.

Several methods adopted in software libraries, such as incremental search, seem to be

suitable even for limited-resource systems. This argument is supported by a patent ap-

plication [41] by G&D, one of the manufacturers of the examined cards. All tested cards

from this manufacturer produced Blum integers, as described in the patent, and these

integers were distributed uniformly, as expected from the incremental search method.

A duration of approximately 2-3 weeks was typically required to generate one mil-

lion key pairs from a single card, and we used up to 20 card readers gathering keys in

parallel. Not all cards were able to generate all required keys or random data, stopping

with a non-specific error (0x6F00) or becoming permanently non-responsive after a cer-

tain period. In total, we gathered more than 30 million card-generated RSA key pairs5.

Power consumption traces were captured for a small number of instances of the key

pair generation process.

In addition, 100 MB streams of truly random data were extracted from each card for

tests of statistical randomness. When a problem was detected (i.e., the data failed one

or more statistical tests), a 1 GB stream was generated for fine-grained verification tests.

4For example, one can quickly verify whether a smaller number of factorized values of p − 1 from

1024-bit RSA keys fit the distribution extrapolated from 512-bit keys.
5The entire dataset is available for further research at [55].

10

2 Attacks against RSA cryptosystem

The basic form of attack on the RSA cryptosystem is modulus factorization, which is

currently computationally unfeasible or at least extremely difficult if p and q are suffi-

ciently large (512 bits or more) and a general algorithm such as the number field sieve

(NFS) or the older quadratic sieve (MPQS) is used. However, special properties of the

primes enable more efficient factorization, and measures may be taken in the key pair

generation process to attempt to prevent the use of such primes.

Despite the existence of many special-purpose algorithms, the easiest way to factor

a modulus created as the product of two randomly generated primes is usually to use

the NFS algorithm. Nevertheless, using special primes may potentially thwart such

factorization attacks, and some standards, such as ANSI X9.31 [22] and FIPS 186-4 [36],

require the use of primes with certain properties (e.g., p− 1 and p+ 1must have at least

one large factor). Other special algorithms, such as Pollard’s rho method and the Lenstra

elliptic curve method, are impractical for factoring a product of two large primes.

Although RSA factorization is considered to be an NP problem if keys that fulfil the

above conditions are used, practical attacks, often relying on a faulty random generator,

nevertheless exist. Insufficient entropy, primarily in routers and embedded devices,

leads to weak and factorizable keys [20]. A faulty card random number generator has

produced weak keys for Taiwanese citizens [4], and supposedly secure cryptographic

tokens have been known to produce corrupted or significantly biased keys and random

streams [10].

Implementation attacks can also compromise private keys based on leakage in side

channels of timing [12] or power [26]. Active attacks based on fault induction [50] or

exploits aimed at message formatting [2, 7] enable the recovery of private key values.

We largely excluded these classes of attacks from the scope of our analysis, focusing

only on key generation.

2.1 Attacks on RSA keys in more details

Rivest and Silverman introduced the notion of a weak key into the context of the RSA

algorithm [44]. General-purpose attacks do not rely on the choice of the key and are always

successful. Hence the purpose of this section is to show different types of weak keys

abused by special-purpose attacks, that use a specific property of the key to break it. These

attacks are successful only under certain conditions.

11

Specifically, we will consider factorization of RSA moduli with weak primes, meth-

ods that use improperly selected parameters of the keys and methods that were success-

fully used in large scale attacks. Some factorization methods are not suitable for RSA

integers (such as the Pollard’s rho algorithm), since they are not able to handle integers

with two factors of similar length.

An attacker may first try to mount a special-purpose attacks, hoping that the key

is weak. If not successful in a predetermined amount of time, the attacker moves to a

more complex general-purpose attack.

2.1.1 Pollard’s p− 1 factorization algorithm

An integer is called B-smooth or smooth with respect to a bound B, if all its prime factors

are ≤ B.

Pollard’s p−1 factorization algorithm [38] can efficiently find a factor of a composite

number n, if for some prime factor p of n, p− 1 is B-smooth for a reasonably small B.

For any multiple m of p − 1 and some a, GCD(a, p) = 1, Fermat’s little theorem

implies am ≡ 1 (mod p). Therefore if f = GCD(am − 1, n), then p divides f.

One first guesses the smoothness bound B, then computes the product of all prime

powers less than B asm =
∏

primes q≤B q
logqn. The algorithm returns a factor of n if p−1

is indeed B-smooth, otherwise it reports failure.

1. Choose (a random) a, 1 < a < n.

2. Compute f = GCD(a, n). If f > 1, return f.

3. Compute x = am (mod n).

4. Compute f = GCD(x− 1, n). If f > 1, return f.

5. Could not find a factor of n.

Mitigation. The attack requires B-smooth p− 1 or q− 1. If they are both generated to

have a large prime factor, the bound Bwill not be reachable by an attacker.

Probability of success. The probability of success depends on the definition of large

factor. The algorithm requires O
(
Bln(n)
lnB

)
modular multiplications [33]. Then it is suf-

ficient to estimate what bound B is safe from a motivated attacker. For example, FIPS

12

Size of p Size of B Probability, that random p− 1 is B-smooth

(in bits) (in bits) u−u Knuth

256 100 2.56−2.56 ≈ 9.01 · 10−2 1.30 · 10−1 ≈ 2−3

512 100 5.12−5.12 ≈ 2.34 · 10−4 3.55 · 10−4 < 2−11

1024 140 7.314−7.314 ≈ 4.78 · 10−7 < 8.75 · 10−7 < 2−20

1536 170 9.035−9.035 ≈ 2.31 · 10−9 < 1.02 · 10−9 < 2−29

Table 1: Estimate of the probability that a random prime does not pass the requirement, that

p − 1 has a large factor. The size of factors is taken from FIPS 186-4 (except for 256-bit primes,

since the standard does not allow 512-bit keys). Two approximations for B-smoothness are used,

u−u, where all prime factors of n are ≤ n 1
u and a more precise approximation given by Knuth

and Trabb Pardo in [25]. Since an RSA modulus requires two primes and p + 1 must also have

large factors, random keys will be FIPS-compliant with quarter the probability.

186-4 recommends factors of length > 140 bits, for 2048-bit keys. We estimated the

probability that a random 1024-bit number fails this requirement to be < 2−20.

Probability, that p is a strong prime. Dickman function ρ(u) gives the probability,

that for a real u ≥ 1 all prime factors of n are ≤ n 1
u . An approximation is ρ(u) ≈ u−u.

The minimum length of large factor can be chosen according to FIPS 186-4 [36, Table

B.1]. Table 1 gives the approximate probabilities, that for a random prime p, p−1will be

B-smooth for bound given by FIPS 186-4. Similar probabilities apply for B-smoothness

of p + 1. Assuming the sizes of largest factors of p − 1 and p + 1 are independent, the

probabilities should be doubled. It should be noted that the requirements are strong

and much smaller smoothness bounds would suffice to protect against special-purpose

factorization in practice.

2.1.2 Williams’ p+ 1 factorization algorithm

Williams’ p + 1 factorization algorithm [52] is a special-purpose method similar to the

Pollard’s p − 1 method. It factors n if p + 1 is B-smooth for some prime factor p of n.

The computation is based on Lucas sequences.

Mitigation and feasibility. Both p+ 1 and q+ 1must have at least one large (distinct)

factor. The attack succeeds on random keys with probability similar to the p− 1 attack.

13

2.1.3 Fermat’s factorization method

The Fermat’s factorization algorithm belongs to a family of square factoring methods.

In general, if a2 ≡ b2 (mod n) and a 6≡ ±b (mod n), then n divides the difference of

squares a2 − b2 = (a+ b) · (a− b). Since n does not divide neither (a+ b) nor (a− b),

GCD(a+ b, n) and GCD(a− b, n) are factors of n.

Fermat’s factorization method tries to find a such that a2 − n = b2 for some integer

b. Then n is factored as n = (a+ b) · (a− b).

The algorithm in pseudocode follows:

1. a = d
√
ne.

2. Compute x = a2 − n.
3. While x is not a square, repeat:

3.1 x = x+ 2a+ 1.
3.2 a = a+ 1.

4. Return factors (a+
√
x) and (a−

√
x).

Mitigation. The algorithm is usually published with the initial guess a = d
√
ne, which

works for every composite n. However, large primes p and q would have to be very

close to d
√
ne in order to find them in reasonable time. If the extremely unlikely event

occurs, new key (or a replacement prime) should be generated. It is possible to search

in an interval around any a using this method. Hence the primes should be selected

from large enough intervals.

Probability of success. To prevent this attack, p and q should not be too close together.

FIPS 186-4 and ANSI X9.44 require the difference |p − q| to be larger than 2
k
2
−100, where

k is the size of the key. To fail this requirement, two primes of same length would have

to be identical in all of their first 100 bits. Assuming uniform distribution of prime

generator, the probability is approximately 2−100, neglecting a few (1 or 2) upper bits,

that may be fixed.

2.1.4 Lehman’s improvement to Fermat’s method

Let the ratio of p/q be near a ratio of two small numbers r/s. Then an attacker computes

nrs = ps·qr, ps and qr are close to
√
nrs and Fermat’s method will efficiently find them.

Then GCD(ps, n) = p and GCD(qr, n) = q.

Lehman discovered a systematic way of choosing the rational numbers [28].

14

Mitigation and feasibility. After computing p and q, one might check if the ratio p/q

is near a ratio of two small integers. In such case a new prime or a new key is gener-

ated. This requirement appeared in ANSI X9.31-1997 but the probability of small ratio

is negligible [47]. The check is not performed in any analyzed cryptographic library.

2.1.5 General-purpose factorization methods

Before general-purpose factorization methods were known, it was often recommended

to actively avoid properties of the primes that would make any of the previous factoriza-

tion attacks feasible. As we have already shown, the special-purpose factoring attacks

succeed with negligible probability for practically large RSA keys. General-purpose

attacks do not rely on any conditions.

Elliptic curve factorization. Lenstra’s elliptic curve factorization method [30] (ECM)

generalizes Pollard’s p − 1 method. ECM replaces Z∗p (which has order p − 1) with a

random elliptic curve group over Zp. The algorithm will factor n with high probability,

if the order of the randomly selected group is smooth with respect to some small bound.

Otherwise the method may be repeated with a different random group. The group

orders are uniformly distributed in
[
p+ 1− 2

√
p, p+ 1+ 2

√
p
]

[33]. The method is not

as efficient as the quadratic sieve.

Quadratic sieve factorization. The quadratic sieve factorization invented by Pomer-

ance [40] searches for a congruence of squares modulo n, but does so systematically, as

opposed to random square factoring methods.

While Fermat’s method searches for an a such that x = a2 − n is a square (x =

b2), quadratic sieve computes a2i mod n for several ai and then searches for a subset

{a1, . . . , aj} of ai whose product (a21 mod n · · · · ·a2j mod n) is a square. If found, it yields

a congruence of squares and thus a factorization of n:

(a21 mod n · · · · · a2j mod n) ≡ ((a1 · · · · · aj) mod n)2 (mod n)

Number field sieve factorization. General number field sieve (GNFS or just NFS),

originally proposed by Pollard [39], is the most efficient general factorization method for

large numbers. As the quadratic sieve method, the algorithm searches for a congruence

of squares modulo n. The algorithm is considerably more complicated than QS, but it

15

achieves large speed-up in factorization numbers larger than approximately 350 bits.

The current record of factoring 768-bit RSA modulus was achieved with the NFS [24].

2.1.6 Attacks on small private exponent

Wiener [51] devised an attack based on continued fractions which makes it possible to

recover the private exponent d from public information, if d is small (d < n
1
4).

Boneh and Durfee [9] later extended the result to d < n0.292 using lattice basis reduc-

tion and estimated the correct bound as d < n
1
2 .

Mitigation. The private exponent is small (d < n
1
2) with very low probability [36]. In

such case a new key should be generated.

2.1.7 Cycling attacks

RSA encryption is a permutation on the message space {0, 1, . . . , n − 1}, hence there

always exists some k, such that cek ≡ c (mod n). Then the message can be recovered by

repeated encryption, until the value k is found. The message is computed as m ≡ cek−1

(mod n). A generalized version of the cycling attack either factors n or (much less

frequently) succeeds as the basic cycling attack [33].

Mitigation and feasibility. Some authors use the cycling attacks to justify the require-

ment for strong primes [19, 33]. Since this attack typically gives a factorization of the

modulus or the private key (from which the prime factors can be determined), it is

assumed that it performs no better than other factorization methods. A more precise

analysis in [44] shows that the attack is extremely unlikely to succeed.

2.1.8 Small public exponents and Coppersmith’s attack

Small exponents are desirable to speed up encryption. The exponent e = 3 was com-

monly used. If the message m is short and the ciphertext is shorter than the modulus

(c = m3 < n), the message can be recovered by integer cube root. If three recipients

with different moduli and common public exponent e = 3 receive the same message,

an eavesdropper can compute the message using the CRT (the Hastad’s broadcast at-

tack [8]). Protection against these and related attacks rely on salting the messages with

different random strings.

16

Coppersmith [14] published an attack, where the knowledge of two thirds of a mes-

sage encrypted with public exponent 3 enables an attacker to recover the message.

Hence if the padding is less than a third of the message, the attack is still applicable.

Mitigation. Even if a padding scheme is used, do not use short public exponents. A

slightly larger exponent with low Hamming weight (e.g., 216 + 1 = 65537) still provides

fast encryption and there are fewer known attacks against RSA with such exponents.

2.1.9 Attacks on keys generated with low entropy

Algorithms for prime number generation and PRNGs are deterministic. When given the

same seed, they will generate the same prime. For correctly randomly seeded generator,

it is extremely unlikely that two parties will obtain identical primes. However, when a

PRNG is incorrectly seeded, the probability of shared factors may become much higher

than anticipated (e.g., consider the shared keys generated due to a bug with low entropy

seed in OpenSSL in Debian [3]). Other problems arise from malfunctioning PRNGs,

if they generate predictable output. Simple attacks that exploit insufficient entropy can

factor many keys at once, however they are not suitable for targeted attacks, where the

victim has a correctly generated key.

Batch GCD and shared prime factors. If two moduli share exactly one prime factor, it

can be efficiently determined as their greatest common divisor. When presented with a

large set of keys of which some share a prime, a naïve way to find shared factors would

be to compute GCD of every pair. A batch GCD algorithm [5] can efficiently compute

GCD of millions of RSA moduli. As results of independent researches [29, 20] show,

thousands of keys collected on the internet can be factored using this method.

Coppersmith’s partial key exposure attack. Coppersmith [13] showed how to find

the factors of RSA modulus n = p ·q, if the 1
4
log2nmost significant bits of p are known.

The method has practical applications, as shown in [4]. Smart cards used as national ID

cards in Taiwan produced keys, where the upper bits of some primes were predictable

due to errors in PRNG.

17

3 RSA keypair generation in source code and literature

We examined the source codes of 19 open-source cryptographic libraries variants6 and

matched it to the relevant algorithms for primality testing, prime generation and RSA

key generation from standards and literature. We then examined how the different

methods affected the distributions of the primes and moduli. Summary results for soft-

ware libraries are available in Table 7. A detailed analysis can be found in [37].

3.1 Prime generation

The choice of the method for generating primes depends on the priorities of the applica-

tion. Provable primes provide absolute certainty about primality of the number. On the

contrary, more efficient algorithms for probable primes can produce a composite num-

ber with a very small probability. To prevent some specialized modulus factorization

methods, strong primes may be used.

3.1.1 Probable primes

Random numbers (or numbers from a sequence) are tested for primality using prob-

abilistic primality (compositeness) tests. Different libraries use different combinations

of the Fermat, Miller-Rabin, Solovay-Strassen and Lucas tests. None of the tests rejects

prime numbers if implemented correctly; hence, they do not affect the distribution of

the generated primes. GNU Crypto uses a flawed implementation of the Miller-Rabin

test. As a result, it permits only Blum primes7. No other library generates such primes

exclusively (however, some cards do).

In the random sampling method, large integers (candidates) are generated until a

prime is found. If the candidates are chosen uniformly, the distribution is not biased

(case of GNU Crypto 2.0.1, LibTomCrypt 1.17 and WolfSSL 3.9.0).

An incremental search algorithm selects a random candidate and then increments it

until a prime is found (Botan 1.11.29, Bouncy Castle 1.54, Cryptix 20050328, cryptlib

3.4.3, Crypto++ 5.6.3, FlexiProvider 1.7p7, mbedTLS 2.2.1, SunRsaSign – OpenJDK 1.8.0,

6We inspected multiple versions of libraries (though not all exhaustively) to detect code changes rel-

evant to the key generation process. If such a change was detected, both versions were included in the

analysis.
7A prime p is a Blum prime if p ≡ 3 (mod 4). When both p and q are Blum primes, the modulus n is

a Blum integer n ≡ 1 (mod 4).

18

OpenSSL 1.0.2g, and PGPSDK4). Primes preceded by larger “gaps” will be selected with

slightly higher probability; however, this bias is not observable from the distribution of

the primes.

Large random integers are likely to have some small prime divisors. Before time-

consuming primality tests are performed, compositeness can be revealed through trial

division with small primes or the computation of the greatest common divisor (GCD)

with a product of a few hundred primes. In the case of incremental search, the sieve of

Eratosthenes or a table of remainders that is updated when the candidate is incremented

can be used. If implemented correctly, these efficiency improvements do not affect the

distribution of the prime generator.

OpenSSL creates a table of remainders by dividing a candidate by small primes.

When a composite candidate is incremented, this table is efficiently updated using only

operations with small integers. Interestingly, candidates for p for which p−1 is divisible

by a small prime up to 17 863 (except 2) are also rejected. Such a computational step is

useful to speed up the search for a safe prime; however, (p − 1)/2 is not required to be

prime by the library (as would be for safe prime, see Figure 1). This strange behaviour

was first reported by Mironov [34] and can be used to classify the source if the primes

are known.

1. Generate random odd candidate c of nLen/2 bits.

2. While c or c − 1 is divisible by p1 . . . p2048, c = c + 2.

3. If c is not a probable prime, go to 1.

4. If (c − 1)/2 is not a probable prime, go to 1.

5. Output a safe prime c.

1. Generate random odd candidate c of nLen/2 bits.

2. While c or c − 1 is divisible by p2 . . . p2048, c = c + 2.

3. If c is not a probable prime, go to 1.

4. If (c − 1)/2 is not a probable prime, go to 1.

5. Output an OpenSSL prime c.

Figure 1: Generating primes using OpenSSL library (right). The algorithm resembles generat-

ing safe primes (left), however the primality of (p− 1)/2 is not required by OpenSSL.

3.1.2 Provable primes

Primes are constructed recursively from smaller primes, such that their primality can

be deduced mathematically (using Pocklington’s theorem or related facts). This process

is randomized; hence, a different prime is obtained each time. An algorithm for con-

structing provable primes was first proposed by Maurer [32] (used by Nettle 3.2). For

each prime p, p− 1must have a large factor (≥ √p for Maurer’s algorithm or ≥ 3
√
p for

an improved version thereof). Factors of p+ 1 are not affected.

19

Theorem 3.1 (Pocklington’s theorem). (Citation from [33]). Let n ≥ 3 and let an integer F

divide n− 1. The prime factorization of F is F =
∏t

j=1 q
ej
j . If there exist an integer a satisfying:

• an−1 ≡ 1 mod n; and

• GCD(a(n−1)/qj − 1, n) = 1 for each j, i ≤ j ≤ t,

then every prime divisor p of n is congruent to 1 modulo F. If F >
√
n− 1, then n is prime.

3.1.3 Strong primes

A prime p is strong if both p − 1 and p + 1 have a large prime factor (used by libgcrypt

1.65 in FIPS mode and by the OpenSSL 2.0.12 FIPS module). We also refer to these

primes as FIPS-compliant, as FIPS 186-4 requires such primes for 1024-bit keys (larger

keys may use probable primes). Differing definitions of strong primes are given in the

literature; often, the large factor of p−1 itself (minus one) should also have a large prime

factor (PGPSDK4 in FIPS mode). Large random primes are not “weak” by comparison,

as their prime factors are sufficiently large, with sufficient probability, to be safe from

relevant attacks.

Strong primes are constructed from large prime factors. They can be generated uni-

formly (as in ANSI X9.31, FIPS 186-4, and IEEE 1363-2000) or with a visibly biased dis-

tribution (as in a version of Gordon’s algorithm [17] used in PGPSDK4).

3.2 Key generation – prime pairs

The key size is the bit length of the modulus. Typically, an algorithm generates keys

of an exact bit length (the only exception being PGPSDK4 in FIPS mode). The primes

are thus generated with a size equal to half of the modulus length. These two measures

define the maximal region for RSA primes. The product of two k-bit primes is either 2k

or 2k − 1 bits long. There are two principal methods of solving the problem of short

(2k− 1)-bit moduli, as illustrated in Figure 2.

3.2.1 Rejection sampling

Pairs of k-bit primes are generated until their product has the correct length. To pro-

duce an unbiased distribution, two new primes should be generated each time (Cryptix

20050328, FlexiProvider 1.7p7, and mbedTLS 2.2.1). If the greater prime is kept and only

one new prime is generated, some bias can be observed in the resulting distribution of

20

Maximal region

2k−1 2k 2k+1

2k−
1

2k
2k+

1

Mod. size

2k+2
2k+1
2k
2k−1
2k−2

Rejection sampling

q

2k−1 2k
2k−

1
2k

Accept
Reject

Square regions

q

2k−1 22k−1 2k

2k−
1

2k−
1

+
2k−

2
2k

Arbitrary region

q

2k−1 2k

2k−
1

2k

Figure 2: RSA key generation. The maximal region for the generated primes is defined by

the precise length of the modulus and equal lengths of the primes. Such keys can be generated

through rejection sampling. To avoid generating short moduli (which must be discarded), alter-

native square regions may be used. Several implementations, such as that of the NXP J2A080

card, generate primes from arbitrary combinations of square regions.

RSA moduli (Bouncy Castle up to version 1.53 and SunRsaSign in OpenJDK 1.8.0). If

the first prime is kept (without regard to its size) and the second prime is re-generated,

small moduli will be much more probable than large values (GNU Crypto 2.0.1).

3.2.2 “Square” regions

This technique avoids moduli of incorrect length by generating only larger primes,

whose product has the correct length. Typically, both primes are selected from iden-

tical intervals, hence producing a square region when plotted in two dimensions.

The smallest k-bit numbers that produce a 2k-bit modulus are close to
√
2·2k−1. Since

random numbers can be easily generated uniformly from intervals bounded by powers

of two, the distribution must be additionally transformed to fit such an interval. We

refer to the prime pairs generated from the interval
[√
2 · 2k−1, 2k − 1

]
as coming from

the maximal square region (Bouncy Castle since 1.54, Crypto++ 5.6.3, and the Microsoft

cryptography providers used in CryptoAPI, CNG and .NET). Crypto++ approximates

this interval by generating the most significant byte of primes from 182 to 255.

A more practical square region, which works well for candidates generated uniformly

from intervals bounded by powers of two, is achieved by fixing the two most significant

bits of a candidate to 112 (Botan 1.11.29, cryptlib 3.4.3, libgcrypt 1.6.5, LibTomCrypt

1.17, OpenSSL 1.0.2g, PGPSDK4, and WolfSSL 3.9.0). Additionally, the provable primes

generated in Nettle 3.2 and the strong primes generated in libgcrypt 1.6.5 (in FIPS mode)

and in the OpenSSL 2.0.12 FIPS module are produced from this region.

21

4 Analysis of the generated RSA key pairs

The key pairs extracted from both the software libraries and the cards were examined

using a similar set of analytical techniques. The goal was to identify sources with the

same behaviour, investigate the impact on the public key values and infer the probable

key generation algorithm used based on similarities and differences in the properties.

4.1 Distributions of the primes

To visualize the regions from which pairs of primes were chosen, we plotted the most

significant byte (MSB) of each prime on a heat map. It is possible to observe the intervals

for prime generation, as discussed in Section 3.

Figures 3 to 10 show all the observed distributions. Surprisingly, the MSB patterns

were significantly different for the cards and the software implementations. The pat-

terns were identical among different physical cards of the same type and were also

shared between some (but not all) types of cards from the same manufacturer (proba-

bly because of a shared code base). The most peculiar card distributions can be found

in Figure 10. We did not encounter any library that produced outputs comparable to

the cards Infineon JTOP 80K or Gemalto GXP E64. The output of NXP cards could be

reproduced by generating primes alternately and uniformly from 14 different regions,

each characterized by a pattern in the top four bits of the primes. By comparison, it was

rarer for a bias to be introduced by a library.

The relation between the values of p and q reveals additional conditions placed on

the primes, such as a minimal size of the difference p − q (PGPSDK4, NXP J2D081, and

NXP J2E145G).

It is possible to verify whether small factors of p− 1 are being avoided (e.g., OpenSSL

or NXP J2D081) or whether the primes generally do not exhibit same distribution as ran-

domly generated numbers (Infineon JTOP 80K) by computing the distributions of the

primes, modulo small primes. It follows from Dirichlet’s theorem that the remainders

should be distributed uniformly among the φ(n) congruence classes in Z∗n [33, Fact 4.2].

The patterns observed for the 512-bit keys were found to be identical to those for

the stronger keys of 1024 and 2048 bits. For the software implementations, we checked

the source codes to confirm that there were no differences in the algorithms used to

generate keys of different lengths. For the cards, we assume the same and generalize

the results obtained for 512-bit RSA keys to the longer (and much more common) keys.

22

Library: mbedTLS 2.2.1

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10000000
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: Cryptix JCE 20050328

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10000000
Pmax = 11111111
Qmin = 10000000
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: FlexiProvider 1.7p7

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10000000
Pmax = 11111111
Qmin = 10000000
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: SunRsaSign OpenJDK 1.8

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10000000
Qmax = 11111111
Nmin = 10000000
Nmax = 11111110
P = Q

Library: Bouncy Castle 1.53
0.

00
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5
Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10000000
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: GNU Crypto 2.0.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10000000
Pmax = 11111111
Qmin = 10000000
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Figure 3: Libraries: rejection sampling. The histograms on the top and the side of the graph

represent the marginal distributions of p and q, respectively. The colour scheme expresses the

likelihood that primes of a randomly generated key will have specific high order bytes, ranging

from white (not likely) over orange to red (more likely). The libraries mbedTLS 2.2.1, Cryptix

JCE 20050328 and FlexiProvider 1.7p7 generate a fresh pair of primes, if their product has

incorrect bit length. SunRsaSign (default provider in OpenJDK 1.8) and Bouncy Castle 1.53

keep the larger prime. GNU Crypto 2.0.1 keeps the first generated prime.

23

Library: Botan 1.11.29

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: cryptlib 3.4.3

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: GPG Libgcrypt 1.6.5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: LibTomCrypt 1.17

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: Nettle 3.2

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: OpenSSL 1.0.2g

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: PGP SDK 4

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111011
Qmin = 11000101
Qmax = 11111111
Nmin = 10010101
Nmax = 11111011
P = Q

Library: WolfSSL 3.9.0
0.

00
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Figure 4: Libraries: the practical square region. OpenSSL 1.0.2g and cryptlib 3.4.3 order the

primes after generation such that p > q, according to a convention for CRT keys. Libgcrypt

1.6.5 (used by GPG) and PGP SDK 4 sort the primes in the opposite order (p < q). Other

libraries do not manipulate with the order of the primes. The graphs also reveals that PGP SDK

4 requires that the primes differ somewhere in their top 6 bits. Nettle 3.2 generates provable

primes, however this type of graph does not help to distinguish the type of the prime generator.

See Figure 3 for the graph interpretation.

24

Library: GPG Libgcrypt 1.6.5 FIPS

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: OpenSSL FIPS 2.0.12

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Library: PGP SDK 4 FIPS

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

01
00

00
00

01
00

11
00

01
01

10
00

01
10

01
00

01
11

00
00

01
11

11
00

10
00

10
00

10
01

01
00

10
10

00
00

10
10

11
00

10
11

10
00

11
00

01
00

11
01

00
00

11
01

11
00

11
10

10
00

11
11

01
00

11
11

11
11

01000000
01001100
01011000
01100100
01110000
01111100
10001000
10010100
10100000
10101100
10111000
11000100
11010000
11011100
11101000
11110100
11111111

Q
P

Pmin = 01100000
Pmax = 11101111
Qmin = 01100100
Qmax = 11111111
Nmin = 00100110
Nmax = 11101000
P = Q

Figure 5: Libraries: FIPS variants. Libgcrypt 1.6.5 in FIPS mode and OpenSSL FIPS module

2.0.12 generate strong primes uniformly and target the practical square region. PGP SDK 4

in FIPS mode generate strong primes from a different distribution. The primes may be one bit

shorter than expected (notice the different values at the axes). As a result, the modulus may be

shorter than requested, by one or two bits. See Figure 3 for the graph interpretation.

Library: Crypto++ 5.6.3

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110110
Pmax = 11111111
Qmin = 10110110
Qmax = 11111111
Nmin = 10000001
Nmax = 11111111
P = Q

Library: Bouncy Castle 1.54

0.
00

0.
01

0.
02

0.
03

0.
04

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Figure 6: Libraries: the maximal square region. In the case of Crypto++ 5.6.3, the interval for

prime generation is approximated. Bouncy Caste 1.54 generates primes from the truly maximal

square region (besides ordering the primes afterwards). See Figure 3 for the graph interpretation.

25

Library: Microsoft CryptoAPI

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: Microsoft CNG

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Library: Microsoft .NET

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000000
Nmax = 11111111
P = Q

Figure 7: Black-box software implementations. Microsoft libraries (CryptoAPI, CNG and the

default provider in .NET) seem to be using the same parameters for prime intervals – the max-

imal square region. Further analysis revealed, that the uniformly generated primes are strong.

This type of graph does not capture the type of generated primes. See Figure 3 for the graph

interpretation.

Card: NXP J2D081

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10111101
Pmax = 11111111
Qmin = 10000001
Qmax = 11101100
Nmin = 10000000
Nmax = 11101100
P = Q

Card: NXP J2E145G

0.
00

0.
01

0.
02

0.
03

0.
04

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10111101
Pmax = 11111111
Qmin = 10000001
Qmax = 11101100
Nmin = 10000000
Nmax = 11101100
P = Q

Figure 8: Cards: possibly rejection sampling. The primes generated by NXP J2D081 and NXP

J2E145G are sorted and generated almost from the maximal region defined by modulus and

prime bit lengths. Additionally, some requirement is placed on the difference of the primes. We

hypothesize that the distribution can be easily reproduced by rejection sampling. See Figure 3

for the graph interpretation.

26

Card: Feitian JavaCOS A22

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Card: Feitian JavaCOS A40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Card: Gemalto GCX4 72K

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Card: Oberthur Cosmo 64

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Card: Oberthur Cosmo Dual 72K

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 11000000
Qmax = 11111111
Nmin = 10010000
Nmax = 11111111
P = Q

Figure 9: Cards: the practical square region. Gemalto GCX4 72K generates strong primes

uniformly, however the difference in the graphs is caused by ordering the primes at the end of

key generation, not by type of primes. See Figure 3 for the graph interpretation.

27

Card: G&D SmartCafe 3.2

0.
0

0.
1

0.
2

0.
3

0.
4

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11110000
Pmax = 11111111
Qmin = 10010000
Qmax = 10011111
Nmin = 10000111
Nmax = 10011111
P = Q

Card: G&D SmartCafe 4.x

0.
0

0.
1

0.
2

0.
3

0.
4

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11110000
Pmax = 11111111
Qmin = 10010000
Qmax = 10011111
Nmin = 10000111
Nmax = 10011111
P = Q

Card: G&D SmartCafe 6.0

0.
0

0.
1

0.
2

0.
3

0.
4

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11110000
Pmax = 11111111
Qmin = 10010000
Qmax = 10011111
Nmin = 10000111
Nmax = 10011111
P = Q

Card: NXP J2A080

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 10010000
Qmax = 11101111
Nmin = 10000010
Nmax = 11101111
P = Q

Card: NXP J2A081

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 10010000
Qmax = 11101111
Nmin = 10000010
Nmax = 11101111
P = Q

Card: NXP J3A081

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 10010000
Qmax = 11101111
Nmin = 10000010
Nmax = 11101111
P = Q

Card: NXP JCOP 41 V2.2.1

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11111111
Qmin = 10010000
Qmax = 11101111
Nmin = 10000010
Nmax = 11101111
P = Q

Card: Gemalto GXP E64

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 10110101
Pmax = 11111111
Qmin = 10110101
Qmax = 11111111
Nmin = 10000100
Nmax = 11110101
P = Q

Card: Infineon JTOP 80K

0.
0

0.
2

0.
4

0.
6

0.
8

Density (%)

10
00

00
00

10
00

10
00

10
01

00
00

10
01

10
00

10
10

00
00

10
10

10
00

10
11

00
00

10
11

10
00

11
00

00
00

11
00

10
00

11
01

00
00

11
01

10
00

11
10

00
00

11
10

10
00

11
11

00
00

11
11

10
00

11
11

11
11

10000000
10001000
10010000
10011000
10100000
10101000
10110000
10111000
11000000
11001000
11010000
11011000
11100000
11101000
11110000
11111000
11111111

Q
P

Pmin = 11000000
Pmax = 11001111
Qmin = 11000000
Qmax = 11001111
Nmin = 10010000
Nmax = 10101000
P = Q

Figure 10: Cards: arbitrary combination of square regions and implementation specific regions.

G&D cards generate primes from a square region, defined by patterns in the top four bits of

the primes – 11112 and 10012 for p and q, respectively. Some NXP cards generate the primes

from 14 regions defined by distinct pairs of patterns in the top four bits of the primes. Two

such regions are twice as probable as others. Gemalto GXP E64 generates strong primes, the

distribution is not uniform. Infineon JTOP 80K has a proprietary algorithm for key generation,

which has several characteristics which are unique in our dataset. See Figure 3 for the graph

interpretation.

28

4.2 Distributions of the moduli

The MSB of a modulus is directly dependent on the MSBs of the corresponding primes

p and q. As seen in Figures 11 and 12, if an observable pattern exists in the distributions

of the MSBs of primes p and q, a noticeable pattern also appears in the MSB of the mod-

ulus. The preservation of shared patterns was observed for all tested types of software

libraries and cards. The algorithm used for prime pair selection can often be observed from

the distribution of the moduli. If a source uses an atypical algorithm, it is possible to

detect it with greater precision, even if we do not know the actual method used.

Non-randomness with respect to small factors of p − 1 can also be observed from

the modulus, especially for small divisors. Whereas random primes are equiprobably

congruent to 1 and 2 modulo 3 (Table 2), OpenSSL primes are always congruent to 2

(Table 3). As a result, an OpenSSL modulus is always congruent to 1 modulo 3 (Table 4).

This property is progressively more difficult to detect for larger prime divisors. The

moduli are more probably congruent to 1 modulo all small primes, which are avoided

from p−1 by OpenSSL. However, the bias is barely noticeable for prime factors of 19 and

more, even in an analysis of a million keys. OpenSSL primes are congruent to 1 modulo

5 with probability 1/3 (as opposed to 1/4 for random primes, Table 5), to 1 modulo 7

with probability 1/5 (as opposed to 1/6), and to 1 modulo 11 with probability 1/9 (as

opposed to 1/10). For the practical classification of only a few keys (see Section 5), we

use only the remainder of division by 3.

If a source has a characteristic distribution of moduli modulo small primes, as is the

case of the Infineon JTOP 80K smartcard (Table 6), it can be used for a more precise

classification. However, in our general case, the single source is relatively scarce and no

other sources behave similarly, therefore we have decided not to use the distributions

observed for this card as a classification trait.

The use of Blum integers can also be detected from the moduli with a high precision,

as random moduli are equiprobably congruent to 1 and 3 modulo 4, whereas Blum

integers are always congruent to 1 modulo 4. The probability that k random moduli

will be Blum integers is 2−k.

Neither libraries nor cards attempt to achieve a uniform distribution of moduli. Ex-

isting algorithms [21, 31] have the disadvantage that sometimes a prime will be one bit

larger than half of the modulus length. All sources sacrifice uniformity in the most sig-

nificant bits of the modulus to benefit from more efficient methods of prime and key

generation.

29

Card: G&D SmartCafe 3.2

P
128 255

Q

128 255 128 255

N

Card: G&D SmartCafe 4.x

P
128 255

Q

128 255 128 255

N

Card: G&D SmartCafe 6.0

P
128 255

Q

128 255 128 255

N

Card: NXP J2A080

P
128 255

Q

128 255 128 255

N

Card: NXP J2A081

P
128 255

Q

128 255 128 255

N

Card: NXP J3A081

P
128 255

Q

128 255 128 255

N

Card: NXP JCOP 41 V2.2.1

P
128 255

Q

128 255 128 255

N

Card: NXP J2D081

P
128 255

Q

128 255 128 255

N

Card: NXP J2E145G

P
128 255

Q

128 255 128 255

N

Card: Feitian JavaCOS A22

P
128 255

Q

128 255 128 255

N

Card: Feitian JavaCOS A40

P
128 255

Q

128 255 128 255

N

Card: Gemalto GCX4 72K

P
128 255

Q

128 255 128 255

N

Card: Oberthur Cosmo 64

P
128 255

Q

128 255 128 255

N

Card: Oberthur Cosmo Dual 72K

P
128 255

Q

128 255 128 255

N

Card: Gemalto GXP E64

P
128 255

Q

128 255 128 255

N

Card: Infineon JTOP 80K

P
128 255

Q

128 255 128 255

N

Figure 11: Cards: the effect of distribution of the MSB of primes on the distribution of the MSB

of the modulus.

We verified that the distribution of the other bytes of the moduli is otherwise uni-

form. The second least significant bit is biased in the case of Blum integers. Sources that

use the same algorithm are not mutually distinguishable from the distributions of their

moduli.

30

Library: mbedTLS 2.2.1

P
128 255

Q

128 255 128 255

N

Library: Cryptix JCE 20050328

P
128 255

Q

128 255 128 255

N

Library: FlexiProvider 1.7p7

P
128 255

Q

128 255 128 255

N

Library: SunRsaSign OpenJDK 1.8

P
128 255

Q

128 255 128 255

N

Library: Bouncy Castle 1.53

P
128 255

Q

128 255 128 255

N

Library: GNU Crypto 2.0.1

P
128 255

Q

128 255 128 255

N

Library: Botan 1.11.29

P
128 255

Q

128 255 128 255

N

Library: cryptlib 3.4.3

P
128 255

Q

128 255 128 255

N

Library: GPG Libgcrypt 1.6.5

P
128 255

Q

128 255 128 255

N

Library: LibTomCrypt 1.17

P
128 255

Q

128 255 128 255

N

Library: Nettle 3.2

P
128 255

Q

128 255 128 255

N

Library: OpenSSL 1.0.2g

P
128 255

Q

128 255 128 255

N

Library: WolfSSL 3.9.0

P
128 255

Q

128 255 128 255

N

Library: PGP SDK 4

P
128 255

Q

128 255 128 255

N

Library: GPG Libgcrypt 1.6.5 FIPS

P
128 255

Q

128 255 128 255

N

Library: OpenSSL FIPS 2.0.12

P
128 255

Q

128 255 128 255

N

Library: PGP SDK 4 FIPS

P
64 255

Q

64 255 32 255

N

Library: Microsoft CryptoAPI

P
128 255

Q

128 255 128 255

N

Library: Microsoft CNG

P
128 255

Q

128 255 128 255

N

Library: Microsoft .NET

P
128 255

Q

128 255 128 255

N

Library: Crypto++ 5.6.3

P
128 255

Q

128 255 128 255

N

Library: Bouncy Castle 1.54

P
128 255

Q

128 255 128 255

N

Figure 12: Software libraries: the effect of distribution of the MSB of primes on the distribution

of the MSB of the modulus.

31

Remainder

Divisor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 1/2 1/2

5 1/4 1/4 1/4 1/4

7 1/6 1/6 1/6 1/6 1/6 1/6

11 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

13 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

17 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16

19 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18 1/18

Table 2: Probability of remainders modulo small primes for uniformly generated large prime.

Same probabilities apply to remainders for the public key (modulus n = p · q), if primes are

chosen uniformly and independently.

Remainder

Divisor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 0 1

5 0 1/3 1/3 1/3

7 0 1/5 1/5 1/5 1/5 1/5

11 0 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

13 0 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11

17 0 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15

19 0 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17 1/17

. . .

17 863 0 1/17 861 .

17 881 1/17 880 1/17 880 .

17 891 1/17 890 1/17 890 .

Table 3: Probability of remainders modulo small primes for primes generated by OpenSSL.

Remainder

Divisor 1 2 3 4 5 6 7 8 9 10 11 12 . . . 16 . . . 18

3 1 0

5 3/9 2/9 2/9 2/9

7 5/25 4/25 4/25 4/25 4/25 4/25

11 9/81 8/81 8/81 8/81 8/81 8/81 8/81 8/81 8/81 8/81

13 11/121 10/121 10/121 10/121 10/121 10/121 10/121 10/121 10/121 10/121 10/121 10/121

17 15/225 14/225 14/225 14/225 14/225 14/225 14/225 14/225 14/225 14/225 14/225 14/225 . . . 14/225

19 17/289 16/289 16/289 16/289 16/289 16/289 16/289 16/289 16/289 16/289 16/289 16/289 . . . 16/289 . . . 16/289

. . .

17 863 1
17 861

17 860
17 8612

. .

17 881 1/17 880 1/17 880 .

17 891 1/17 890 1/17 890 .

Table 4: Probability of remainders modulo small primes for moduli generated by OpenSSL.

32

p mod 5

q mod 5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

p mod 5

q mod 5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Table 5: The remainder modulo a small prime q (the example is using q = 5) when dividing

product of two primes with specific remainders. If the primes with remainder 1 are avoided

(i.e. p − 1 is not divisible by the small prime), the modulus is congruent to 1 with probability

(q− 2)/(q− 2)2, while the other remainders are less probable (q− 3)/(q− 2)2.

Remainder

Divisor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . . 22 . . . 26 . . . 36

3 1/2 1/2

5 1/4 1/4 1/4 1/4

7 1/6 1/6 1/6 1/6 1/6 1/6

11 1/2 0 0 0 0 0 0 0 0 1/2

13 1/6 0 1/6 1/6 0 0 0 0 1/6 1/6 0 1/6

17 1/8 1/8 0 1/8 0 0 0 1/8 1/8 0 0 0 1/8 0 1/8 1/8

19 1/9 0 0 1/9 1/9 1/9 1/9 0 1/9 0 1/9 0 0 0 0 1/9 1/9 0

23 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 . . . 1/22

29 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 1/28 . . . 1/28 . . . 1/28 . . .

31 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 1/30 . . . 1/30 . . . 1/30 . . .

37 1/3 0 0 0 0 0 0 0 0 1/3 0 0 0 0 0 0 0 0 . . . 0 . . . 1/3 . . . 0

Table 6: Probability of remainders modulo small primes for primes and moduli generated by

Infineon JTOP 80K smartcard. Additionally, we detected that the remainders modulo 53, 61, 71,

73, 79, 97, 103, 107, 109, 127, 151 and 157 are also from certain subgroups of residue classes and

do not represent all residue classes. The values are almost uniformly distributed modulo all other

primes (tested up to 547), as expected from the Dirichlet’s theorem. We use the remainder modulo

3 for our classification. The card generates uniformly distributed moduli modulo 3, therefore the

criterion is not applicable to this card. However, if we would focus more on this source in our

analysis, by using the remainders modulo other primes, the card could be identified much more

easily. Hence for specialized cases other criteria can be more useful than for our general analysis.

33

4.3 Factorization of p− 1 and p+ 1

It is possible to verify whether strong primes are being used. Most algorithms generate

strong primes from uniform distributions (ANSI X9.31, FIPS 186-4, IEEE 1363, OpenSSL

FIPS, libgcrypt FIPS, Microsoft and Gemalto GCX4 72K), matching the distribution of

random primes, although PGPSDK4 FIPS produces a highly atypical distribution of

primes and moduli, such that this source can be detected even from public keys. Hence,

we were obliged to search for the sizes of the prime factors of p − 1 and p + 1 directly8

by factoring them using the YAFU software package [53]. We then extended the results

obtained for 512-bit keys to the primes of 1024-bit key pairs (though based on fewer

factorized values because of the longer factorization time). Finally, we extrapolated the

results to keys of 2048 bits and longer based on the known patterns for shorter keys.

As confirmed by the source code, large factors of p ± 1 generated in OpenSSL FIPS

and by libgcrypt in FIPS mode always have 101 bits; this value is hardcoded. PGPSDK4

in FIPS mode also generates prime factors of fixed length; however, their size depends

on the size of the prime.

Additionally, we detected strong primes in some of our black-box sources. Gemalto

GCX4 72K generates strong primes uniformly, but the large prime factors always have

101 bits. The strong primes of Gemalto GXP E64, which have 112 bits, are not drawn

from a uniform distribution. The libraries that use Microsoft cryptography providers

(CryptoAPI, CNG, and .NET) produce prime factors of randomized length, ranging

from 101 bits to 120 bits, as required by ANSI X9.31.

For large primes, p ± 1 has a large prime factor with high probability. A random

integer pwill not have a factor larger than p1/u with a probability of approximately u−u

[33]. Approximately 10% of 256-bit primes do not have factors larger than 100 bits, but

512-bit keys are not widely used. For 512-bit primes, the probability is less than 0.05%.

Therefore, the requirement of a large factor does not seem to considerably decrease

the number of possible primes. However, many sources construct strong primes with

factors of exact length (e.g., 101 bits). Using the approximation of the prime-counting

function π(n) ≈ n
ln(n)

[33], we estimate that the interval required by ANSI X9.31 (prime

factors from 101 to 120 bits) contains approximately 220 times more primes than the

number of 101-bit primes. Hence, there is a loss of entropy when strong primes are

generated in this way, although we are not aware of an attack that would exploit this

8By p− 1, we always refer to both p− 1 and q− 1, as we found no relevant difference between p and

q in the factorization results.

34

Identifying the type of primes from factorization of p−1 and p+1
T

he
 s

ec
on

d
la

rg
es

t p
rim

e
fa

ct
or

 (
bi

t l
en

gt
h)

The largest prime factor (bit length)

a) Random prime (p−1)

0
40

80
12

0

50 100 150 200 250

a) Random prime (p+1)

0
40

80
12

0

50 100 150 200 250

b) No factors 3 to 251 in p−1 (p−1)

0
40

80
12

0

50 100 150 200 250

b) No factors 3 to 251 in p−1 (p+1)

0
40

80
12

0

50 100 150 200 250

c) No factors 3 to 17863 in p−1 (p−1)

0
40

80
12

0

50 100 150 200 250

c) No factors 3 to 17863 in p−1 (p+1)

0
40

80
12

0

50 100 150 200 250

d) No factors 3 and 5 in p−1 (p−1)

0
40

80
12

0

50 100 150 200 250

d) No factors 3 and 5 in p−1 (p+1)

0
40

80
12

0

50 100 150 200 250

e) Infineon specific (p−1)

0
40

80
12

0

50 100 150 200 250

e) Infineon specific (p+1)

0
40

80
12

0

50 100 150 200 250

f) Provable primes (p−1)

0
40

80
12

0

50 100 150 200 250

f) Provable primes (p+1)

0
40

80
12

0

50 100 150 200 250

g) Strong primes: 101−bit factor (p−1)

0
40

80
12

0

50 100 150 200 250

g) Strong primes: 101−bit factor (p+1)

0
40

80
12

0

50 100 150 200 250

h) Strong primes: 112−bit factor (p−1)
0

40
80

12
0

50 100 150 200 250

h) Strong primes: 112−bit factor (p+1)

0
40

80
12

0

50 100 150 200 250

i) Strong primes: 101 to 120−bit factors (p−1)

0
40

80
12

0

50 100 150 200 250

i) Strong primes: 101 to 120−bit factors (p+1)

0
40

80
12

0

50 100 150 200 250

j) Strong primes: 96−bit factor (p−1)

0
40

80
12

0

50 100 150 200 250

j) Strong primes: 96−bit factor (p+1)

0
40

80
12

0

50 100 150 200 250

Figure 13: Identifying the type of primes from scatter graphs of two biggest factors of p −

1 and p + 1 for 512-bit RSA. The tested sources fall into following categories: a) Random

primes: Botan 1.11.29, Bouncy Castle 1.53 & 1.54, Cryptix JCE 20050328, cryptlib 3.4.3,

Crypto++ 5.6.3, FlexiProvider 1.7p7, GNU Crypto 2.0.1, (GPG) libgcrypt 1.6.5, LibTomCrypt

1.17, mbedTLS 2.2.1, PGPSDK4, SunRsaSign (OpenJDK 1.8), G&D SmartCafe 3.2, Feitian

JavaCOS A22, Feitian JavaCOS A40, NXP J2A080, NXP J2A081, NXP J3A081, NXP JCOP

41 V2.2.1, Oberthur Cosmo Dual 72K; b) No factors 3 to 251 in p-1: NXP J2D081, NXP

J2E145G; c) No factors 3 to 17863 in p-1: OpenSSL 1.0.2g; d) No factors 3 and 5 in p-

1: G&D SmartCafe 4.x, G&D SmartCafe 6.0; e) Infineon specific: Infineon JTOP 80K; f)

Provable primes: Nettle 3.2; g) Strong primes with 101-bit prime factors of p±1: (GPG)

libgcrypt 1.6.5 FIPS, OpenSSL FIPS 2.0.12, Gemalto GCX4 72K; h) Strong primes with 112-

bit prime factors of p± 1: Gemalto GXP E64; i) Strong primes with 101 to 120-bit prime

factors of p ± 1: MS CNG, MS CryptoAPI, MS .NET; j) Strong primes with 96-bit prime

factors of p± 1: PGPSDK4 FIPS.

35

Figure 14: Scatter graph of dependency of lengths of the largest and the second largest factor of

p − 1 for 1024-bit RSA for the Feitian JavaCOS A40 card. Blue dots represent several hundred

actually factorized values overlayed on expected results interpolated from the distribution of

factors for 512-bit RSA (where 10 000 values were taken and all factorized). The factorized values

of p− 1 from 1024-bit RSA fit into projected area. The triangle in the upper center without any

actual factors found is due to a time limit we allowed to be spent on the factorization of a single

value. The factorization of p − 1 which is expected to fall into given area requires from 500 to

2 000 hours of factorization time.

fact. For every choice of an auxiliary prime, 293 possible values are considered instead

of 2113, which implies the loss of almost 20 bits of entropy. If the primes are to be (p−,

p+)-safe, then 2 auxiliary primes must be generated. Because we require two primes

p and q for every RSA key, we double the estimated loss of entropy compared with

ANSI-compliant keys to 80 bits for 1024-bit keys.

When p − 1 is guaranteed to have a large prime factor but p + 1 is not, the source

is most likely using provable primes, as in the case of the Nettle library. Techniques for

generating provable primes construct p using a large prime factor of p − 1 (at least
√
p

for Maurer’s algorithm or 3
√
p for an improved version thereof). The size of the prime

factors of p+ 1 is not affected by Maurer’s algorithm.

Factorization also completes the picture with regard to the avoidance of small factors

in p − 1. Sources that avoid small factors in p − 1 achieve a smaller number of factors

on average (and therefore also a higher average length of the largest factor). No small

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of factors of p-1 (q-1)

NXP J2D081, NXP J2E145G (4.59)

OpenSSL 1.0.2g (4.94)

G&D SmartCafe 4.x, G&D SmartCafe 6.0 (5.55)

GNU Crypto 2.0.1, G&D SmartCafe 3.2, NXP J2A080, NXP J2A081, NXP J3A081,
NXP JCOP 41 V2.2.1, Oberthur Cosmo Dual 72K (6.57)

Botan 1.11.29, Bouncy Castle 1.53 & 1.54, Cryptix JCE 20050328, cryptlib 3.4.3,
Crypto++ 5.6.3, FlexiProvider 1.7p7, Feitian JavaCOS A22, Feitian JavaCOS A40,
GPG Libgcrypt 1.6.5, LibTomCrypt 1.17, mbedTLS 2.2.1, PGP SDK 4,
Random prime - 1, SunRSASign OpenJDK 1.8, WolfSSL 3.9.0 (7.61)

Gemalto GCX 72K, Gemalto GXP E64, GPG Libgcrypt 1.6.4 FIPS,
MS CNG, MS CryptoAPI, MS .NET, Nettle 3.1.1, PGP SDK 4 FIPS (8.10)

Infineon JTOP 80K (8.90)

Number of factors

P
ro

ba
bi

lit
y

Figure 15: Number of factors of p − 1 for RSA 512 bits. Histogram is generated from 10 000

factorized values of p − 1 and q − 1 taken from 5 000 key pairs. We identified 7 groups based

on similar distributions. The average number of factors is listed at the end of each group. The

first 3 groups with the least average number of factors are avoiding small factors in p − 1,

therefore increasing the average size of the factor and decreasing the expected number of factors.

Values generated from a large portion of the libraries behave the same way as a prime randomly

generated by incremental search, decreased by one. Two other groups have similar distributions.

Sources that generate strong primes or provable primes belong to a separate category as well.

The implementation choices of Infineon JTOP 80K card lead to large number of small factors,

resulting in high number of factors (8.90 on average, with as many as 32 factors observed).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of factors of p+1 (q+1)

G&D SmartCafe 4.x, G&D SmartCafe 6.0, NXP J2D081,
NXP J2E145G (9.53)
GNU Crypto 2.0.1, G&D SmartCafe 3.2, NXP J2A080,
NXP J2A081, NXP J3A081, NXP JCOP 41 V2.2.1,
Oberthur Cosmo Dual 72K, OpenSSL 1.0.2g (8.48)
Botan 1.11.29, Bouncy Castle 1.53 & 1.54,
Cryptix JCE 20050328, cryptlib 3.4.3, Crypto++ 5.6.3,
FlexiProvider 1.7p7, Feitian JavaCOS A22, Feitian JavaCOS A40,
GPG Libgcrypt 1.6.5, LibTomCrypt 1.17, mbedTLS 2.2.1,
PGP SDK 4, Random prime - 1, SunRSASign OpenJDK 1.8,
WolfSSL 3.9.0 (7.59)
Gemalto GCX 72K, Gemalto GXP E64, GPG Libgcrypt 1.6.4
FIPS, MS CNG, MS CryptoAPI, MS .NET, Nettle 3.1.1,
PGP SDK 4 FIPS (8.06)
Infineon JTOP 80K (8.32)

Number of factors

P
ro

ba
bi

lit
y

Figure 16: Number of factors of p + 1 for RSA 512 bits. Histogram is generated from 10 000

factorized values of p + 1 and q + 1 taken from 5 000 key pairs. The sources behave more

consistently, with only 5 distinguishable categories observed.

37

32,16 31,35

21,36 21,12

15,84 15,48
14,04 13,98 13,98 13,8

12,54 12,3 11,7
10,68 10,44

38,28
36,72

34,56 34,08

30,12

27
26,16

19,56

16,08 15,84 15,36 15,12 15 14,76 14,64 13,8 13,2 13,08 12,72
11,4

10,32

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

S
e
c
o
n
d
s

Name of source card/implementation

Average time of factorization - p-1/q-1 values - 512-bit keys

Figure 17: Average factorization time of p − 1 values with YAFU factorization tool (methods

used: trial division, Pollard rho, ECM, Pollard’s p-1, Williams p+1, Fermat, Self-initializing

quadratic sieve based on suitability) on CPU Intel i5 M430 @ 2x2.27 GHz (6GB RAM avail-

able, but only about 100MB used). For every source, 1000 values were factorized. Since the

factorization of p − 1 requires the knowledge of the private key, the measured values have no

direct connection with the strength of the keys. However, we observed that p− 1 values coming

from strong primes (always having a large factor) were the most difficult to factor.

factors are present in keys from NXP J2D081 and J2E145G (values from 3 to 251 are

avoided), from OpenSSL (values from 3 to 17 863 are avoided) and from G&D Smartcafe

4.x and G&D Smartcafe 6.0 (values 3 and 5 are avoided). Small factors in p + 1 are not

avoided by any source.

Concerning the distribution of factors, most of the software libraries (14) and card

types (8) yield distributions comparable to that of randomly generated numbers of a

given length (see Figure 13). The Infineon JTOP 80K card produces significantly more

small factors than usual (compared with both random numbers and other sources). This

decreases the probability of having a large factor.

We estimated the percentage of 512-bit RSA keys that are susceptible to Pollard p−1

factorization within 280 operations. This percentage ranges from 0% (FIPS-compliant

sources) to 4.35% (Infineon JCOP 80K), with an average of 3.38%. Although the NFS

algorithm would still be faster in most cases of keys of 512 bits and larger, we found a

card-generated key (with a small maximal factor of p−1) that was factorized via Pollard

p− 1method in 19 minutes, whereas the NFS algorithm would require more than 2 000

CPU hours. Note that for 1024-bit keys, the probability of such a key being produced is

negligible.

38

4.4 Sanity check

Based on the exported private and public components of the generated RSA keys ob-

tained from all sources, we can summarize their basic properties as follows (see also

Table 7):

• All values p and q are primes and are not close enough for Fermat factorization to

be practical.

• All card-generated keys use a public exponent equal to 0x10001 (65 537), and all

software libraries either use this value as the default or support a user-supplied

exponent.

• Most modulus values are of an exactly required length (e.g., 1024 bits). The only

exception is PGPSDK4 in FIPS mode, which also generates moduli that are shorter

than the specified length by one or two bits.

• Neither libraries nor cards ensure that p is a safe prime (p = 2 · q + 1, where q is

also prime).

• Some sources construct strong primes according to the stricter definition or at least

comply with the requirements defined in the FIPS 186-4 and ANSI X9.31 stan-

dards, such that p− 1 and p+ 1 both have a large prime factor. Other libraries are

not FIPS-compliant; however, keys of 1024 bits and larger resist p − 1 and p + 1

attacks for practical values of the smoothness bound.

• Some libraries (5) and most card types (12) order the primes such that p > q,

which seems to be a convention for CRT RSA keys. PGPSDK4 (in both regular

and FIPS modes) and libgcrypt (used by GnuPG) in both modes order the primes

in the opposite manner, q > p. In some sources, the ordering is a side effect of the

primes having fixed (and different) most significant bits (e.g., 4 bits of p and q are

fixed to 1111 and 1001, respectively, by all G&D cards).

• All generated primes were unique for all libraries and all types of cards except one

(Oberthur Cosmo Dual 72K).

• All G&D and NXP cards, the Oberthur Cosmo Dual 72K card and the GNU Crypto

library generate Blum integers. As seen from a bug in the implementation of the

Miller-Rabin test in GNU Crypto, a simpler version of the test suffices for test-

ing Blum primes. However, we hypothesize that the card manufacturers have a

different motivation for using such primes.

39

Source Version C
la

ss
ifi

ca
ti

on
gr

ou
p

Pr
im

e
se

ar
ch

m
et

ho
d

Pr
im

e
pa

ir
se

le
ct

io
n

B
lu

m
in

te
ge

rs

Sm
al

lf
ac

to
rs

of
p
−
1

La
rg

e
fa

ct
or

of
p
−
1

La
rg

e
fa

ct
or

of
p
+
1

|p
−
q
|c

he
ck

|d
|c

he
ck

Notes

Open-source libraries

Botan 1.11.29 XI Incr. 112 × X × × × ×

Bouncy Castle 1.53 VIII Incr. RS × X × × X X Rejection sampling is less biased

Bouncy Castle 1.54 X Incr.
√
2 × X × × X X Checks Hamming weight of the modulus

Cryptix JCE 20050328 VIII Incr. RS × X × × × × Rejection sampling is not biased

cryptlib 3.4.3 XI Incr. 112 × X × × X X

Crypto++ 5.6.3 X Incr.
√
2 × X × × × × 255 ≥MSB of prime ≥ 182 = d

√
2 · 128e

FlexiProvider 1.7p7 VIII Incr. RS × X × × × × Rejection sampling is not biased

GNU Crypto 2.0.1 II Rand. RS X X × × × × Rejection sampling is more biased

GPG Libgcrypt 1.6.5 XI Incr. 112 × X × × × × Used by GnuPG 2.0.30

GPG Libgcrypt 1.6.5 FIPS mode XI FIPS 112 × X X X X × 101-bit prime factors of p± 1

LibTomCrypt 1.17 XI Rand. 112 × X × × × ×

mbedTLS 2.2.1 VIII Incr. RS × X × × × × Rejection sampling is not biased

Nettle 3.2 XI Maurer 112 × X X × × × Prime factor of p − 1 has (|n|/4 + 1) bits

OpenSSL 1.0.2g V Incr. 112 × × × × × × No prime factors 3 to 17 863 in p − 1

OpenSSL FIPS 2.0.12 XI FIPS 112 × X X X X × 101-bit prime factors of p± 1

PGP SDK 4.x PGP Desktop 10.0.1 XI Incr. 112 × X × × X × p and q differ in their top 6 bits

PGP SDK 4.x FIPS mode IV PGP PGP × X X X X × Prime factors of p± 1 have (|n|/4 − 32) bits

SunRsaSign Provider OpenJDK 1.8 VIII Incr. RS × X × × × × Rejection sampling is less biased

WolfSSL 3.9.0 XI Rand. 112 × X × × × ×

Black-box implementations

Microsoft CNG Windows 10 X FIPS
√
2 × X X X ? ? Prime factors of p± 1 have 101 to 120 bits

Microsoft CryptoAPI Windows 10 X FIPS
√
2 × X X X ? ? Prime factors of p± 1 have 101 to 120 bits

Microsoft .NET Windows 10 X FIPS
√
2 × X X X ? ? Prime factors of p± 1 have 101 to 120 bits

Table 7: Comparison of cryptographic libraries. The algorithms are explained in Section 3.
Prime search method: incremental search (Incr.); random sampling (Rand.); FIPS 186-4 Ap-
pendix B.3.6 or equivalent algorithm for strong primes (FIPS); Maurer’s algorithm for provable
primes (Maurer); PGP strong primes (PGP); Prime pair selection: practical square region
(112); rejection sampling (RS); maximal square region (

√
2); Blum integers: the modulus n is

always a Blum integer n ≡ 1 (mod 4) (X); the modulus is n ≡ 1 (mod 4) and n ≡ 3 (mod 4)
with equal probability (×). Small factors of p−1: p−1 contains small prime factors (X); some
prime factors are avoided in p − 1 (×). Large factors of p − 1: p − 1 is guaranteed to have a
large prime factor – provable and strong primes (X); size of the prime factors of p− 1 is random
(×). Large factors of p + 1: similar as for p − 1, typically strong primes are (X); random
and provable primes are (×). |p − q| check: p and q differ somewhere in their top bits (X); the
property is not guaranteed (×); the check may be performed, but the negative case occurs with a
negligible probability (?). |d| check: sufficient bit length of the private exponent d is guaranteed
(X); not guaranteed (×); possibly guaranteed, but not detectable (?).

40

Source Version C
la

ss
ifi

ca
ti

on
gr

ou
p

Pr
im

e
se

ar
ch

m
et

ho
d

Pr
im

e
pa

ir
se

le
ct

io
n

B
lu

m
in

te
ge

rs

Sm
al

lf
ac

to
rs

of
p
−
1

La
rg

e
fa

ct
or

of
p
−
1

La
rg

e
fa

ct
or

of
p
+
1

|p
−
q
|c

he
ck

|d
|c

he
ck

Notes

Smartcards

Feitian JavaCOS A22 XI Incr./Rand. 112 × X × × ? ?

Feitian JavaCOS A40 XI Incr./Rand. 112 × X × × ? ?

G&D SmartCafe 3.2 XIII Incr./Rand. FX×9X X X × × X* ? *Size of |p − q| ensured by prime intervals

G&D SmartCafe 4.x I Incr./Rand. FX×9X X × × × X* ? No prime factors 3 and 5 in p − 1

G&D SmartCafe 6.0 I Incr./Rand. FX×9X X × × × X* ? No prime factors 3 and 5 in p − 1

Gemalto GCX4 72K XI FIPS 112 × X X X ? ? 101-bit prime factors of p± 1

Gemalto GXP E64 IX Gem. Gem. × X X X ? ? 112-bit prime factors of p± 1

Infineon JTOP 80K XII Inf. Inf. × X × × ? ?

NXP J2A080 VII Incr./Rand. NXP X X × × ? ?

NXP J2A081 VII Incr./Rand. NXP X X × × ? ?

NXP J2D081 III Incr./Rand. RS X × × × X ? No prime factors 3 to 251 in p − 1

NXP J2E145G III Incr./Rand. RS X × × × X ? No prime factors 3 to 251 in p − 1

NXP J3A081 VII Incr./Rand. NXP X X × × ? ?

NXP JCOP 41 V2.2.1 VII Incr./Rand. NXP X X × × ? ?

Oberthur Cosmo Dual 72K VI Incr. 112 X X × × ? ?

Oberthur Cosmo 64 XI Incr./Rand. 112 × X ? ? ? ? 512-bit keys not supported

Table 8: Comparison of smartcards. The algorithms are explained in Section 3. Prime search

method: incremental search (Incr.); random sampling (Rand.); FIPS 186-4 Appendix B.3.6 or

equivalent algorithm for strong primes (FIPS); Gemalto strong primes (Gem.); Infineon algo-

rithm (Inf.); unknown prime generator with almost uniform distribution, possibly incremental

or random search (Incr./Rand.). Prime pair selection: practical square region (112); rejection

sampling (RS); maximal square region (
√
2); the primes p and q have a fixed pattern in their top

four bits, 11112 and 10012, respectively (FX×9X); Gemalto non-uniform strong primes (Gem.);

Infineon algorithm (Inf.); NXP regions – 14 distinct square regions characterized by patterns in

the top four bits of p and q (NXP). Blum integers: the modulus n is always a Blum integer

n ≡ 1 (mod 4) (X); the modulus is n ≡ 1 (mod 4) and n ≡ 3 (mod 4) with equal probability

(×). Small factors of p − 1: p − 1 contains small prime factors (X); some prime factors are

avoided in p− 1 (×). Large factors of p− 1: p− 1 is guaranteed to have a large prime factor –

provable and strong primes (X); size of the prime factors of p− 1 is random (×). Large factors

of p + 1: similar as for p − 1, typically strong primes are (X); random and provable primes are

(×). |p−q| check: p and q differ somewhere in their top bits (X); the property is not guaranteed

(×); the check may be performed, but the negative case occurs with a negligible probability (?).

|d| check: sufficient bit length of the private exponent d is guaranteed (X); not guaranteed (×);

possibly guaranteed, but not detectable (?).

41

5 Key source detection

The distinct distributions of specific bits of primes and moduli enable probabilistic esti-

mation of the source library or card from which a given public RSA key was generated.

Intuitively, classification works as follows: 1) Bits of moduli known to carry bias are

identified with additional bits derived from the modulus value (a mask, 6+ 3 bits in our

method). 2) The frequencies of all possible mask combinations (29) for a given source in

the learning set are computed. 3) For classification of an unknown public key, the bits

selected by the mask are extracted as a particular value v. The source with the highest

computed frequency of value v (step 2) is identified as the most probable source. When

more keys from the same source are available (multiple values vi), a higher classifica-

tion accuracy can be achieved through element-wise multiplication of the probabilities

of the individual keys.

We first describe the creation of a classification matrix and report the classification

success rate as evaluated on our test set [55]. Later, classification is applied to three real-

world datasets: the IPv4 HTTPS handshakes set [15], Certificate Transparency set [16]

and the PGP key set [54].

5.1 The classification process

The classification process is not complicated and can be executed very quickly even for

large sets of keys:

1. All modulus bits identified through previous analysis as non-uniform for at least

one source are included in a mask. We included the 2nd − 7th most significant

bits influenced by the prime manipulations described in Section 4.1, the second

least significant bit (which is zero for sources that use Blum integers), the result

of the modulus modulo 3 (which is influenced by the avoidance of factor 3) and

the overall modulus length modulo 2 (which indicates whether an exact length is

enforced).

2. A large number of keys (learning set) from known generating sources are used to

create a classification matrix. For every possible mask value (of which there are 29 in

our case) and every source, the relative frequency of the given mask value in the

learning set for the given source is computed.

42

3. During the classification phase for key K with modulus m, the value v obtained

after the application of mask to modulus m is extracted. The row (probability vec-

tor) of the classification matrix that corresponds to the value v contains, as its ith

element, the probability of K being produced by source i.

4. When a batch of multiple keys that are known to have been produced by the same

(unknown) source is classified, the probability vectors for every key obtained in step

3 are multiplied element-wise and normalized to obtain the source probabilities pb
for the entire batch, and the source with the highest probability is selected.

Note that the described algorithm cannot distinguish between sources with very similar

characteristics, e.g., between the NXP J2D081 and NXP J2E145G cards, which likely

share the same implementation. For this reason, if two sources have the same or very

similar profiles, they are placed in the same group. Figure 18 shows the clustering and

(dis-)similarity of all sources considered in this study. If the particular source of one

or more key(s) is missing from our analysis (relevant for the classification of real-world

datasets), any such key will be misclassified as belonging to a group with a similar mask

probability vector.

Both the construction of the classification matrix and the actual classification are

then performed using these groups instead of the original single sources. The observed

similarities split the examined sources into 13 different groups (labelled I to XIII and

listed in Figure 18). The resulting classification matrix has dimensions of 13 × 512 and

is available in Appendix B.

5.1.1 Evaluation of the classification accuracy

To evaluate the classification success of our method, we randomly selected 10 000 keys

from the collected dataset (that were not used to construct the classification matrix)

for every source, thereby endowing the test set with equal prior probability for every

source.

A single organization may use the same source library to generate multiple keys for

its web servers. The classification accuracy was therefore evaluated not only for one key

(step 3 of the algorithm) but also for five, ten and one hundred keys (step 4) originating

from the same (unknown) source. We evaluated not only the ability to achieve the “best

match” with the correct source group but also the ability to identify the correct source

group within the top two and top three most probable matches (top-nmatch).

43

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Similarity of analyzed sources (classification groups)

E
uc

lid
ea

n
di

st
an

ce

●

G
&

D
 S

m
ar

tC
af

e
4.

x

●

G
&

D
 S

m
ar

tC
af

e
6.

0

●

G
N

U
 C

ry
pt

o
2.

0.
1

●

N
X

P
 J

2E
14

5G

●

N
X

P
 J

2D
08

1

●

P
G

P
 S

D
K

 4
 F

IP
S

●

O
pe

nS
S

L
1.

0.
2g

●

O
be

rt
hu

r
C

os
m

o
D

ua
l 7

2K

●

N
X

P
 J

C
O

P
 4

1
v2

.2
.1

●

N
X

P
 J

2A
08

1
●

N
X

P
 J

2A
08

0
●

N
X

P
 J

3A
08

1
●

C
ry

pt
ix

 J
C

E
 2

00
50

32
8

●

m
be

dT
LS

 2
.2

.1

●

F
le

xi
P

ro
vi

de
r

1.
7p

7

●

B
ou

nc
y

C
as

tle
 1

.5
3

●

S
un

R
sa

S
ig

n
O

pe
nJ

D
K

 1
.8

●

G
em

al
to

 G
X

P
 E

64

●

C
ry

pt
o+

+
 5

.6
.3

●

M
ic

ro
so

ft
C

ry
pt

oA
P

I

●

M
ic

ro
so

ft
C

N
G

●

B
ou

nc
y

C
as

tle
 1

.5
4

●

M
ic

ro
so

ft
.N

E
T

●

P
G

P
 S

D
K

 4

●

O
be

rt
hu

r
C

os
m

o
64

●

G
em

al
to

 G
C

X
 7

2K

●

F
ei

tia
n

Ja
va

C
O

S
 A

22

●

F
ei

tia
n

Ja
va

C
O

S
 A

40

●

Li
bT

om
C

ry
pt

 1
.1

7

●

G
P

G
 L

ib
gc

ry
pt

 1
.6

.5

●

N
et

tle
 3

.2

●

O
pe

nS
S

L
F

IP
S

 2
.0

.1
2

●

W
ol

fS
S

L
3.

9.
0

●

cr
yp

tli
b

3.
4.

3

●

G
P

G
 L

ib
gc

ry
pt

 1
.6

.5
 F

IP
S

●

B
ot

an
 1

.1
1.

29

●

In
fin

eo
n

JT
O

P
 8

0K

●

G
&

D
 S

m
ar

tC
af

e
3.

2

Group separation threshold

XIIIII IX XIIVIVIVI III VII VIII X XIGroup:

Figure 18: Clustering of all inspected sources based on the 9 bits of the mask. The separation

line shows which sources were put by us into the same classification category. Finer separation

is still possible (e.g., SunRsaSign vs mbedTLS), but the number of the keys from same source

needs to be high enough to distinguish these very similar sources.

of keys Top 1 match Top 2 match Top 3 match

in batch 1 2 5 10 100 1 2 5 10 100 1 2 5 10 100

Group I 95.39% 98.42% 99.38% 99.75% 100.00% 98.41% 99.57% 99.92% 100.00% 100.00% 98.41% 99.84% 100.00% 100.00% 100.00%

Group II 17.75% 32.50% 58.00% 69.50% 98.00% 35.58% 60.88% 84.15% 93.80% 100.00% 42.85% 71.58% 91.45% 98.40% 100.00%

Group III 45.36% 72.28% 93.17% 98.55% 100.00% 54.34% 78.31% 95.23% 99.35% 100.00% 82.45% 94.59% 99.25% 99.90% 100.00%

Group IV 90.14% 97.58% 99.80% 100.00% 100.00% 92.22% 98.14% 99.90% 100.00% 100.00% 94.42% 99.02% 100.00% 100.00% 100.00%

Group V 63.38% 81.04% 97.50% 99.60% 100.00% 84.14% 90.88% 99.25% 99.90% 100.00% 90.01% 96.62% 99.95% 100.00% 100.00%

Group VI 54.68% 69.22% 88.45% 94.60% 100.00% 80.31% 89.70% 97.90% 99.80% 100.00% 90.40% 96.34% 99.55% 100.00% 100.00%

Group VII 7.58% 31.69% 64.21% 82.35% 99.75% 32.67% 69.48% 95.33% 98.60% 100.00% 63.99% 88.70% 98.89% 99.70% 100.00%

Group VIII 15.65% 40.30% 68.46% 76.60% 85.20% 30.29% 52.81% 79.54% 92.38% 100.00% 39.32% 66.45% 90.34% 97.92% 100.00%

Group IX 22.22% 45.12% 76.35% 83.00% 83.00% 54.57% 71.86% 85.25% 86.80% 88.00% 61.77% 81.96% 94.35% 95.00% 99.00%

Group X 0.63% 6.33% 27.42% 42.74% 69.60% 15.05% 43.84% 78.83% 84.62% 91.00% 41.46% 70.54% 96.78% 99.88% 100.00%

Group XI 11.77% 28.40% 55.56% 65.28% 77.69% 29.94% 56.09% 86.43% 96.19% 100.00% 55.35% 78.48% 97.04% 99.77% 100.00%

Group XII 60.36% 79.56% 97.20% 99.40% 100.00% 82.96% 93.58% 99.60% 99.90% 100.00% 94.48% 97.62% 99.75% 100.00% 100.00%

Group XIII 39.56% 70.32% 96.20% 99.70% 100.00% 84.52% 95.54% 99.85% 100.00% 100.00% 95.22% 99.00% 99.95% 100.00% 100.00%

Average 40.34% 57.90% 78.59% 85.47% 93.33% 59.62% 76.98% 92.40% 96.26% 98.38% 73.09% 87.75% 97.48% 99.27% 99.92%

Table 9: The classification success rate of 13 groups created from all 38 analyzed sources using

test set with same prior probability of sources (see Figure 18 for libraries and cards in particular

group). Columns corresponds to different number of keys (1, 2, 5, 10 and 100) classified together

from same (unknown) source.

44

0.30 0.25 0.20 0.15 0.10 0.05 0.00

Similarity of analyzed sources (classification groups) with annotated differences

Euclidean distance

G&D SmartCafe 3.2
Infineon JTOP 80K
Botan 1.11.29
GPG Libgcrypt 1.6.5 FIPS
cryptlib 3.4.3
WolfSSL 3.9.0
OpenSSL FIPS 2.0.12
Nettle 3.2
GPG Libgcrypt 1.6.5
LibTomCrypt 1.17
Feitian JavaCOS A40
Feitian JavaCOS A22
Gemalto GCX 72K
Oberthur Cosmo 64
PGP SDK 4
Microsoft .NET
Bouncy Castle 1.54
Microsoft CNG
Microsoft CryptoAPI
Crypto++ 5.6.3
Gemalto GXP E64
SunRsaSign OpenJDK 1.8
Bouncy Castle 1.53
FlexiProvider 1.7p7
mbedTLS 2.2.1
Cryptix JCE 20050328
NXP J3A081
NXP J2A080
NXP J2A081
NXP JCOP 41 v2.2.1
Oberthur Cosmo Dual 72K
OpenSSL 1.0.2g
PGP SDK 4 FIPS
NXP J2D081
NXP J2E145G
GNU Crypto 2.0.1
G&D SmartCafe 6.0
G&D SmartCafe 4.x

Group separation threshold

XIII

II

IX

XII

VI
V
IV

I

III

VII

VIII

X

XI

Group
All N mod 3 == 1 && All Blum integers && FX*9X region

Else

Large interval of N

Small N
interval

C0*C0 && Infineon distribution

FX*9X && All Blum integers

All Blum &&
Bias to small N

Else

All N mod 3 == 1 &&
Large N impossible

Large N improbable

Short N

Else

All N mod 3 == 1

Else

All Blum
integers

Else

NXP squares

Practical square

Rejection sampling

Square-like
distribution

Normal
distribution

Squares

Maxi-
mal

Prac-
tical

Approx.

Full

New
P, Q

Max +
new Q

P-Q
diff.

Else

Figure 19: Annotated version of Figure 18. The reasons for the clustering and the computed

Euclidean distances of mask values can be traced back to differences in the implementations.

As shown in Table 9, the average accuracy on the test set of the most probable source

group was over 40% for single keys and improved to greater than 93% when we used

batches of 100 keys from the same source for classification. When 10 keys from the same

source were classified in a batch, the most probable classified group was correct in more

than 85% of cases and was almost always (99%) included in the top three most probable

sources.

A significant variability in classification success was observed among the different

groups. Groups I (G&D cards) and IV (PGPSDK4 FIPS) could be correctly identified

from even a single key because of their distinct distributions of possible mask values.

By contrast, group X (Microsoft providers) was frequently misclassified when only a

45

Apply mask to

learning set

Count mask

frequency
Normalize mask

vectors of groups

Group sources with

very similar frequencies

Mask value Group I Group II … Group XII Group XIII

000000000 0.124 0.347 0.105 0.012

000000001 0.004 0.038 0.236 0.454

000000011 0.046 0.002 0.447 0.112

…

111111110 0.394 0.044 0.320 0.002

111111111 0.046 0.347 0.015 0.312

Identification of biased

modulus bits (mask)

Harvest keys from

known sources

(learning set) Build classification matrix

Figure 20: The first phase of classification of the RSA public keys. The groups of similar sources

are established based on the statistical properties of a large number of keypairs generated by

separate sources. As a result, a fixed classification matrix is pre-computed.

11% ‘s group

1.2% ‘s group

Apply mask to key

Multiply batch vector by

number of keys in given batch

Get probability

vector for given key

Use available meta-

info to create batches

Sum batch

vectors

Normalize

resulting vector

Multiply probability vectors from

same batch element-wise

46% ‘s group

98% ‘s group

Distribution of keys in dataset (IPv4TLS, PGP…)

Batch of keys classification

Identification of biased

modulus bits (mask)

IPv4 TLS

Pre-computed

classification matrix

Single key classification

PGP

Figure 21: An example of the second phase of classification. Either a) single key, b) batch of keys

from the same source or c) whole dataset of batches is classified using pre-computed classification

matrix.

46

single key was used because of the wider range of possible mask values, resulting in a

lower probability of each individual mask value.

We conclude that our classification method is moderately successful even for a single

key and very accurate when a batch of at least 10 keys from the same source is classified

simultaneously.

Further leakage in other bits of public moduli might be found by applying machine

learning methods to the learning set, potentially leading to an improvement of the clas-

sification accuracy. Moreover, although we have already tested a wide range of software

libraries and cards, more sources could also be incorporated, such as additional com-

mercial libraries, various hardware security modules and additional types of cards and

security tokens.

5.2 Classifying real-world keys

One can attempt to classify keys from suitable public datasets using the described

method. However, the classification of keys observed in the real world may differ from

the classification scenario evaluated above in two respects:

1. The prior probabilities of real-world sources can differ significantly (e.g., OpenSSL

is a more probable source for TLS keys than is any card), and the resulting poste-

rior probabilities from the classification matrix will then also be different.

2. Our classification matrix does not include all existing sources (e.g., we have not

tested high-speed hardware security modules), and such sources will therefore

always be misclassified.

The classification success rate can be significantly improved if the prior distribution of

possible sources can be estimated. Such an estimate can be performed based on meta

information such as statistics concerning the popularity of various software libraries

or sales figures for a particular card model. Note that the prior distributions may also

significantly differ for different application areas, e.g., PGP keys are generated by a

narrower set of libraries and devices than are TLS keys. In this work, we did not perform

any prior probability estimations.

5.2.1 Sources of Internet TLS keys

We used IPv4 HTTPS handshakes collected from the Internet-Wide Scan Data Reposi-

tory [15] as our source of real-world TLS keys. The complete set contains approximately

47

Group of sources

Dataset (size of included batches) #keys I II III IV V VI VII VIII IX X XI XII XIII

Multiple keys classified in single batch, likely accurate results (see discussion in Section 5.1.1)

TLS IPv4 (10-99 keys) [15] 518K - 0.00% - 0.01% 82.84% - - 1.09% 0.28% 10.18% 5.61% - -

TLS IPv4 (100+ keys) [15] 973K - - - 0.01% 89.92% - - 4.68% 0.00% 3.46% 1.93% - -

Cert.Transparency (10-99 keys) [16] 23K - 0.00% - 0.07% 26.14% - - 6.90% 2.79% 47.70% 16.41% - -

PGP keyset (10-99 keys) [54] 1.7K - - - 6.87% 11.95% - - 36.11% 2.09% 5.73% 37.25% - -

Classification based on batches with 2-9 keys only, likely lower accuracy results

TLS IPv4 (2-9 keys) [15] 237K 0.02% 0.79% 2.06% 0.11% 54.14% 3.26% 1.73% 7.03% 7.98% 11.34% 11.17% 0.36% 0.05%

Cert. Transparency (2-9 keys) [16] 794K 0.03% 1.12% 3.21% 0.14% 43.89% 5.03% 2.64% 6.59% 10.52% 12.10% 14.18% 0.49% 0.06%

PGP keyset (2-9 keys) [54] 83K 0.02% 1.47% 1.40% 2.07% 14.36% 7.90% 3.91% 7.74% 16.10% 18.80% 25.86% 0.35% 0.03%

Classification based on single key only, likely low accuracy results

TLS IPv4 (1 key) [15] 8.8M 0.98% 4.02% 6.47% 1.94% 21.01% 8.63% 6.13% 8.65% 12.22% 11.95% 13.48% 3.49% 1.03%

Cert. Transparency (1 key) [16] 12.7M 0.88% 3.75% 6.90% 1.49% 23.10% 8.69% 6.04% 7.99% 12.08% 11.78% 13.50% 3.04% 0.77%

PGP keyset (1 key) [54] 1.35M 0.44% 4.24% 4.09% 2.17% 13.91% 10.55% 7.18% 8.83% 14.34% 14.22% 16.79% 2.64% 0.59%

Table 10: The ratio of resulting source groups identified by the classification method described

in Section 5. Datasets are split into subsets based on the number of keys that can be attributed to

a single source (batch). ‘-’ means no key was classified for the target group. ‘0.00%’ means that

some keys were classified, but less than 0.005%.

50 million handshakes; the relevant subset, which consists of handshakes using RSA

keys with a public exponent of 65 537, contains 33.5M handshakes. This set reduces

to 10.7M unique keys based on the modulus values. The keys in this set can be fur-

ther divided into batches with the same subject and issue date (as extracted from their

certificates), where the same underlying library is assumed to be responsible for the

generation of all keys in a given batch. As the classification accuracy improves with

the inclusion of more keys in a batch, we obtained classification results separately for

batches consisting of a single key only (users with a single HTTPS server), 2-9 keys, 10-

99 keys (users with a moderate number of servers) and 100 and more keys (users with

a large number of servers).

Intuitively, batches with 100+ keys will yield very accurate classification results but

will capture only the behaviour of users with a large number of HTTPS servers. Con-

versely, batches consisting of only a single key will result in low accuracy but can cap-

ture the behaviours of different types of users.

The frequency of a given source in a dataset (for a particular range of batch sizes)

is computed as follows: 1) The classification probability vector pb for a given batch

is computed according to the algorithm from Section 5.1. 2) The element-wise sum of

48

pb ·nb over all batches b (weighted by the actual number of keys nb in the given batch) is

computed and normalized to obtain the relative proportion vector, which can be found

as a row in Table 10.

As shown in Section 5.1.1, a batch of 10 keys originating from the same source should

provide an average classification accuracy of greater than 85% – sufficiently high to en-

able reasonable conclusions to be drawn regarding the observed distribution. Using

batches of 10-99 keys, the highest proportion of keys generated for TLS IPv4 (82%) were

classified as belonging to group V, which contains a single library – OpenSSL. This pro-

portion increased to almost 90% for batches with 100+ keys. The second largest propor-

tion of these keys (approximately 10.2%) was assigned to group X, which contains the

Microsoft providers (CAPI, CNG, and .NET).

These estimates can be compared against the estimated distribution of commonly

used web servers. Apache, Nginx, LiteSpeed, and Google servers with the OpenSSL

library as the default option have a cumulative market share of 86% [56]. This value ex-

hibits a remarkably close match to the classification rate obtained for OpenSSL (group

V). MS Internet Information Services (IIS) is included with Microsoft’s cryptographic

providers (group X) and has a market share of approximately 12%. Again, a close match

is observed with the classification value of 10.2% obtained for users with 10-99 certifi-

cates certified within the same day (batch).

Users with 100 and more keys certified within the same day show an even stronger

preference for OpenSSL library (89.9%; group V) and also for group VIII (4.6%; this

group contains popular libraries such as OpenJDK’s SunRsaSign, Bouncy Castle and

mbedTLS) at the expense of groups X and XI.

The classification accuracy for users with only single-key batches or a small num-

ber of keys per batch is significantly less certain, but the general trends observed for

larger batches persist. Group V (OpenSSL) is most popular, with group X (Microsoft

providers) being the second most common.

Another dataset of TLS keys was collected from Google’s Pilot Certificate Trans-

parency server [16]. The dataset processing was the same as that for the previous TLS

dataset [15]. For users with small numbers of keys (1 and 2-9), the general trends ob-

served from the TLS IPv4 dataset were preserved. Interestingly, however, Certificate

Transparency dataset indicates that group X (Microsoft) is significantly more popular

(47%) than group V (OpenSSL) for users with 10-99 keys.

49

Although we cannot obtain the exact proportions of keys in the the TLS handshake

dataset generated using particular sources/groups, we can easily determine the propor-

tion of keys that certainly could not have been generated by a given source by means of

the occurrence of impossible values produced by the bit mask, i.e., values that are never

produced by the given source. Using this method, we can conclude for certain that

19%, 25%, 17% and 10% of keys for users with 1, 2-9, 10-99 and 100+ keys per batch,

respectively, could not have been generated by the OpenSSL library.

Apart from processing the TLS handshake dataset as a whole, we analyzed certifi-

cates issued by Let’s Encrypt [18] certificate authority separately. While the classifica-

tion results are not very precise due to small amount of keys that could be attributed to

the same source, the negative classification gives us results with high confidence, espe-

cially for individual keys. At the time of the analysis, the recommended tool for Let’s

Encrypt certificate requests was using the OpenSSL library. It can be seen from Table 11

that only 1.83% of keys used in individual certificates issued by Let’s Encrypt are defi-

nitely not produced by OpenSSL, while the other datasets contain more keys certainly

coming from other libraries.

5.2.2 Sources of PGP keys

A different set of real-world keys can be obtained from PGP key servers [54]. We used

a dump containing nearly 4.2 million keys, of which approximately 1.4 million were

RSA keys suitable for classification using the same processing as for the TLS datasets.

In contrast to the TLS handshakes, significantly fewer PGP keys could be attributed to

the same batch (i.e., could be identified as originating from the same unknown source)

based on the subject name and certification date. Still, 84 thousand unique keys were

extracted in batches of 2-9 keys and 1 732 for batches of 10-99 keys.

The most prolific source group is group XI (which contains both libgcrypt from the

GnuPG software distribution and the PGPSDK4 library), as seen in Table 10. This is in-

tuitively expected because of the widespread use of these two software libraries. Group

VIII, consisting of the Bouncy Castle library (containing the org.bouncycastle.openpgp

package), is also very common (36%) for batches of 10-99 keys.

Because of the lower accuracy of classification for users with smaller numbers of

keys (1 and 2-9), it is feasible only to consider the general properties of these key batches

and their comparison with the TLS case rather than being concerned with the exact

percentage values in these settings. The results for the PGP dataset indicate a significant

50

Group of sources

Dataset I II III IV V VI VII VIII IX X XI XII XIII

Individual keys – the percentage of keys that were not generated by any source from given group – the results are certain

Cert. Transparency [16] 96.97% 48.61% 57.29% 0.00% 11.80% 50.69% 51.55% 0.00% 1.78% 0.00% 1.40% 83.99% 96.02%

PGP keyset [54] 98.46% 49.22% 74.49% 0.00% 47.35% 50.14% 51.55% 0.42% 2.25% 0.42% 0.76% 86.04% 97.11%

TLS IPv4 [15] 96.69% 48.77% 60.38% 0.00% 18.91% 51.44% 51.73% 0.39% 2.56% 0.39% 2.90% 82.67% 95.14%

Let’s Encrypt [15] 97.29% 48.54% 52.74% 0.00% 1.83% 49.88% 51.43% 0.00% 1.34% 0.00% 0.02% 86.05% 97.23%

Batch of 2-9 keys from the same source – the percentage of keys that were not generated by any source from given group – possibly imprecise due to batch creation

Cert. Transparency [16] 99.95% 79.98% 86.65% 0.00% 24.57% 81.52% 82.35% 0.01% 4.59% 0.01% 2.87% 98.10% 99.84%

PGP keyset [54] 99.95% 77.68% 93.97% 0.00% 71.99% 78.52% 79.80% 1.83% 6.18% 1.83% 2.68% 98.38% 99.90%

TLS IPv4 [15] 99.96% 87.18% 91.88% 0.00% 25.54% 88.44% 88.88% 0.02% 7.16% 0.02% 5.58% 98.81% 99.88%

Let’s Encrypt [15] 100.00% 69.81% 73.58% 0.00% 5.03% 69.81% 71.07% 0.00% 3.77% 0.00% 0.00% 97.48% 100.00%

Batch of 10-99 keys from the same source – the percentage of keys that were not generated by any source from given group – possibly imprecise due to batch creation

Cert. Transparency [16] 100.00% 99.95% 100.00% 0.00% 73.85% 100.00% 100.00% 0.07% 35.90% 0.07% 40.22% 100.00% 100.00%

PGP keyset [54] 100.00% 100.00% 100.00% 0.00% 88.05% 100.00% 100.00% 6.87% 59.76% 6.87% 43.24% 100.00% 100.00%

TLS IPv4 [15] 100.00% 99.99% 100.00% 0.00% 17.15% 100.00% 100.00% 0.00% 43.82% 0.00% 9.12% 100.00% 100.00%

Let’s Encrypt [15] - - - - - - - - - - - - -

Batch of 100+ keys from the same source – the percentage of keys that were not generated by any source from given group – possibly imprecise due to batch creation

Cert. Transparency [16] 100.00% 100.00% 100.00% 0.00% 1.53% 100.00% 100.00% 0.00% 99.64% 0.00% 0.82% 100.00% 100.00%

PGP keyset [54] 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00%

TLS IPv4 [15] 100.00% 100.00% 100.00% 0.00% 10.08% 100.00% 100.00% 0.01% 96.90% 0.01% 8.12% 100.00% 100.00%

Let’s Encrypt [15] - - - - - - - - - - - - -

Table 11: The percentage of keys that were not generated by any source from given group. While
the classification results for single keys are the least precise, the negative results are obtained
with certainty for individual keys. The precision of the claim for batches of keys depends only
on the correct creation of batches coming from the same source (determined by accompanying
meta-data). The group IV (PGPSDK 4 FIPS) could never be ruled out since it’s the only source
which generates keys with all possible mask values. On the contrary, sources which generate
keys with only a limited range of mask values are ruled out for most of the keys (groups I, XII
and XIII). Groups VIII and X generate keys with half of the possible mask values, however, they
are almost never ruled out. The missing mask values are characterized by having moduli of odd
length, which shows that most keys had even modulus length (512, 1024, etc.), as we were able
to confirm from the datasets. The group V (OpenSSL) generates keys such that the modulus is
always congruent to 1 modulo 3, hence producing only half of possible mask values for the even
length of keys. When a set of keys is congruent to 1 and 2 modulo 3 with equal probability,
approximately half of the keys will be marked as possibly coming from OpenSSL and half will be
impossible to be generated by OpenSSL. Such percentage can be observed for single keys in the
PGP dataset, where OpenSSL will be very rarely used since it does not normally support PGP.
On the contrary, the keys used with the Let’s Encrypt certificate authority are very rarely ruled
out as coming from OpenSSL. The result is expected, since the default tools for generating Let’s
Encrypt certificate requests use OpenSSL and only servers using customized tools will generate
keys with other libraries. The OpenSSL percentages for the TLS and Certificate Transparency
datasets also diverge from 50%, influenced by the a priori probabilities of OpenSSL usage. The
statistics for Let’s Encrypt are not available for larger batches (the symbol ‘-’) since there was no
source that could be reliably attributed with 10 or more keys in the dataset. The services of the
Let’s Encrypt certificate authority may be primarily used by small web service providers.

51

Group I
Group II
Group III
Group IV
Group V
Group VI
Group VII
Group VIII
Group IX
Group X
Group XI
Group XII
Group XIII

20
15

02
01

20
15

03
01

20
15

04
02

20
15

06
16

20
15

07
02

20
15

08
02

20
15

09
01

20
15

10
06

20
15

11
04

20
15

12
02

20
16

01
04

20
16

02
01

20
16

03
03

Unique keys only − 1 key batch

0%

20%

40%

60%

80%

100%

24
64

26
16

29
38

30
42

30
30

31
33

32
37

33
89

35
04

18
33

01

36
92

39
35

40
11Count:

Date:

20
15

02
01

20
15

03
01

20
15

04
02

20
15

06
16

20
15

07
02

20
15

08
02

20
15

09
01

20
15

10
06

20
15

11
04

20
15

12
02

20
16

01
04

20
16

02
01

20
16

03
03

All keys (including duplicities) − 1 key

0%

20%

40%

60%

80%

100%

31
89

28
84

32
62

36
33

36
35

37
42

35
85

40
55

40
60

30
10

57

43
46

45
91

46
33Count:

Date:

Group I
Group II
Group III
Group IV
Group V
Group VI
Group VII
Group VIII
Group IX
Group X
Group XI
Group XII
Group XIII

20
15

02
01

20
15

03
01

20
15

04
02

20
15

06
16

20
15

07
02

20
15

08
02

20
15

09
01

20
15

10
06

20
15

11
04

20
15

12
02

20
16

01
04

20
16

02
01

20
16

03
03

Unique keys only − 2−9 keys batch

0%

20%

40%

60%

80%

100%

84 96 10
6

94 87 95 99 98 10
4

20
56

11
4

11
1

13
8Count:

Date:

20
15

02
01

20
15

03
01

20
15

04
02

20
15

06
16

20
15

07
02

20
15

08
02

20
15

09
01

20
15

10
06

20
15

11
04

20
15

12
02

20
16

01
04

20
16

02
01

20
16

03
03

All keys (including duplicities) − 2−9 keys

0%

20%

40%

60%

80%

100%

10
0

10
8

12
0

10
6

10
0

10
8

11
2

11
0

26
3

36
65

13
0

12
7

15
5Count:

Date:

Group I
Group II
Group III
Group IV
Group V
Group VI
Group VII
Group VIII
Group IX
Group X
Group XI
Group XII
Group XIII

20
15

02
01

20
15

03
01

20
15

04
02

20
15

06
16

20
15

07
02

20
15

08
02

20
15

09
01

20
15

10
06

20
15

11
04

20
15

12
02

20
16

01
04

20
16

02
01

20
16

03
03

Unique keys only − 10−99 keys batch

0%

20%

40%

60%

80%

100%

73 71 44 61 90 10
6

11
1

11
4

10
6

30
90

93 10
1

94

Count:

Date:

20
15

02
01

20
15

03
01

20
15

04
02

20
15

06
16

20
15

07
02

20
15

08
02

20
15

09
01

20
15

10
06

20
15

11
04

20
15

12
02

20
16

01
04

20
16

02
01

20
16

03
03

All keys (including duplicities) − 10−99 keys

0%

20%

40%

60%

80%

100%

96 85 55 79 10
6

12
5

13
3

13
5

12
6

44
98

10
7

11
6

11
1Count:

Date:

Figure 22: The change in the distribution of keys in the TLS dataset over time. Each bar repre-

sents the percentage of libraries used to generate keys with validity starting no sooner than the

corresponding label but no later than the following bar label. Datasets are spaced approximately

one month apart. Significantly more keys have validity starting between 02 December 2015 and

04 January 2016 than in other months. Some keys appear in more than one certificate, causing

the difference between unique key classification and results for the dataset with duplicities.

52

drop in the proportion of keys generated using the OpenSSL library. According to an

analysis of the keys that certainly could not have been obtained from a given source, at

least 47% of the single-key batches were certainly not generated by OpenSSL, and this

percentage increases to 72% for batches of 2-9 keys. PGPSDK4 in FIPS mode (group IV)

was found to be significantly more common than in the TLS datasets.

Note that an exported public PGP key usually contains a Version string that iden-

tifies the software used. Unfortunately, however, this might be not the software used

to generate the original key pair but merely the software that was used to export the

public key. If the public key was obtained via a PGP keyserver (as was the case for

our dataset), then the Version string indicates the version of the keyserver software it-

self (e.g., Version: SKS 1.1.5) and cannot be used to identify the ratios of the different

libraries used to generate the keys9.

5.3 Practical impact of origin detection

The possibility of accurately identifying the originating library or card for an RSA key is

not solely of theoretical or statistical interest. If some library or card is found to produce

weak keys, then an attacker can quickly scan for other keys from the same vulnera-

ble source. The possibility of detection is especially helpful when a successful attack

against a weak key requires a large but practically achievable amount of computational

resources. Preselecting potentially vulnerable keys saves an attacker from spending re-

sources on all public keys.

The identification of the implementations responsible for the weak keys found in

[4, 20] was a difficult problem. In such cases, origin classification can quickly provide

one or a few of the most probable sources for further manual inspection. Additionally, a

set of already identified weak keys can be used to construct a new classification group,

which either will match an already known one (for which the underlying sources are

known) or can be used to search for other keys that belong to this new group in the

remainder of a larger dataset (even when the source is unknown).

Another practical impact is the decreased anonymity set of the users of a service that

utilizes the RSA algorithm whose users are not intended to be distinguishable (such as

the Tor network). Using different sources of generated keys will separate users into

smaller anonymity groups, effectively decreasing their anonymity sets. The resulting

9A dataset with the original Version strings could be used to test these predictions.

53

anonymity sets will be especially small when individual users decides to use crypto-

graphic hardware to generate and protect their private keys (if selected device does not

fall into into group with widely used libraries). Note that most users of the Tor project

use the default client, and hence the same implementation, for the generation of the

keys they use. However, the preservation of indistinguishability should be considered

in the development of future alternative clients.

Tor hidden services sometimes utilize ordinary HTTPS certificates for TLS [1], which

can be then linked (via classification of their public keys) with other services of the same

(unknown) operator.

Mixnets such as mixmaster and mixminion use RSA public keys to encrypt mes-

sages for target recipient and/or intermediate mix. If key ID is preserved, one may

try to obtain corresponding public key from PGP keyserver and search for keys with

the same source to narrow that user’s anonymity set in addition to analysis like one

already performed on alt.anonymous.messages [43]. Same as for Tor network, multiple

seemingly independent mixes can be linked together if uncommon source is used to

generate their’s RSA keys.

A related use is in a forensic investigation in which a public key needs to be matched

to a suspect key-generating application. Again, secure hardware will more strongly

fingerprint its user because of its relative rarity.

An interesting use is to verify the claims of remote providers of Cryptography as

a Service [6] regarding whether a particular secure hardware is used as claimed. As

the secure hardware (cards) used in our analysis mostly exhibit distinct properties of

their generated keys, the use of such hardware can be distinguished from the use of a

common software library such as OpenSSL.

5.4 How to mitigate origin classification

The impact of successful classification can be mitigated on two fronts: by library main-

tainers and by library users. The root cause lies with the different design and imple-

mentation choices for key generation that influence the statistical distributions of the

resulting public keys. A maintainer can modify the code of a library to eliminate dif-

ferences with respect to the approach used by all other sources (or at least the most

common one, which is OpenSSL in most cases). However, although this might work

for one specific library (mimicking OpenSSL), it is not likely to be effective on a wider

54

scale. Changes to all major libraries by its maintainers are unlikely to occur, and many

users will continue to use older versions of libraries for legacy reasons.

More pragmatic and immediate mitigation can be achieved by the users of these

libraries. A user may repeatedly generate candidate key pairs from his or her library or

device of choice and reject it if its classification is too successful. Expected number of

trials differs based on the library used and the prior probability of sources within the

targeted domain. For example, if TLS is the targeted domain, five or less key generation

trials are expected for most libraries to produce “indecisive” key.

The weakness of the second approach lies in the unknown extent of public modulus

leakage. Although we have described seven different causes of leakage, others might

yet remain unknown – allowing for potential future classification of keys even after they

have been optimized for maximal indecisiveness against these seven known causes.

This strategy can be extended when more keys are to be generated. All previously

generated keys should be included in a trial classification together with the new candi-

date key. The selection process should also be randomized to some extent; otherwise, a

new classification group of “suspiciously indecisive” keys might be formed.

55

6 Random numbers generated on cards

Truly random data generated on-card are a crucial input for the primes used in RSA key

pair generation. A bias in these data would influence the predictability of the primes. If

a highly biased or malfunctioning generator is used, factorization is not necessary (only

a small number of fixed values can be taken as primes) or is feasible even for RSA keys

with lengths otherwise deemed to be secure [4, 10, 20].

6.1 Biased random number generator

The output of an on-card truly random number generator (TRNG) can be tested using

statistical batteries, and deviances are occasionally detected in commercial security to-

kens [10]. We generated a 100 MB stream of random data from one card of each type

and tested these data streams using the common default settings of the NIST STS and

the Dieharder battery of statistical tests [11, 46] as well as our alternative EACirc dis-

tinguisher [48]. All types of cards except two (Infineon JTOP 80K and Oberthur Cosmo

Dual 72K) passed the tests with the expected number of failures at a confidence level of

1%.

The Infineon JTOP 80K failed the NIST STS Approximate Entropy test (85/100, ex-

pected entropy contained in the data) at a significant level and also failed the group

of Serial tests from the Dieharder suite (39/100, frequency of overlapping n-bit pat-

terns). Interestingly, the serial tests began to fail only for patterns with lengths of 9 bits

and longer (lengths of up to 16 bits were tested), suggesting a correlation between two

consecutive random bytes generated by the TRNG. As shown in Figure 23, for 16-bit

patterns in the overlapping serial test, all bytes in the form of xyxy (where x and y de-

note 4-bit values) were 37% less likely to occur than other combinations. At least three

more distinct groups of inputs with smaller-than-average probabilities were also iden-

tified. Note that deviating distributions were observed in all three physical Infineon

JTOP 80K cards that were tested and thus were probably caused by a systematic defect

in the entire family of cards rather than a single malfunctioning device. The detected

bias is probably not sufficient to enable faster factorization by guessing potential primes

according to the slightly biased distribution. However, it may be used to identify this

type of card as the source of a sufficiently large (e.g., 1KB) random data stream (i.e., to

fingerprint such a random stream).

56

The Oberthur Cosmo Dual 72K failed more visibly, as two cards were blocked after

the generation of only several MB of random data. The statistical tests then frequently

failed because of the significant bias in the data. Several specific byte values were never

produced in the “random” stream. See Figure 24 for more details and Figure 25 for

expected frequencies of non-overlapping serial tests.

We also generated data streams directly from the concatenated exported primes with

the two most significant bytes and the least two bits dropped, as the previous analysis

had revealed a non-uniform distribution in these bits. Interestingly, both the Infineon

JTOP 80K and the Oberthur Cosmo Dual 72K failed only for their random data streams

(as described above) but successfully passed10 for the streams generated from the con-

catenated primes, hinting at the possibility that either random data are generated differ-

ently during prime generation or (unlikely) the prime selection process is able to mask

the bias observed in the raw random data.

10Except for the Oberthur nearly zero keys (see Section 7.1).

57

Infineon JTOP 80K − overlapping serial test 16−bit

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

0000 2492 4924 6DB6 9248 B6DA DB6C FFFF

0.63

0.68

0.74

0.80

0.85

0.91

0.96

1.02

16−bit pattern (hexadecimal)

(4) Patterns xyxy, xxxx
(4) (4)

(3) Patterns xy(xy XOR 01), xy(xy XOR 80)
(3) (3)

(2) Patterns xy(xy XOR 02), xy(xy XOR 03), xy(xy XOR 40), xy(xy XOR C0)
(2) (2)

(1) Patterns xy(xy XOR 04), xy(xy XOR 05), xy(xy XOR 06), xy(xy XOR 07),
 xy(xy XOR 20), xy(xy XOR 60), xy(xy XOR A0), xy(xy XOR E0)

(1) (1)

Figure 23: The frequencies of different patterns with the length of 16 bits computed from 1 GB

random data stream generated by the Infineon JTOP 80K card. The floating window with length

of 16 bits moved by one bit every time is used (overlapping serial test). At least five distinct

patterns can be identified where patterns should exhibit uniform distribution instead. Note

that overlapping frequency calculation provides the consistent result no matter which particular

starting bit is used (e.g., if original generator will not output generated bits aligned to multiple

of whole bytes), but may make identification of real defect more difficult. As can seen on Figure

25 where non-overlapped frequencies are shown, five visibly distinct patterns are all caused by

single property of the generated stream – two subsequent bytes will never have the same value.

Oberthur Cosmo Dual 72K − overlapping serial test 16−bit

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

0000 2492 4924 6DB6 9248 B6DA DB6C FFFF

 0.0

11.6

23.2

34.8

46.4

58.1

69.7

81.9

16−bit pattern (hexadecimal)

Figure 24: The frequencies of different patterns with the length of 16 bits computed from 2 MB

random data stream generated by the Oberthur Cosmo Dual 72K card. Multiple distinct groups

of patterns can be identified with some patterns never occurring in the tested random stream

where patterns should be uniformly distributed instead.

58

True random data
serial test 8−bit

00 24 48 6D 91 B6 DA FF

0.9985

0.9989

0.9993

0.9997

1.0001

1.0005

1.0009

1.0014

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

8−bit pattern (hexadecimal)

True random data
serial test 9−bit

000 066 0CC 132 198 1FF

0.9980

0.9986

0.9992

0.9998

1.0004

1.0010

1.0015

1.0022

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y
9−bit pattern (hexadecimal)

True random data
serial test 16−bit

0000 5555 AAAA FFFF

0.9534

0.9676

0.9817

0.9959

1.0100

1.0242

1.0384

1.0533

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

16−bit pattern (hexadecimal)

Infineon JTOP 80K
serial test 8−bit

00 24 48 6D 91 B6 DA FF

0.9982

0.9986

0.9991

0.9996

1.0000

1.0005

1.0009

1.0014

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

8−bit pattern (hexadecimal)

Infineon JTOP 80K
serial test 9−bit

000 066 0CC 132 198 1FF

0.9932

0.9951

0.9969

0.9988

1.0007

1.0025

1.0044

1.0064

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

9−bit pattern (hexadecimal)

Infineon JTOP 80K
serial test 16−bit

0000 5555 AAAA FFFF

0.0000

0.1491

0.2982

0.4473

0.5964

0.7455

0.8946

1.0520

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y
16−bit pattern (hexadecimal)

Oberthur Cosmo Dual 72K
serial test 8−bit

00 24 48 6D 91 B6 DA FF

0.0000

0.7257

1.4513

2.1770

2.9027

3.6283

4.3540

5.1200

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

8−bit pattern (hexadecimal)

Oberthur Cosmo Dual 72K
serial test 9−bit

000 066 0CC 132 198 1FF

0.0000

0.6803

1.3606

2.0410

2.7213

3.4016

4.0819

4.8000

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

9−bit pattern (hexadecimal)

Oberthur Cosmo Dual 72K
serial test 16−bit

0000 5555 AAAA FFFF

 0.00

 47.64

 95.28

142.92

190.55

238.19

285.83

336.11

O
bs

er
ve

d
fr

eq
ue

nc
y

of
 p

at
te

rn

 a
s

m
ul

tip
le

 o
f e

xp
ec

te
d

fr
eq

ue
nc

y

16−bit pattern (hexadecimal)

Figure 25: Comparison of the expected and observed frequencies of different patterns with the

length of 8, 9 and 16 bits for non-overlapping serial test. The frequencies are computed from

1 GB random data stream generated by a truly random generator [35] (expected distribution)

and Infineon JTOP 80K card. The results for Oberthur Cosmo Dual 72K are generated for 2

MB of random data, since the card became unresponsive after generating just a small amount

of data. Two subsequent bytes output by Infineon JTOP 80K generator are never identical. The

occurrence of such pair is expected for a truly random number generator. The data generated

from Oberthur Cosmo Dual 72K exhibit more significant bias. In the stream of 1 919 400 bytes,

out of 256 possible 8-bit values, only 173 occurred (while just 154 occurring more than twice).

Out of 65 536 possible pairs of subsequent bytes only 254 appeared (235 more than once).

59

7 Key generation process on cards

The algorithms used in open-source libraries can be inspected and directly correlated

to the biases detected in their outputs. To similarly attribute the biased keys produced

by cards to their unknown underlying algorithms, we first verified whether the random

number generator might instead be responsible for the observed bias in Section 6. We

also examined the time- and power-consumption side channels of the cards to gain

insight into the processes responsible for key generation.

7.1 Malfunctioning generator

All primes for the card-generated 512- and 1024-bit keys were tested for uniqueness.

All tested card types except one generated unique primes. In the exceptional case of the

Oberthur Cosmo Dual 72K cards, approximately 0.05% of the generated keys shared a

specific value of prime q. The flaw was discovered in all three tested physical cards for

both 512-bit and 1024-bit keys. The repeated prime value was equal to 0xC000...0077

for 512-bit RSA keys and 0xC000...0E9B for 1024-bit RSA keys. These prime values cor-

respond to the first Blum prime generated when starting from the value 0xC000...0000

in each case.

The probable cause of such an error is the following sequence of events during prime

generation: 1) The random number generator of the card was called but failed to pro-

duce a random number, either by returning a value with all bits set to zero or by re-

turning nothing into the output memory, which had previously been zeroed. 2) The

candidate prime value q (equal to 0 at the time) had its highest four bits fixed to 11002
(to obtain a modulus of the required length11 when multiplied by the prime p), resulting

in a value of 0xC0 in the most significant byte. 3) The candidate prime value was tested

for primality and increased until the first prime with the required properties (a Blum

prime in the case of the Oberthur Cosmo Dual 72K) was found (0xC000...0077 in the

case of 512-bit RSA).

The faulty process described above that leads to the observed predictable primes

may also occur for other cards or software libraries as a result of multiple causes (e.g.,

an ignored exception in random number generation or a programming error). We there-

fore inspected our key pair dataset, the TLS IPv4 dataset [15] and the PGP dataset [54]

11As was observed for the dataset analysed in Section 4.

60

for the appearance of such primes relevant to key lengths of 512, 1024 and 2048 bits.

Interestingly, no such corrupt keys were detected except for those already described.

Note that a random search for a prime is much less likely to fail in this mode when

compared to incremental search. Even if some of the top bits and the lowest bit are set

to one, the resulting value is not a prime for common MSB masks. New values will be

generated if the starting value contains only zeroes.

7.2 Time distribution

We measured the time of the key generation process12. The length of the process differs,

affected by the time it takes to find two primes. We expect that other parts of the pro-

cess, such as computation of private key, take almost the same time in every run. We

experimentally obtained the distribution for amount of random odd numbers it takes

to find a prime by random search. The distribution corresponds also to the distance

from random point to nearest prime, as illustrated by Figure 26. Distribution of sum of

distances for p and q creates a log-normal distribution, similar as we typically observe

for the time of the process in a software library.

We experimentally obtained distributions for a number of needed primality tests for

different parameters of trial division (Figure 27). Then we were able to match them with

distributions from several cards, obtaining a likely estimate for the number of primes

used by the card in the trial division (sieving) phase. For some types of cards, a single

parameter did not match distributions of neither 512-bit nor 1024-bit keys. There may

exist a different optimal value of trial division tests and primality tests for different key

lengths. Notably, in some cases of card-generated 512-bit keys, the number of primality

tests would have to be halved to exactly match a referential distribution. However, we

are not aware of a mechanism that would perform two primality tests in parallel or at

least in the same time, as is required for testing a candidate of double bit length.

The exact time distribution for software implementations is of less concern since the

key generation process tends to be much faster on an ordinary CPU. The source code

can be modified to accommodate for counting the number of tests directly (as shown in

the inlay in Figure 28) without relying on time measurement that may be influenced by

other factors specific to the implementation.

12Usually measured in number of clock ticks. The time does not include the period when the system

gathers entropy for /dev/random and other interrupts, which is the longest part of the process in some

libraries, such as libgcrypt. The key generation time on cards was measured in milliseconds.

61

0 200 400 600 800

0.
00

0
0.

00
4

0.
00

8
Prime generation

Distance from random to prime
 Number of random samples

F
re

qu
en

cy

Prime search

Incremental
Random

0 100 200 300 400 500

0.
00

0
0.

00
2

0.
00

4

Key generation

Sum of distances
 Sum of number of random samples

F
re

qu
en

cy

Prime search

Incremental
Random

Figure 26: Left: distribution of amount of random odd numbers generated, until a prime is

found, exactly matches the distribution of distance from random number until a prime is found

by incremental search (in 2-increments). Right: summing the number of trials for p and q

creates a log-normal distribution.

0 50 100 150 200 250

0.
00

0.
02

0.
04

Effectiveness of sieving
 (256−bit primes)

Number of primality tests

F
re

qu
en

cy

Primes in sieve

6500
1000
300
100
50
no sieve

0 50 100 150 200 250

0.
00

0.
02

0.
04

Effectiveness of sieving
 (512−bit primes)

Number of primality tests

F
re

qu
en

cy

Primes in sieve

6500
1000
300
100
50
no sieve

Figure 27: Trial division (or sieving) by a different number of small primes. Testing a candidate

with division by a few primes decreases the number of required probabilistic primality tests and

speeds up prime generation. The expected number of primality tests decreases when sieving

phase runs with more primes.

62

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Time of key generation

Time of key generation (ms, difference from fastest run)

D
en

si
ty

 (
%

)

 512b keys (smartcard)
1024b keys (smartcard)
 512b keys (sieving 11b)
1024b keys (sieving 6b)

0 50 100 150

0.
0

1.
0

2.
0

3.
0

Number of candidates tested for primality
D

en
si

ty
 (

%
)

Figure 28: An example of the histogram of times necessary to generate a large number of 512

and 1024-bit RSA keys generated from an NXP J2D081 card. Left – the distribution of key

generation times is concentrated around evenly spaced points, with the distance representing

the duration of a single primality test. The times were normalized to begin at zero, therefore

they represent difference from the fastest run. Inlay – the distribution of number of candidates

tested by primality tests obtained from a software implementation. 512-bit keys are generated

with trial division up to 11-bit primes, 1024-bit keys used 6-bit primes. The results show a clear

correlation between the generation time and an expected number of primality tests.

7.3 Power analysis

Analysis of power consumption traces is a frequently used technique for card inspec-

tion. The baseline power trace expected should cover at least the generation of random

numbers of potential primes, primality testing, computation of the private exponent

and storage of generated values into a persistent key pair object. We utilized the sim-

ple power analysis to reveal significant features like random number generation, RSA

encryption, and RSA decryption operation, separately. By programming a card to call

only the desired operation (generate random data, encrypt, decrypt), the feature pat-

tern for the given operation is obtained. These basic operations were identified in all

tested types of cards. Once identified, the operations can be searched for inside a more

63

Key generation
Key generation process

Variable Fixed VariableFixed Fixed

Decryption

Prime Q
generation

start end

Prime P
generation

start end

Figure 29: Annotated example power traces showing typical steps of on-card key pair genera-

tion. The upper trace is shorter in the first variable part (potentially corresponding to generation

of first prime and longer in the second variable part). Both traces are intentionally interrupted

to visually synchronize at fixed parts.

complex operations like the RSA key pair generation. Please refer to [27] for images of

collected and annotated power traces from all inspected cards.

A typical trace of the RSA key pair generation process (although feature patterns

may differ with card hardware) contains: 1) Power consumption increases after the

generating key pair method is called (cryptographic RSA co-processor turned on). 2)

Candidate values for primes p and q are generated (usage of a TRNG can be observed

from the power trace) and tested. 3) The modulus and the private exponent are gener-

ated (assumed, not distinguishable from the power trace). 4) Operation with a private

key is executed (decryption, in 7 out of 16 types of cards) to verify key usability. 5)

Operation with a public key is executed (encryption, 3 types of cards only).

Note that even when the key generation process is correctly guessed, it is not possi-

ble to simply implement it again and compare the resulting power traces – as only the

card’s main CPU is available for user-defined operations, instead of a coprocessor used

by the original process. Additional side-channel and fault induction protection tech-

niques may be also applied. Therefore, one cannot obtain an exactly matching power

trace from a given card due to unavailability of low-level programming interfaces and

additionally executed operations for verification of key generation hypothesis.

64

Whereas some steps of the key generation, such as the randomness generation, take

an equal time across multiple runs of the process, the time required to generate a prime

differs greatly as can be also seen from the example given in Figure 28, where timing

is extracted from the power trace. The variability can be attributed to the randomized

process of the prime generation. Incremental search will find the first prime greater

than a random number selected as the base of the search. Since both primes p and q

are distributed as distances from a random point to a prime number, the resulting time

distribution will be affected by a mixture of these two distributions.

In samples collected from 12 out of 16 types of cards, the distribution of time is

concentrated at evenly spaced points13 as seen in Figure 28. The distance between a pair

of points is interpreted as the duration of a single primality test, whereas their amount

corresponds to the number of candidates that were ruled out by the test as a composite.

Then it is possible to obtain a histogram of number of tested candidates, e.g., by binning

the distribution with breaks placed in the midpoints of the empty intervals.

13Due to small differences in duration of key generation and rounding caused by precision of the mea-

surement, the times belonging to the same group will not be identical to one millisecond. The peaks were

highlighted by summing adjoining milliseconds, but only in the case when large (almost) empty spaces

exist in the distribution.

65

8 Conclusions

This paper presents a thorough analysis of key pairs generated and extracted from

38 different sources encompassing open-source and proprietary software libraries and

cryptographic cards. This broad analysis allowed us to assess current trends in RSA key

pair generation even when the source codes for key generation were not available, as in

the case of proprietary libraries and cards. The range of approaches identified indicates

that the question of how to generate an optimal RSA key has not yet been settled.

The tested keys were generally found to contain a high level of entropy, sufficient

to protect against known factorization attacks. However, the source-specific prime se-

lection algorithms, postprocessing techniques and enforcement of specific properties

(e.g., Blum primes) make the resulting primes slightly biased, and these biases serve as

fingerprints of the sources. Our paper therefore shows that public moduli leak signif-

icantly more information than previously assumed. We identified seven properties of

the generated primes that are propagated into the public moduli of the generated keys.

As a result, accurate identification of originating library or smartcard is possible based

only on knowledge of the public keys. Such an unexpected property can be used to

decrease the anonymity set of RSA keys users, to search for keys generated by vulner-

able libraries, to assess claims regarding the utilization of secure hardware by remote

parties, and for other practical uses. We classified the probable origins of keys in two

large datasets consisting of 10 and 15 million (mostly) TLS RSA keys and 1.4 million

PGP RSA keys to obtain an estimate of the sources used in real-world applications.

The random number generator is a crucial component for the generation of strong

keys. We identified a generic failure scenario that produces weak keys and occasionally

detected such keys in our dataset obtained from the tested cards. Luckily, no such weak

key was identified in the datasets of publicly used RSA keys.

Acknowledgements

We acknowledge the support of the Czech Science Foundation, project GA16-08565S.

Access to computing and storage facilities owned by parties and projects contribut-

ing to the National Grid Infrastructure MetaCentrum, provided under the programme

“Projects of Large Research, Development, and Innovations Infrastructures” (CESNET

LM2015042), is greatly appreciated.

66

We would like to thank all the anonymous reviewers of Usenix Security 2016 sym-

posium for their helpful comments and fruitful discussions. Furthermore, we show

our appreciation by thanking Martin Ukrop and Marek Sýs for reading the manuscript

and providing insightful suggestions and L’ubomír Obrátil for running and interpreting

statistical tests of randomness.

References

[1] Arma. Facebook, hidden services, and https certs, 2014. Tor blog, cit. [2016-06-26]

<https://blog.torproject.org/blog/facebook-hidden-services-and-https-certs>.

[2] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Gra-

ham Steel, and Joe-Kai Tsay. Efficient Padding Oracle Attacks on Cryptographic

Hardware. In Advances in Cryptology – CRYPTO 2012. Proceedings, pages 608–625.

Springer-Verlag, 2012.

[3] Luciano Bello. DSA-1571-1 openssl – predictable random num-

ber generator. Debian Security Advisory, 2008. Available from

<https://www.debian.org/security/2008/dsa-1571>, cit. [2016-05-20].

[4] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia

Heninger, Tanja Lange, and Nicko Someren. Factoring RSA Keys from Certified

Smart Cards: Coppersmith in the Wild. In Advances in Cryptology – ASIACRYPT

2013. Proceedings, pages 341–360. Springer-Verlag, 2013.

[5] Daniel J. Bernstein, Nadia Heninger, and Tanja Lange. Batch gcd, 2012. Available

from <http://facthacks.cr.yp.to/batchgcd.html>, cit. [2016-05-20].

[6] Tom Berson, Drew Dean, Matt Franklin, Diana Smetters, and Michael Spreitzer.

Cryptography as a network service. In ISOC Network and Distributed System Security

Symposium (NDSS). Proceedings, 2001.

[7] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the

RSA encryption standard PKCS #1. In Advances in Cryptology — CRYPTO ’98. Pro-

ceedings, pages 1–12. Springer-Verlag, 1998.

[8] Dan Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS,

46:203–213, 1999.

67

[9] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with Private Key d less than

N0.292. IEEE Transactions on Information Theory, 46(4):1339–1349, 2000.

[10] Ahmad Boorghany, Siavash Bayat Sarmadi, Pamian Yousefi, Pouneh Gorji, and Ra-

sool Jalili. Random data and key generation evaluation of some commercial tokens

and smart cards. In Information Security and Cryptology (ISCISC), 11th International

ISC Conference. Proceedings, pages 49–54. IEEE, 2014.

[11] Robert G. Brown. Dieharder: A Random Number Test Suite, Version 3.31.1, 2004.

Available from <http://www.phy.duke.edu/∼rgb/General/dieharder.php>, cit.

[2016-06-26].

[12] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are Still Practical.

In Computer Security – ESORICS 2011. Proceedings. Springer-Verlag, 2011.

[13] Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring

with High Bits Known. In 15th Conference on Theory and Application of Cryptographic

Techniques, EUROCRYPT’96. Proceedings, pages 178–189. Springer-Verlag, 1996.

[14] Don Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent

RSA Vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

[15] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex Hal-

derman. A Search Engine Backed by Internet-Wide Scanning. In 22nd ACM Confer-

ence on Computer and Communications Security. Proceedings, 2015. Dataset download:

<https://scans.io/series/443-https-tls-full_ipv4>, [dataset from 2016-06-02].

[16] Google. Certificate Transparency dump from June 07, 2016 (log Pilot). Available

from: <https://www.certificate-transparency.org/known-logs>, cit. [2016-06-07].

[17] John Gordon. Strong primes are easy to find. In Advances in Cryptology: EURO-

CRYPT ’84. Proceedings, pages 216–223. Springer-Verlag, 1985.

[18] Internet Security Research Group. Let’s Encrypt, 2016. Homepage:

<https://letsencrypt.org/>, cit. [2016-06-26].

[19] Marc Gysin and Jennifer Seberry. Generalised Cycling Attacks on RSA and Strong

RSA Primes. In Information Security and Privacy: ACISP’99. Proceedings, pages 149–

163. Springer-Verlag, 1999.

68

[20] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining

Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. In 21st

USENIX Security Symposium. Proceedings, pages 205–220. USENIX, 2012.

[21] IEEE. Standard Specifications for Public-Key Cryptography. IEEE Std 1363, 2000.

[22] American National Standards Institute. ANSI X9.31-1998: Public Key Cryptogra-

phy Using Reversible Algorithms for the Financial Services Industry (rDSA), 1998.

[23] Jakob Jonsson and Burton Kaliski. Public-Key Cryptography Standards (PKCS) #1:

RSA Cryptography Specifications Version 2.1. RFC 3447, 2003.

[24] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel

Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery,

Dag Arne Osvik, Herman te Riele, Andrey Timofeev, and Paul Zimmermann. Fac-

torization of a 768-Bit RSA Modulus. In Advances in Cryptology – CRYPTO 2010.

Proceedings, pages 333–350. Springer-Verlag, 2010.

[25] Donald E. Knuth and Luis Trabb Pardo. Analysis of a simple factorization algo-

rithm. Theoretical Computer Science, 3(3):321 – 348, 1976.

[26] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Ad-

vances in Cryptology – CRYPTO’99. Proceedings. Springer-Verlag, 1999.

[27] David Komárek. The RSA key generation process via power analysis. Master’s

thesis, 2016. Online: <https://is.muni.cz/th/395924/fi_m/>, cit. [2016-07-12].

[28] R. Sherman Lehman. Factoring large integers. In Mathematics of Computation, vol-

ume 28, pages 637–646. American Mathematical Society, 1974.

[29] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Klein-

jung, and Christophe Wachter. Ron was wrong, Whit is right. IACR Cryptology

ePrint Archive, 2012. Online: <http://eprint.iacr.org/2012/064>, cit. [2016-07-12].

[30] Hendrik W. Lenstra Jr. Factoring integers with Elliptic Curves. The Annals of Math-

ematics, 126:649–673, 1987.

[31] Daniel Loebenberger and Michael Nüsken. Notions for RSA Integers. In Interna-

tional Journal of Applied Cryptology, pages 116–138. Inderscience Publishers, 2014.

69

[32] Ueli M. Maurer. Fast generation of prime numbers and secure public-key crypto-

graphic parameters. Journal of Cryptology, 8(3):123–155, 1995.

[33] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, and Ronald L. Rivest.

Handbook of Applied Cryptography. CRC Press, 1st edition, 1996.

[34] Ilya Mironov. Factoring RSA Moduli. Part II, 2012. Online, cit. [2016-06-26]

<https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/>.

[35] Nano-Optics group and PicoQuant GmbH. High Bit Rate Quantum Random Num-

ber Generator Service. <http://qrng.physik.hu-berlin.de/>, cit. [2016-07-12].

[36] National Institute of Standards and Technology. Digital Signature Standard (DSS).

FIPS 186-4, 2013.

[37] Matúš Nemec. The properties of RSA key generation process in software libraries.

Master’s thesis, 2016. Online: <https://is.muni.cz/th/396066/fi_m/>, cit. [2016-

07-20].

[38] John M. Pollard. Theorems on factorization and primality testing. Mathematical

Proceedings of the Cambridge Philosophical Society, 76:521–528, 1974.

[39] John M. Pollard. Factoring with cubic integers. In The development of the number field

sieve, pages 4–10. Springer-Verlag, 1993.

[40] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. In Advances in Cryptol-

ogy: EUROCRYPT ’84. Proceedings, pages 169–182. Springer-Verlag, 1985.

[41] Jurgen Pulkus. Efficient Prime-Number Check, 2014. US Patent App. 14/354,455.

[42] Jean-Jacques Quisquater and Chantal Couvreur. Fast decipherment algorithm for

RSA public-key cryptosystem. Electronics Letters, 18(21):905–907, 1982.

[43] Tom Ritter. De-anonymizing alt.anonymous.messages. In DEF CON 21 Archive.

DEF CON, 2013. Available from <https://ritter.vg/p/AAM-defcon13.pdf>, cit.

[2016-06-26].

[44] Ronald L. Rivest and Robert D. Silverman. Are ‘Strong’ Primes Needed for RSA?

In The 1997 RSA Laboratories Seminar Series. Proceedings, 1999.

70

[45] Phillip Rogaway and Stephen M. Matyas. RSAES-OAEP Encryption Scheme Algo-

rithm specification and supporting documentation, 2000.

[46] Andrew Rukhin et al. A Statistical Test Suite for Random and Pseu-

dorandom Number Generators for Cryptographic Applications. In

NIST Special Publication 800-22rev1a. NIST, 2010. Cit. [2016-02-18]

<http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf>.

[47] Robert D. Silverman. Fast Generation Of Random, Strong RSA Primes. In Crypto-

Bytes Technical Newsletter. RSA Laboratories, 1997.

[48] Marek Sýs, Petr Švenda, Martin Ukrop, and Vashek Matyáš. Constructing empiri-

cal tests of randomness. In SECRYPT 2014, SCITEPRESS, pages 229–237, 2014.

[49] Petr Švenda, Matúš Nemec, Peter Sekan, Rudolf Kvašňovský, David Formánek,

David Komárek, and Vashek Matyáš. The Million-Key Question – Investigating

the Origins of RSA Public Keys. In 25th USENIX Security Symposium. Proceedings,

2016.

[50] David Wagner. Cryptanalysis of a Provably Secure CRT-RSA Algorithm. In 11th

ACM Conference on Computer and Communications Security. Proceedings, pages 92–97.

ACM, 2004.

[51] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. In IEEE Transac-

tions on Information Theory, volume 36, pages 553–558. IEEE, 1990.

[52] Hugh C. Williams. A p + 1 Method of Factoring. In Mathematics of Computation,

volume 39, pages 225–234. American Mathematical Society, 1982.

[53] YAFU: Yet Another Factorization Utility, 2013. Available from

<http://sourceforge.net/projects/yafu/>, cit. [2016-06-26].

[54] PGP keydump from June 02, 2016. Available from <http://pgp.key-

server.io/dump/current/>, cit. [2016-06-02].

[55] Keys collected in the 1MRSA project, 2016. Available from

<http://crcs.cz/papers/usenix2016/1mrsaset>.

[56] W3Techs Web Technology Surveys: Usage of web servers for websites, 2016.

<http://w3techs.com/technologies/overview/web_server/all>, cit. [2016-06-26].

71

A Tested corrupted keys

The public keys from TLS IPv4 [15] and PGP RSA keys dataset [54] were divided by the

following primes, obtained by the faulty algorithm as described in Section 7.1, however

none of the keys had such factor.

0x80005f

0x900145

0x900253

0xa0009d

0xa000f3

0xb000c9

0xb000fb

0xc00031

0xc00077

0xd0004f

0xe001ad

0xe00233

0xf0013d

0xf001cf

0x8000

006f

0x9000

001d

0x9000

00cb

0xa000

00b5

0xa000

00061f

0xb000

0015

0xb000

006b

0xc000

72

0002f9

0xc000

000e9b

0xd000

000135

0xd000

00032b

0xe000

000f

0xf000

007f

0x8000

00

00

000483

0x9000

00

00

0002ab

0xa000

00

00

00ab

0xb000

00

00

003f

0xc000

00

00

00040d

0xc000

00

00

73

000827

0xd000

00

00

000465

0xd000

00

00

0004e3

0xe000

00

00

000135

0xe000

00

00

0005cf

0xf000

00

00

00065b

B Classification matrix for 13 groups of sources

We present the classification matrix built according to the algorithm described in Section

5.1 for 13 distinct groups formed from 38 source libraries and smartcards.

All modulus bits identified through previous analysis as non-uniform for at least

one source are included in a mask. The mask values are arranged in the following order:

the values of the 2nd − 7th most significant bits influenced by the prime manipulations

described in Section 4.1, the second least significant bit (which is always zero for sources

that use Blum integers), the result of the modulus modulo 3 (which is influenced by the

avoidance of factor 3 in p−1 and q−1) and the overall modulus length modulo 2 (which

indicates whether an exact length is enforced).

74

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

000000|0|1|0 - 52.49% 33.41% 2.49% - - - 11.43% - 0.18% - - -

000000|0|1|1 - - - 100.00% - - - - - - - - -

000000|0|2|0 - 79.05% - 3.67% - - - 17.01% - 0.26% - - -

000000|0|2|1 - - - 100.00% - - - - - - - - -

000000|1|1|0 - - - 16.92% - - - 81.78% - 1.29% - - -

000000|1|1|1 - - - 100.00% - - - - - - - - -

000000|1|2|0 - 0.01% - 17.55% - - - 81.16% - 1.27% - - -

000000|1|2|1 - - - 100.00% - - - - - - - - -

000001|0|1|0 - 36.73% 49.37% 2.10% - - 0.60% 10.62% - 0.59% - - -

000001|0|1|1 - - - 100.00% - - - - - - - - -

000001|0|2|0 - 72.30% - 4.16% - - 1.18% 21.21% - 1.15% - - -

000001|0|2|1 - - - 100.00% - - - - - - - - -

000001|1|1|0 - - - 15.91% - - - 79.73% - 4.36% - - -

000001|1|1|1 - - - 100.00% - - - - - - - - -

000001|1|2|0 - - - 15.34% - - - 80.22% - 4.44% - - -

000001|1|2|1 - - - 100.00% - - - - - - - - -

000010|0|1|0 - 33.29% 50.31% 1.98% - - 2.47% 10.90% 0.01% 1.05% - - -

000010|0|1|1 - - - 100.00% - - - - - - - - -

000010|0|2|0 - 66.68% - 3.92% - - 4.98% 22.25% - 2.17% - - -

000010|0|2|1 - - - 100.00% - - - - - - - - -

000010|1|1|0 - - - 14.39% - - - 77.76% 0.07% 7.77% - - -

000010|1|1|1 - - - 100.00% - - - - - - - - -

000010|1|2|0 - - - 13.74% - - - 78.61% - 7.66% - - -

000010|1|2|1 - - - 100.00% - - - - - - - - -

000011|0|1|0 4.55% 28.29% 46.83% 1.67% - - 4.80% 10.19% - 1.42% - - 2.27%

000011|0|1|1 - - - 100.00% - - - - - - - - -

000011|0|2|0 - 57.88% - 3.39% - - 9.95% 21.13% 0.01% 2.96% - - 4.68%

000011|0|2|1 - - - 100.00% - - - - - - - - -

000011|1|1|0 - - - 12.92% - - - 76.25% 0.04% 10.79% - - -

000011|1|1|1 - - - 100.00% - - - - - - - - -

000011|1|2|0 - - - 12.75% - - - 76.55% - 10.70% - - -

000011|1|2|1 - - - 100.00% - - - - - - - - -

000100|0|1|0 24.65% 17.61% 30.81% 1.04% - - 5.49% 6.79% 0.00% 1.26% - - 12.37%

000100|0|1|1 - - - 100.00% - - - - - - - - -

000100|0|2|0 - 39.31% - 2.15% - - 12.37% 15.38% - 2.86% - - 27.93%

000100|0|2|1 - - - 100.00% - - - - - - - - -

000100|1|1|0 - - - 10.64% - - - 75.09% 0.19% 14.09% - - -

000100|1|1|1 - - - 100.00% - - - - - - - - -

000100|1|2|0 - - - 10.97% - - - 74.98% 0.26% 13.79% - - -

000100|1|2|1 - - - 100.00% - - - - - - - - -

000101|0|1|0 35.89% 11.82% 22.06% 0.67% - - 5.70% 4.86% 0.01% 1.11% - - 17.88%

000101|0|1|1 - - - 100.00% - - - - - - - - -

000101|0|2|0 - 28.18% - 1.47% - - 13.43% 11.51% 0.05% 2.70% - - 42.66%

000101|0|2|1 - - - 100.00% - - - - - - - - -

000101|1|1|0 - - - 9.90% - - - 72.86% 0.26% 16.99% - - -

000101|1|1|1 - - - 100.00% - - - - - - - - -

000101|1|2|0 - - - 10.05% - - - 72.67% 0.48% 16.80% - - -

000101|1|2|1 - - - 100.00% - - - - - - - - -

000110|0|1|0 42.24% 8.68% 16.95% 0.45% - - 5.78% 3.76% 0.04% 1.05% - - 21.06%

000110|0|1|1 - - - 100.00% - - - - - - - - -

000110|0|2|0 - 21.31% - 1.13% - - 14.09% 9.17% 0.09% 2.58% - - 51.63%

000110|0|2|1 - - - 100.00% - - - - - - - - -

000110|1|1|0 - - - 8.39% - - - 71.07% 0.55% 19.98% - - -

000110|1|1|1 - - - 100.00% - - - - - - - - -

000110|1|2|0 - - - 8.29% - - - 71.18% 0.55% 19.98% - - -

000110|1|2|1 - - - 100.00% - - - - - - - - -

000111|0|1|0 46.37% 6.74% 13.65% 0.33% - - 5.78% 3.03% 0.05% 1.00% - - 23.05%

000111|0|1|1 - - - 100.00% - - - - - - - - -

000111|0|2|0 - 16.67% - 0.79% - - 14.41% 7.54% 0.13% 2.46% - - 57.99%

000111|0|2|1 - - - 100.00% - - - - - - - - -

000111|1|1|0 - 0.01% - 7.82% - - - 68.17% 1.76% 22.25% - - -

000111|1|1|1 - - - 100.00% - - - - - - - - -

000111|1|2|0 - - - 7.42% - - - 68.37% 1.87% 22.33% - - -

000111|1|2|1 - - - 100.00% - - - - - - - - -

Table 12: The classification table, part 1 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

75

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

001000|0|1|0 46.57% 5.76% 11.88% 0.26% 0.16% 0.17% 5.59% 2.67% 0.11% 1.01% 0.07% 2.61% 23.15%

001000|0|1|1 - - - 100.00% - - - - - - - - -

001000|0|2|0 - 13.84% - 0.66% - 0.39% 13.46% 6.43% 0.27% 2.45% 0.16% 6.36% 55.97%

001000|0|2|1 - - - 100.00% - - - - - - - - -

001000|1|1|0 - - - 3.85% 2.36% - - 38.88% 1.48% 14.57% 0.96% 37.89% -

001000|1|1|1 - - - 100.00% - - - - - - - - -

001000|1|2|0 - - - 3.85% - - - 39.81% 1.68% 14.95% 1.01% 38.71% -

001000|1|2|1 - - - 100.00% - - - - - - - - -

001001|0|1|0 44.02% 5.11% 10.99% 0.21% 0.45% 0.45% 5.27% 2.46% 0.15% 1.07% 0.19% 7.44% 22.20%

001001|0|1|1 - - - 100.00% - - - - - - - - -

001001|0|2|0 - 11.45% - 0.49% - 0.98% 11.84% 5.56% 0.40% 2.40% 0.42% 16.62% 49.84%

001001|0|2|1 - - - 100.00% - - - - - - - - -

001001|1|1|0 - - - 1.73% 3.74% - - 20.84% 1.33% 8.95% 1.57% 61.83% -

001001|1|1|1 - - - 100.00% - - - - - - - - -

001001|1|2|0 - - - 1.86% - - - 21.51% 1.55% 9.33% 1.62% 64.13% -

001001|1|2|1 - - - 100.00% - - - - - - - - -

001010|0|1|0 42.09% 4.60% 10.13% 0.19% 0.68% 0.68% 5.04% 2.30% 0.23% 1.12% 0.32% 11.62% 21.01%

001010|0|1|1 - - - 100.00% - - - - - - - - -

001010|0|2|0 - 9.74% - 0.42% - 1.50% 10.63% 4.89% 0.54% 2.35% 0.66% 24.63% 44.64%

001010|0|2|1 - - - 100.00% - - - - - - - - -

001010|1|1|0 - - - 1.14% 4.26% - - 14.03% 1.45% 6.73% 1.93% 70.46% -

001010|1|1|1 - - - 100.00% - - - - - - - - -

001010|1|2|0 - - - 1.15% - - - 14.61% 1.61% 7.03% 2.01% 73.58% -

001010|1|2|1 - - - 100.00% - - - - - - - - -

001011|0|1|0 38.83% 4.50% 10.11% 0.17% 1.00% 1.01% 5.02% 2.31% 0.38% 1.24% 0.47% 15.62% 19.34%

001011|0|1|1 - - - 100.00% - - - - - - - - -

001011|0|2|0 - 8.99% - 0.33% - 2.00% 10.04% 4.60% 0.77% 2.50% 0.94% 30.94% 38.89%

001011|0|2|1 - - - 100.00% - - - - - - - - -

001011|1|1|0 - - - 0.77% 4.68% - - 10.90% 1.90% 5.85% 2.22% 73.68% -

001011|1|1|1 - - - 100.00% - - - - - - - - -

001011|1|2|0 - - - 0.78% - - - 11.51% 2.02% 6.19% 2.29% 77.21% -

001011|1|2|1 - - - 100.00% - - - - - - - - -

001100|0|1|0 34.60% 4.93% 11.35% 0.15% 1.47% 1.42% 5.46% 2.60% 0.61% 1.56% 0.71% 17.96% 17.19%

001100|0|1|1 - - - 100.00% - - - - - - - - -

001100|0|2|0 - 9.28% - 0.29% - 2.86% 10.37% 4.93% 1.32% 2.95% 1.32% 33.98% 32.69%

001100|0|2|1 - - - 100.00% - - - - - - - - -

001100|1|1|0 - 0.00% - 0.65% 5.79% - - 10.43% 2.77% 6.25% 2.77% 71.34% -

001100|1|1|1 - - - 100.00% - - - - - - - - -

001100|1|2|0 - - - 0.75% - - - 11.10% 2.74% 6.59% 2.94% 75.88% -

001100|1|2|1 - - - 100.00% - - - - - - - - -

001101|0|1|0 29.72% 5.72% 13.43% 0.19% 2.14% 2.13% 6.27% 3.09% 1.10% 2.04% 1.05% 18.37% 14.75%

001101|0|1|1 - - - 100.00% - - - - - - - - -

001101|0|2|0 - 10.39% - 0.33% - 3.87% 11.44% 5.61% 1.90% 3.68% 1.91% 33.36% 27.50%

001101|0|2|1 - - - 100.00% - - - - - - - - -

001101|1|1|0 - - - 0.66% 7.76% - - 11.07% 3.91% 7.25% 3.75% 65.60% -

001101|1|1|1 - - - 100.00% - - - - - - - - -

001101|1|2|0 - - - 0.70% - - - 11.98% 4.27% 7.87% 4.05% 71.12% -

001101|1|2|1 - - - 100.00% - - - - - - - - -

001110|0|1|0 23.21% 7.05% 16.81% 0.20% 3.27% 3.33% 7.95% 3.90% 1.99% 2.83% 1.61% 16.38% 11.46%

001110|0|1|1 - - - 100.00% - - - - - - - - -

001110|0|2|0 - 12.41% - 0.36% - 5.91% 14.08% 6.95% 3.13% 5.00% 2.87% 29.07% 20.22%

001110|0|2|1 - - - 100.00% - - - - - - - - -

001110|1|1|0 - - - 0.64% 11.04% - - 13.13% 5.74% 9.42% 5.38% 54.64% -

001110|1|1|1 - - - 100.00% - - - - - - - - -

001110|1|2|0 - - - 0.77% - - - 14.54% 7.30% 10.58% 5.99% 60.83% -

001110|1|2|1 - - - 100.00% - - - - - - - - -

001111|0|1|0 10.71% 9.47% 22.90% 0.24% 5.30% 5.36% 11.19% 5.36% 3.54% 4.21% 2.63% 13.49% 5.60%

001111|0|1|1 - - - 100.00% - - - - - - - - -

001111|0|2|0 - 15.64% - 0.43% - 8.90% 18.35% 8.85% 5.86% 6.94% 4.33% 21.99% 8.71%

001111|0|2|1 - - - 100.00% - - - - - - - - -

001111|1|1|0 - - - 0.70% 15.54% - - 15.74% 9.73% 12.29% 7.58% 38.42% -

001111|1|1|1 - - - 100.00% - - - - - - - - -

001111|1|2|0 - - - 0.92% - - - 18.12% 11.78% 14.26% 8.92% 46.00% -

001111|1|2|1 - - - 100.00% - - - - - - - - -

Table 13: The classification table, part 2 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

76

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

010000|0|1|0 - 11.70% 28.44% 0.30% 7.62% 7.61% 14.26% 6.66% 5.75% 5.74% 3.77% 8.16% -

010000|0|1|1 - - - 100.00% - - - - - - - - -

010000|0|2|0 - 18.25% - 0.42% - 12.01% 22.43% 10.48% 8.66% 9.02% 5.98% 12.76% -

010000|0|2|1 - - - 100.00% - - - - - - - - -

010000|1|1|0 - - - 0.71% 20.38% - - 17.66% 14.28% 15.13% 10.12% 21.72% -

010000|1|1|1 - - - 100.00% - - - - - - - - -

010000|1|2|0 - - - 0.96% - - - 22.03% 18.43% 18.86% 12.55% 27.18% -

010000|1|2|1 - - - 100.00% - - - - - - - - -

010001|0|1|0 - 11.43% 28.60% 0.23% 8.75% 8.80% 14.70% 6.68% 7.17% 6.23% 4.36% 3.04% -

010001|0|1|1 - - - 100.00% - - - - - - - - -

010001|0|2|0 - 18.36% - 0.43% - 13.85% 23.59% 10.80% 10.97% 9.97% 7.02% 5.00% -

010001|0|2|1 - - - 100.00% - - - - - - - - -

010001|1|1|0 - - - 0.67% 24.09% - - 18.50% 19.57% 16.83% 11.98% 8.37% -

010001|1|1|1 - - - 100.00% - - - - - - - - -

010001|1|2|0 - - - 0.90% - - - 24.23% 25.42% 22.54% 15.83% 11.08% -

010001|1|2|1 - - - 100.00% - - - - - - - - -

010010|0|1|0 - 10.85% 27.66% 0.23% 9.63% 9.80% 14.76% 6.59% 8.30% 6.52% 4.82% 0.85% -

010010|0|1|1 - - - 100.00% - - - - - - - - -

010010|0|2|0 - 17.79% - 0.37% - 15.04% 23.62% 10.50% 13.10% 10.51% 7.70% 1.37% -

010010|0|2|1 - - - 100.00% - - - - - - - - -

010010|1|1|0 - - - 0.67% 26.67% - - 17.90% 21.39% 17.90% 13.15% 2.31% -

010010|1|1|1 - - - 100.00% - - - - - - - - -

010010|1|2|0 - - - 0.85% - - - 24.08% 30.34% 24.05% 17.52% 3.16% -

010010|1|2|1 - - - 100.00% - - - - - - - - -

010011|0|1|0 - 10.23% 26.24% 0.20% 10.42% 10.68% 14.42% 6.23% 9.53% 6.78% 5.16% 0.11% -

010011|0|1|1 - - - 100.00% - - - - - - - - -

010011|0|2|0 - 16.26% - 0.33% - 16.75% 22.93% 9.87% 14.89% 10.67% 8.15% 0.16% -

010011|0|2|1 - - - 100.00% - - - - - - - - -

010011|1|1|0 - - - 0.53% 27.16% - - 16.43% 24.34% 17.73% 13.53% 0.29% -

010011|1|1|1 - - - 100.00% - - - - - - - - -

010011|1|2|0 - - - 0.71% - - - 22.67% 33.25% 24.38% 18.62% 0.38% -

010011|1|2|1 - - - 100.00% - - - - - - - - -

010100|0|1|0 - 9.73% 24.97% 0.18% 11.01% 11.17% 14.15% 5.93% 10.42% 6.92% 5.51% 0.00% -

010100|0|1|1 - - - 100.00% - - - - - - - - -

010100|0|2|0 - 15.32% - 0.26% - 17.13% 22.19% 9.33% 16.25% 10.87% 8.65% 0.00% -

010100|0|2|1 - - - 100.00% - - - - - - - - -

010100|1|1|0 - 0.00% - 0.40% 27.19% - - 14.94% 26.58% 17.23% 13.66% 0.00% -

010100|1|1|1 - - - 100.00% - - - - - - - - -

010100|1|2|0 - - - 0.61% - - - 20.27% 37.01% 23.48% 18.63% 0.00% -

010100|1|2|1 - - - 100.00% - - - - - - - - -

010101|0|1|0 - 9.23% 23.89% 0.16% 11.48% 11.88% 13.25% 5.70% 11.45% 7.10% 5.86% - -

010101|0|1|1 - - - 100.00% - - - - - - - - -

010101|0|2|0 - 14.49% - 0.23% - 18.40% 20.61% 8.88% 17.34% 10.97% 9.08% - -

010101|0|2|1 - - - 100.00% - - - - - - - - -

010101|1|1|0 - - - 0.36% 27.62% - - 13.48% 28.08% 16.75% 13.70% - -

010101|1|1|1 - - - 100.00% - - - - - - - - -

010101|1|2|0 - - - 0.49% - - - 18.98% 37.39% 23.63% 19.51% - -

010101|1|2|1 - - - 100.00% - - - - - - - - -

010110|0|1|0 - 8.63% 22.68% 0.15% 12.22% 12.70% 12.38% 5.49% 12.22% 7.34% 6.19% - -

010110|0|1|1 - - - 100.00% - - - - - - - - -

010110|0|2|0 - 13.55% - 0.24% - 19.11% 19.13% 8.48% 18.64% 11.34% 9.51% - -

010110|0|2|1 - - - 100.00% - - - - - - - - -

010110|1|1|0 - - - 0.32% 28.41% - - 12.60% 27.46% 16.95% 14.26% - -

010110|1|1|1 - - - 100.00% - - - - - - - - -

010110|1|2|0 - - - 0.42% - - - 17.38% 39.20% 23.42% 19.59% - -

010110|1|2|1 - - - 100.00% - - - - - - - - -

010111|0|1|0 - 8.37% 21.93% 0.13% 12.89% 12.85% 11.45% 5.21% 13.13% 7.53% 6.51% - -

010111|0|1|1 - - - 100.00% - - - - - - - - -

010111|0|2|0 - 12.95% - 0.20% - 20.14% 17.46% 8.00% 19.79% 11.56% 9.90% - -

010111|0|2|1 - - - 100.00% - - - - - - - - -

010111|1|1|0 - - - 0.30% 28.33% - - 11.49% 29.10% 16.52% 14.26% - -

010111|1|1|1 - - - 100.00% - - - - - - - - -

010111|1|2|0 - - - 0.40% - - - 16.09% 40.39% 23.16% 19.96% - -

010111|1|2|1 - - - 100.00% - - - - - - - - -

Table 14: The classification table, part 3 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

77

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

011000|0|1|0 - 8.07% 20.86% 0.11% 13.64% 13.49% 10.65% 5.03% 13.42% 7.84% 6.90% - -

011000|0|1|1 - - - 100.00% - - - - - - - - -

011000|0|2|0 - 12.12% - 0.17% - 21.21% 16.31% 7.70% 20.11% 11.95% 10.44% - -

011000|0|2|1 - - - 100.00% - - - - - - - - -

011000|1|1|0 - - - 0.26% 29.12% - - 10.84% 28.32% 16.79% 14.67% - -

011000|1|1|1 - - - 100.00% - - - - - - - - -

011000|1|2|0 - - - 0.34% - - - 15.26% 40.21% 23.42% 20.77% - -

011000|1|2|1 - - - 100.00% - - - - - - - - -

011001|0|1|0 - 7.53% 19.80% 0.13% 14.45% 14.46% 9.91% 4.88% 13.52% 8.09% 7.24% - -

011001|0|1|1 - - - 100.00% - - - - - - - - -

011001|0|2|0 - 11.62% - 0.18% - 22.03% 15.07% 7.31% 20.67% 12.16% 10.96% - -

011001|0|2|1 - - - 100.00% - - - - - - - - -

011001|1|1|0 - - - 0.23% 29.73% - - 9.97% 28.36% 16.70% 15.00% - -

011001|1|1|1 - - - 100.00% - - - - - - - - -

011001|1|2|0 - - - 0.34% - - - 14.30% 40.37% 23.78% 21.21% - -

011001|1|2|1 - - - 100.00% - - - - - - - - -

011010|0|1|0 - 7.18% 18.98% 0.12% 15.09% 15.41% 9.17% 4.69% 13.51% 8.24% 7.60% - -

011010|0|1|1 - - - 100.00% - - - - - - - - -

011010|0|2|0 - 10.95% - 0.15% - 22.60% 14.03% 7.11% 20.93% 12.67% 11.56% - -

011010|0|2|1 - - - 100.00% - - - - - - - - -

011010|1|1|0 - - - 0.23% 30.33% - - 9.52% 27.75% 16.78% 15.40% - -

011010|1|1|1 - - - 100.00% - - - - - - - - -

011010|1|2|0 - - - 0.34% - - - 13.79% 39.16% 24.19% 22.52% - -

011010|1|2|1 - - - 100.00% - - - - - - - - -

011011|0|1|0 - 6.98% 18.28% 0.10% 15.76% 15.66% 8.78% 4.49% 13.97% 8.06% 7.91% - -

011011|0|1|1 - - - 100.00% - - - - - - - - -

011011|0|2|0 - 10.30% - 0.15% - 24.02% 13.29% 6.80% 21.23% 12.19% 12.03% - -

011011|0|2|1 - - - 100.00% - - - - - - - - -

011011|1|1|0 - - - 0.23% 31.19% - - 8.85% 28.04% 15.97% 15.73% - -

011011|1|1|1 - - - 100.00% - - - - - - - - -

011011|1|2|0 - - - 0.32% - - - 13.02% 40.21% 23.50% 22.95% - -

011011|1|2|1 - - - 100.00% - - - - - - - - -

011100|0|1|0 - 6.64% 17.60% 0.10% 16.34% 16.68% 8.76% 4.28% 13.44% 7.83% 8.33% - -

011100|0|1|1 - - - 100.00% - - - - - - - - -

011100|0|2|0 - 10.21% - 0.15% - 24.96% 13.28% 6.53% 20.51% 11.83% 12.54% - -

011100|0|2|1 - - - 100.00% - - - - - - - - -

011100|1|1|0 - - - 0.22% 32.69% - - 8.47% 26.67% 15.41% 16.55% - -

011100|1|1|1 - - - 100.00% - - - - - - - - -

011100|1|2|0 - - - 0.31% - - - 12.68% 39.68% 22.98% 24.34% - -

011100|1|2|1 - - - 100.00% - - - - - - - - -

011101|0|1|0 - 6.24% 16.82% 0.12% 17.16% 17.51% 8.78% 4.12% 13.08% 7.56% 8.62% - -

011101|0|1|1 - - - 100.00% - - - - - - - - -

011101|0|2|0 - 9.76% - 0.21% - 26.30% 13.40% 6.31% 19.30% 11.53% 13.20% - -

011101|0|2|1 - - - 100.00% - - - - - - - - -

011101|1|1|0 - - - 0.21% 34.20% - - 8.22% 25.41% 14.93% 17.02% - -

011101|1|1|1 - - - 100.00% - - - - - - - - -

011101|1|2|0 - - - 0.36% - - - 12.52% 37.91% 22.99% 26.21% - -

011101|1|2|1 - - - 100.00% - - - - - - - - -

011110|0|1|0 - 6.11% 16.23% 0.12% 18.02% 18.00% 8.89% 4.04% 12.19% 7.32% 9.09% - -

011110|0|1|1 - - - 100.00% - - - - - - - - -

011110|0|2|0 - 9.28% - 0.18% - 27.12% 13.53% 6.08% 18.79% 11.21% 13.80% - -

011110|0|2|1 - - - 100.00% - - - - - - - - -

011110|1|1|0 - - - 0.25% 35.25% - - 7.77% 24.50% 14.40% 17.84% - -

011110|1|1|1 - - - 100.00% - - - - - - - - -

011110|1|2|0 - - - 0.43% - - - 12.14% 37.59% 22.27% 27.56% - -

011110|1|2|1 - - - 100.00% - - - - - - - - -

011111|0|1|0 - 5.89% 15.39% 0.14% 18.77% 18.83% 8.86% 3.85% 11.62% 7.14% 9.51% - -

011111|0|1|1 - - - 100.00% - - - - - - - - -

011111|0|2|0 - 9.18% - 0.18% - 28.65% 13.53% 5.90% 17.24% 10.81% 14.53% - -

011111|0|2|1 - - - 100.00% - - - - - - - - -

011111|1|1|0 - - - 0.27% 37.08% - - 7.64% 22.35% 14.00% 18.67% - -

011111|1|1|1 - - - 100.00% - - - - - - - - -

011111|1|2|0 - - - 0.43% - - - 12.12% 35.71% 22.22% 29.52% - -

011111|1|2|1 - - - 100.00% - - - - - - - - -

Table 15: The classification table, part 4 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

78

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

100000|0|1|0 - 5.92% 15.30% 0.16% 19.28% 19.20% 9.17% 3.83% 10.33% 7.07% 9.74% - -

100000|0|1|1 - - - 100.00% - - - - - - - - -

100000|0|2|0 - 8.94% - 0.22% - 29.78% 13.78% 5.80% 15.95% 10.75% 14.78% - -

100000|0|2|1 - - - 100.00% - - - - - - - - -

100000|1|1|0 - - - 0.29% 37.83% - - 7.51% 21.38% 13.83% 19.16% - -

100000|1|1|1 - - - 100.00% - - - - - - - - -

100000|1|2|0 - - - 0.42% - - - 12.20% 33.94% 22.40% 31.04% - -

100000|1|2|1 - - - 100.00% - - - - - - - - -

100001|0|1|0 - 5.74% 15.11% 0.17% 19.43% 19.20% 9.58% 3.78% 10.07% 7.13% 9.78% - -

100001|0|1|1 - - - 100.00% - - - - - - - - -

100001|0|2|0 - 8.77% - 0.25% - 29.43% 14.53% 5.79% 15.45% 10.84% 14.93% - -

100001|0|2|1 - - - 100.00% - - - - - - - - -

100001|1|1|0 - - - 0.36% 38.45% - - 7.63% 20.13% 14.06% 19.36% - -

100001|1|1|1 - - - 100.00% - - - - - - - - -

100001|1|2|0 - - - 0.55% - - - 12.43% 32.41% 22.94% 31.67% - -

100001|1|2|1 - - - 100.00% - - - - - - - - -

100010|0|1|0 - 5.67% 14.93% 0.19% 19.45% 19.09% 10.30% 3.79% 9.79% 7.05% 9.75% - -

100010|0|1|1 - - - 100.00% - - - - - - - - -

100010|0|2|0 - 8.76% - 0.34% - 28.99% 15.68% 5.79% 14.60% 10.88% 14.96% - -

100010|0|2|1 - - - 100.00% - - - - - - - - -

100010|1|1|0 - - - 0.43% 39.25% - - 7.57% 18.80% 14.30% 19.65% - -

100010|1|1|1 - - - 100.00% - - - - - - - - -

100010|1|2|0 - - - 0.73% - - - 12.57% 31.48% 23.33% 31.88% - -

100010|1|2|1 - - - 100.00% - - - - - - - - -

100011|0|1|0 - 5.60% 14.78% 0.22% 19.46% 19.62% 10.60% 3.76% 9.13% 7.10% 9.73% - -

100011|0|1|1 - - - 100.00% - - - - - - - - -

100011|0|2|0 - 8.56% - 0.36% - 29.62% 16.34% 5.85% 13.47% 10.82% 14.98% - -

100011|0|2|1 - - - 100.00% - - - - - - - - -

100011|1|1|0 - - - 0.47% 39.57% - - 7.72% 17.83% 14.55% 19.86% - -

100011|1|1|1 - - - 100.00% - - - - - - - - -

100011|1|2|0 - - - 0.82% - - - 12.75% 29.06% 24.22% 33.15% - -

100011|1|2|1 - - - 100.00% - - - - - - - - -

100100|0|1|0 - 5.81% 14.45% 0.28% 19.63% 19.46% 11.36% 3.82% 8.00% 7.23% 9.96% - -

100100|0|1|1 - - - 100.00% - - - - - - - - -

100100|0|2|0 - 8.97% - 0.42% - 29.80% 17.13% 5.88% 11.69% 10.93% 15.18% - -

100100|0|2|1 - - - 100.00% - - - - - - - - -

100100|1|1|0 - - - 0.59% 40.46% - - 7.88% 15.88% 14.79% 20.40% - -

100100|1|1|1 - - - 100.00% - - - - - - - - -

100100|1|2|0 - - - 0.90% - - - 13.35% 26.60% 24.89% 34.26% - -

100100|1|2|1 - - - 100.00% - - - - - - - - -

100101|0|1|0 - 5.70% 14.23% 0.30% 19.95% 19.92% 11.87% 3.88% 6.95% 7.21% 10.00% - -

100101|0|1|1 - - - 100.00% - - - - - - - - -

100101|0|2|0 - 8.48% - 0.45% - 29.96% 18.05% 5.96% 10.71% 11.16% 15.23% - -

100101|0|2|1 - - - 100.00% - - - - - - - - -

100101|1|1|0 - - - 0.64% 41.04% - - 7.96% 14.48% 15.04% 20.84% - -

100101|1|1|1 - - - 100.00% - - - - - - - - -

100101|1|2|0 - - - 1.05% - - - 13.45% 25.19% 25.43% 34.87% - -

100101|1|2|1 - - - 100.00% - - - - - - - - -

100110|0|1|0 - 5.76% 13.94% 0.37% 19.94% 20.05% 12.48% 3.87% 6.18% 7.30% 10.10% - -

100110|0|1|1 - - - 100.00% - - - - - - - - -

100110|0|2|0 - 8.64% - 0.57% - 30.30% 18.82% 5.79% 9.70% 11.04% 15.14% - -

100110|0|2|1 - - - 100.00% - - - - - - - - -

100110|1|1|0 - - - 0.75% 41.20% - - 8.03% 13.65% 15.33% 21.03% - -

100110|1|1|1 - - - 100.00% - - - - - - - - -

100110|1|2|0 - - - 1.33% - - - 13.74% 23.02% 26.15% 35.75% - -

100110|1|2|1 - - - 100.00% - - - - - - - - -

100111|0|1|0 - 5.66% 13.86% 0.41% 20.07% 20.01% 13.06% 3.83% 5.67% 7.39% 10.05% - -

100111|0|1|1 - - - 100.00% - - - - - - - - -

100111|0|2|0 - 8.49% - 0.65% - 30.11% 19.64% 5.85% 8.97% 11.04% 15.25% - -

100111|0|2|1 - - - 100.00% - - - - - - - - -

100111|1|1|0 - - - 0.86% 42.38% - - 8.14% 11.52% 15.68% 21.42% - -

100111|1|1|1 - - - 100.00% - - - - - - - - -

100111|1|2|0 - - - 1.60% - - - 14.07% 20.96% 26.58% 36.78% - -

100111|1|2|1 - - - 100.00% - - - - - - - - -

Table 16: The classification table, part 5 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

79

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

101000|0|1|0 - 5.60% 13.61% 0.52% 20.37% 20.05% 13.37% 3.92% 4.83% 7.45% 10.27% - -

101000|0|1|1 - - - 100.00% - - - - - - - - -

101000|0|2|0 - 8.77% - 0.76% - 29.73% 20.47% 5.89% 7.50% 11.27% 15.62% - -

101000|0|2|1 - - - 100.00% - - - - - - - - -

101000|1|1|0 - - - 1.07% 43.32% - - 8.26% 10.08% 15.64% 21.63% - -

101000|1|1|1 - - - 100.00% - - - - - - - - -

101000|1|2|0 - - - 1.76% - - - 14.57% 17.29% 27.93% 38.43% - -

101000|1|2|1 - - - 100.00% - - - - - - - - -

101001|0|1|0 - 5.73% 13.53% 0.58% 20.41% 19.96% 13.83% 3.95% 4.14% 7.52% 10.34% - -

101001|0|1|1 - - - 100.00% - - - - - - - - -

101001|0|2|0 - 8.57% - 0.79% - 30.58% 20.76% 5.98% 6.23% 11.43% 15.66% - -

101001|0|2|1 - - - 100.00% - - - - - - - - -

101001|1|1|0 - - - 1.22% 43.89% - - 8.26% 8.74% 15.99% 21.90% - -

101001|1|1|1 - - - 100.00% - - - - - - - - -

101001|1|2|0 - - - 2.11% - - - 14.94% 15.17% 28.53% 39.24% - -

101001|1|2|1 - - - 100.00% - - - - - - - - -

101010|0|1|0 - 5.83% 13.09% 0.69% 20.85% 19.71% 14.51% 3.95% 3.37% 7.62% 10.38% - -

101010|0|1|1 - - - 100.00% - - - - - - - - -

101010|0|2|0 - 8.63% - 1.01% - 30.80% 21.85% 5.88% 4.92% 11.33% 15.58% - -

101010|0|2|1 - - - 100.00% - - - - - - - - -

101010|1|1|0 - - - 1.49% 44.27% - - 8.47% 7.09% 16.32% 22.36% - -

101010|1|1|1 - - - 100.00% - - - - - - - - -

101010|1|2|0 - - - 2.60% - - - 15.07% 13.91% 28.73% 39.69% - -

101010|1|2|1 - - - 100.00% - - - - - - - - -

101011|0|1|0 - 5.77% 12.58% 0.76% 20.76% 20.10% 15.26% 3.94% 2.87% 7.58% 10.37% - -

101011|0|1|1 - - - 100.00% - - - - - - - - -

101011|0|2|0 - 8.66% - 1.21% - 30.61% 22.81% 5.82% 4.09% 11.35% 15.46% - -

101011|0|2|1 - - - 100.00% - - - - - - - - -

101011|1|1|0 - - - 1.67% 44.41% - - 8.55% 6.34% 16.50% 22.53% - -

101011|1|1|1 - - - 100.00% - - - - - - - - -

101011|1|2|0 - - - 3.13% - - - 15.75% 10.23% 29.89% 41.01% - -

101011|1|2|1 - - - 100.00% - - - - - - - - -

101100|0|1|0 - 5.75% 12.27% 0.85% 20.37% 20.69% 16.11% 3.93% 2.19% 7.50% 10.35% - -

101100|0|1|1 - - - 100.00% - - - - - - - - -

101100|0|2|0 - 8.46% - 1.23% - 30.15% 24.04% 5.81% 3.74% 11.23% 15.35% - -

101100|0|2|1 - - - 100.00% - - - - - - - - -

101100|1|1|0 - - - 1.74% 45.19% - - 8.54% 5.22% 16.53% 22.78% - -

101100|1|1|1 - - - 100.00% - - - - - - - - -

101100|1|2|0 - - - 3.62% - - - 15.69% 9.29% 30.00% 41.39% - -

101100|1|2|1 - - - 100.00% - - - - - - - - -

101101|0|1|0 - 5.54% 11.70% 1.03% 20.60% 20.39% 17.05% 3.94% 1.82% 7.57% 10.37% - -

101101|0|1|1 - - - 100.00% - - - - - - - - -

101101|0|2|0 - 8.18% - 1.48% - 30.31% 25.14% 5.77% 2.76% 11.11% 15.26% - -

101101|0|2|1 - - - 100.00% - - - - - - - - -

101101|1|1|0 - - - 2.23% 45.47% - - 8.62% 4.50% 16.52% 22.66% - -

101101|1|1|1 - - - 100.00% - - - - - - - - -

101101|1|2|0 - - - 3.94% - - - 15.89% 7.43% 30.62% 42.13% - -

101101|1|2|1 - - - 100.00% - - - - - - - - -

101110|0|1|0 - 5.47% 11.13% 1.14% 20.26% 20.69% 18.09% 3.90% 1.51% 7.54% 10.28% - -

101110|0|1|1 - - - 100.00% - - - - - - - - -

101110|0|2|0 - 8.07% - 1.72% - 30.30% 26.21% 5.62% 2.07% 10.96% 15.06% - -

101110|0|2|1 - - - 100.00% - - - - - - - - -

101110|1|1|0 - - - 2.45% 46.11% - - 8.74% 2.81% 16.82% 23.07% - -

101110|1|1|1 - - - 100.00% - - - - - - - - -

101110|1|2|0 - - - 4.87% - - - 15.84% 5.96% 31.00% 42.34% - -

101110|1|2|1 - - - 100.00% - - - - - - - - -

101111|0|1|0 - 5.42% 10.27% 1.28% 20.49% 20.48% 19.29% 3.89% 0.99% 7.61% 10.27% - -

101111|0|1|1 - - - 100.00% - - - - - - - - -

101111|0|2|0 - 7.96% - 1.79% - 29.80% 27.64% 5.57% 1.69% 10.76% 14.80% - -

101111|0|2|1 - - - 100.00% - - - - - - - - -

101111|1|1|0 - - - 3.06% 45.99% - - 8.59% 2.59% 16.88% 22.89% - -

101111|1|1|1 - - - 100.00% - - - - - - - - -

101111|1|2|0 - - - 5.01% - - - 15.92% 4.80% 31.63% 42.64% - -

101111|1|2|1 - - - 100.00% - - - - - - - - -

Table 17: The classification table, part 6 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

80

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

110000|0|1|0 - 5.54% 9.00% 1.48% 20.84% 20.09% 20.32% 3.88% 0.95% 7.55% 10.36% - -

110000|0|1|1 - - - 100.00% - - - - - - - - -

110000|0|2|0 - 7.99% - 2.09% - 29.38% 28.60% 5.50% 1.23% 10.67% 14.55% - -

110000|0|2|1 - - - 100.00% - - - - - - - - -

110000|1|1|0 - - - 3.53% 45.88% - - 8.60% 2.36% 16.75% 22.88% - -

110000|1|1|1 - - - 100.00% - - - - - - - - -

110000|1|2|0 - - - 6.48% - - - 15.83% 3.61% 31.26% 42.82% - -

110000|1|2|1 - - - 100.00% - - - - - - - - -

110001|0|1|0 - 5.50% 8.13% 1.71% 21.08% 21.10% 19.57% 3.93% 0.57% 7.92% 10.49% - -

110001|0|1|1 - - - 100.00% - - - - - - - - -

110001|0|2|0 - 7.93% - 2.53% - 30.09% 27.22% 5.52% 1.01% 10.87% 14.83% - -

110001|0|2|1 - - - 100.00% - - - - - - - - -

110001|1|1|0 - - - 3.68% 46.07% - - 8.74% 1.67% 16.90% 22.94% - -

110001|1|1|1 - - - 100.00% - - - - - - - - -

110001|1|2|0 - - - 7.44% - - - 15.82% 3.18% 31.42% 42.14% - -

110001|1|2|1 - - - 100.00% - - - - - - - - -

110010|0|1|0 - 5.73% 7.13% 1.99% 21.51% 21.97% 18.36% 4.07% 0.57% 7.89% 10.78% - -

110010|0|1|1 - - - 100.00% - - - - - - - - -

110010|0|2|0 - 8.28% - 3.11% - 30.43% 25.68% 5.64% 0.57% 11.20% 15.08% - -

110010|0|2|1 - - - 100.00% - - - - - - - - -

110010|1|1|0 - - - 4.30% 46.18% - - 8.57% 1.17% 16.90% 22.89% - -

110010|1|1|1 - - - 100.00% - - - - - - - - -

110010|1|2|0 - - - 8.20% - - - 16.07% 1.43% 31.60% 42.71% - -

110010|1|2|1 - - - 100.00% - - - - - - - - -

110011|0|1|0 - 5.76% 6.21% 2.41% 22.66% 22.50% 16.74% 4.17% 0.31% 8.14% 11.10% - -

110011|0|1|1 - - - 100.00% - - - - - - - - -

110011|0|2|0 - 8.18% - 3.73% - 31.00% 23.37% 5.89% 0.63% 11.59% 15.61% - -

110011|0|2|1 - - - 100.00% - - - - - - - - -

110011|1|1|0 - - - 5.00% 45.53% - - 8.60% 0.89% 17.02% 22.96% - -

110011|1|1|1 - - - 100.00% - - - - - - - - -

110011|1|2|0 - - - 9.30% - - - 15.71% 1.12% 31.55% 42.33% - -

110011|1|2|1 - - - 100.00% - - - - - - - - -

110100|0|1|0 - 5.99% 4.87% 3.08% 23.07% 23.85% 14.48% 4.33% 0.42% 8.49% 11.42% - -

110100|0|1|1 - - - 100.00% - - - - - - - - -

110100|0|2|0 - 8.49% - 4.21% - 32.29% 20.61% 6.00% 0.40% 11.90% 16.10% - -

110100|0|2|1 - - - 100.00% - - - - - - - - -

110100|1|1|0 - - - 5.78% 45.74% - - 8.54% 0.53% 16.79% 22.62% - -

110100|1|1|1 - - - 100.00% - - - - - - - - -

110100|1|2|0 - - - 10.99% - - - 15.64% 1.20% 30.70% 41.47% - -

110100|1|2|1 - - - 100.00% - - - - - - - - -

110101|0|1|0 - 6.33% 3.07% 3.78% 24.12% 25.63% 11.78% 4.43% 0.18% 8.76% 11.92% - -

110101|0|1|1 - - - 100.00% - - - - - - - - -

110101|0|2|0 - 8.78% - 5.39% - 33.27% 16.83% 6.33% 0.20% 12.33% 16.86% - -

110101|0|2|1 - - - 100.00% - - - - - - - - -

110101|1|1|0 - - - 7.00% 45.66% - - 8.26% 0.37% 16.58% 22.13% - -

110101|1|1|1 - - - 100.00% - - - - - - - - -

110101|1|2|0 - - - 13.11% - - - 15.46% 0.74% 29.86% 40.82% - -

110101|1|2|1 - - - 100.00% - - - - - - - - -

110110|0|1|0 - 6.68% 0.78% 4.48% 25.92% 26.71% 8.38% 4.75% 0.19% 9.45% 12.66% - -

110110|0|1|1 - - - 100.00% - - - - - - - - -

110110|0|2|0 - 8.98% - 6.33% - 35.67% 11.56% 6.63% 0.21% 13.17% 17.46% - -

110110|0|2|1 - - - 100.00% - - - - - - - - -

110110|1|1|0 - - - 8.09% 45.04% - - 8.19% 0.30% 16.45% 21.93% - -

110110|1|1|1 - - - 100.00% - - - - - - - - -

110110|1|2|0 - - - 14.76% - - - 15.13% 0.53% 29.87% 39.70% - -

110110|1|2|1 - - - 100.00% - - - - - - - - -

110111|0|1|0 - 7.07% - 5.81% 27.48% 27.38% 3.43% 5.08% 0.05% 10.15% 13.56% - -

110111|0|1|1 - - - 100.00% - - - - - - - - -

110111|0|2|0 - 9.73% - 8.28% - 37.66% 4.62% 7.16% 0.18% 13.82% 18.55% - -

110111|0|2|1 - - - 100.00% - - - - - - - - -

110111|1|1|0 - - - 9.62% 43.99% - - 8.36% 0.04% 16.30% 21.69% - -

110111|1|1|1 - - - 100.00% - - - - - - - - -

110111|1|2|0 - - - 16.62% - - - 14.86% 0.30% 29.04% 39.19% - -

110111|1|2|1 - - - 100.00% - - - - - - - - -

Table 18: The classification table, part 7 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

81

Group of sources
Mask value I II III IV V VI VII VIII IX X XI XII XIII

111000|0|1|0 - 7.43% - 7.40% 28.35% 27.46% - 5.23% 0.03% 10.35% 13.75% - -

111000|0|1|1 - - - 100.00% - - - - - - - - -

111000|0|2|0 - 10.20% - 9.86% - 38.60% - 7.36% 0.04% 14.58% 19.35% - -

111000|0|2|1 - - - 100.00% - - - - - - - - -

111000|1|1|0 - - - 11.07% 43.45% - - 8.06% 0.14% 16.05% 21.23% - -

111000|1|1|1 - - - 100.00% - - - - - - - - -

111000|1|2|0 - - - 19.99% - - - 14.24% 0.16% 28.29% 37.31% - -

111000|1|2|1 - - - 100.00% - - - - - - - - -

111001|0|1|0 - 7.08% - 8.77% 27.57% 27.98% - 5.08% 0.03% 10.16% 13.32% - -

111001|0|1|1 - - - 100.00% - - - - - - - - -

111001|0|2|0 - 9.80% - 12.01% - 39.05% - 6.95% - 13.90% 18.30% - -

111001|0|2|1 - - - 100.00% - - - - - - - - -

111001|1|1|0 - - - 13.54% 42.68% - - 7.65% 0.10% 15.53% 20.50% - -

111001|1|1|1 - - - 100.00% - - - - - - - - -

111001|1|2|0 - - - 23.17% - - - 13.63% - 27.19% 36.01% - -

111001|1|2|1 - - - 100.00% - - - - - - - - -

111010|0|1|0 - 6.99% - 10.68% 27.00% 27.46% - 4.92% - 10.05% 12.90% - -

111010|0|1|1 - - - 100.00% - - - - - - - - -

111010|0|2|0 - 9.85% - 14.63% - 37.31% - 6.83% - 13.55% 17.82% - -

111010|0|2|1 - - - 100.00% - - - - - - - - -

111010|1|1|0 - - - 16.31% 40.94% - - 7.74% 0.06% 15.13% 19.82% - -

111010|1|1|1 - - - 100.00% - - - - - - - - -

111010|1|2|0 - - - 28.26% - - - 12.81% 0.10% 25.27% 33.56% - -

111010|1|2|1 - - - 100.00% - - - - - - - - -

111011|0|1|0 - 6.56% - 13.22% 26.15% 27.40% - 4.76% - 9.67% 12.24% - -

111011|0|1|1 - - - 100.00% - - - - - - - - -

111011|0|2|0 - 9.14% - 18.52% - 35.54% - 6.71% - 13.13% 16.97% - -

111011|0|2|1 - - - 100.00% - - - - - - - - -

111011|1|1|0 - - - 20.42% 39.07% - - 7.16% - 14.67% 18.68% - -

111011|1|1|1 - - - 100.00% - - - - - - - - -

111011|1|2|0 - - - 32.15% - - - 12.19% - 24.30% 31.36% - -

111011|1|2|1 - - - 100.00% - - - - - - - - -

111100|0|1|0 - 6.49% - 17.35% 24.97% 26.13% - 4.50% 0.06% 9.15% 11.35% - -

111100|0|1|1 - - - 100.00% - - - - - - - - -

111100|0|2|0 - 8.78% - 22.88% - 34.60% - 5.96% - 12.47% 15.32% - -

111100|0|2|1 - - - 100.00% - - - - - - - - -

111100|1|1|0 - - - 25.09% 37.07% - - 7.01% - 13.57% 17.27% - -

111100|1|1|1 - - - 100.00% - - - - - - - - -

111100|1|2|0 - - - 39.62% - - - 10.74% - 22.20% 27.45% - -

111100|1|2|1 - - - 100.00% - - - - - - - - -

111101|0|1|0 - 5.75% - 23.37% 23.70% 24.10% - 4.30% - 8.46% 10.32% - -

111101|0|1|1 - - - 100.00% - - - - - - - - -

111101|0|2|0 - 7.70% - 32.50% - 29.63% - 5.69% - 11.01% 13.47% - -

111101|0|2|1 - - - 100.00% - - - - - - - - -

111101|1|1|0 - - - 33.93% 33.00% - - 6.14% - 11.96% 14.97% - -

111101|1|1|1 - - - 100.00% - - - - - - - - -

111101|1|2|0 - - - 50.38% - - - 9.31% - 18.40% 21.91% - -

111101|1|2|1 - - - 100.00% - - - - - - - - -

111110|0|1|0 - 4.96% - 34.36% 20.38% 20.20% - 3.91% - 7.51% 8.68% - -

111110|0|1|1 - - - 100.00% - - - - - - - - -

111110|0|2|0 - 6.36% - 42.75% - 26.30% - 4.81% - 9.21% 10.58% - -

111110|0|2|1 - - - 100.00% - - - - - - - - -

111110|1|1|0 - - - 47.36% 26.68% - - 4.91% - 9.81% 11.25% - -

111110|1|1|1 - - - 100.00% - - - - - - - - -

111110|1|2|0 - - - 63.60% - - - 6.71% - 13.54% 16.15% - -

111110|1|2|1 - - - 100.00% - - - - - - - - -

111111|0|1|0 - 2.48% - 63.73% 11.57% 10.77% - 2.09% - 4.33% 5.05% - -

111111|0|1|1 - - - 100.00% - - - - - - - - -

111111|0|2|0 - 3.43% - 71.63% - 12.04% - 2.43% - 4.93% 5.55% - -

111111|0|2|1 - - - 100.00% - - - - - - - - -

111111|1|1|0 - - - 73.23% 13.71% - - 2.51% - 4.94% 5.60% - -

111111|1|1|1 - - - 100.00% - - - - - - - - -

111111|1|2|0 - - - 85.45% - - - 2.75% - 5.53% 6.27% - -

111111|1|2|1 - - - 100.00% - - - - - - - - -

Table 19: The classification table, part 8 of 8. The mask is arranged as: 2nd−7th most significant
bit of modulus | 2nd least significant bit of modulus | modulus mod 3 | modulus length mod 2.

82

C Online classification tool

Figure 30: Screenshot of our online classification tool, available at http: // crcs. cz/ rsapp .

The website supports ASCII armored RSA keys and retrieval of RSA keys found in TLS certifi-

cate of supplied domain name. The keys are classified individually and as a group assumed to be

generated by the same source.

83

http://crcs.cz/rsapp

	Introduction
	RSA cryptosystem
	The RSA cryptographic primitives
	Card usage scenarios
	Analysis methodology
	Analysis of black-box implementations

	Attacks against RSA cryptosystem
	Attacks on RSA keys in more details
	Pollard's p-1 factorization algorithm
	Williams' p+1 factorization algorithm
	Fermat's factorization method
	Lehman's improvement to Fermat's method
	General-purpose factorization methods
	Attacks on small private exponent
	Cycling attacks
	Small public exponents and Coppersmith's attack
	Attacks on keys generated with low entropy

	RSA keypair generation in source code and literature
	Prime generation
	Probable primes
	Provable primes
	Strong primes

	Key generation – prime pairs
	Rejection sampling
	``Square'' regions

	Analysis of the generated RSA key pairs
	Distributions of the primes
	Distributions of the moduli
	Factorization of p-1 and p+1
	Sanity check

	Key source detection
	The classification process
	Evaluation of the classification accuracy

	Classifying real-world keys
	Sources of Internet TLS keys
	Sources of PGP keys

	Practical impact of origin detection
	How to mitigate origin classification

	Random numbers generated on cards
	Biased random number generator

	Key generation process on cards
	Malfunctioning generator
	Time distribution
	Power analysis

	Conclusions
	Tested corrupted keys
	Classification matrix for 13 groups of sources
	Online classification tool

