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Abstract

A number of intrusion detection techniques have been proposed to detect different

kinds of active attacks on wireless sensor networks (WSNs). Selective forwarding

and delay attacks are two simple but effective attacks that can disrupt the com-

munication in WSNs. In this work, we propose two parametrized collaborative

intrusion detection techniques and optimize their parameters for a specific scenario

using extensive simulations and multiobjective evolutionary algorithms. Moreover,

we sample the whole search space to enable evaluation of evolution performance.

The found optimized results are also compared to a simpler non-collaborative de-

tection technique to demonstrate improvements of collaborative approach. We also

evaluate the influence of changes of the number of malicious nodes on the intrusion

detection performance. This technical report extends our paper [SMS16] by details

of experiment settings and results.

1 Introduction

Wireless sensor networks (WSNs) are highly distributed ad hoc networks consisting of

low-cost electronic devices (sensor nodes). The sensor nodes are powered by batteries

and consist of a radio transmitter, sensors, limited micro-controller and memory. Their

goal is to monitor (potentially large) environments for various physical phenomenons

like temperature, humidity, movement or light intensity. WSNs find use in agriculture,

ecology, military, building or industrial monitoring and automation, etc. The communi-

cation radius of the sensor nodes is often limited to tens of meters. Thus, the collected
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measurements are routed towards a base station (BS) for further processing from node

to node on hop-by-hop basis.

Since the sensor nodes are often deployed in open or even hostile environments

and also given by the nature of wireless communication and other limitations, WSNs

are highly vulnerable to various kinds of attacks. These attacks can range from passive

eavesdropping to active interfering. An attacker can capture and reprogram or replace a

sensor node with malicious one or just insert his own malicious device into the network.

These devices can be believed as benign by other legal sensor nodes.

In our research, we aim at detecting active attacks by intrusion detection systems

(IDSs). Several IDSs have been proposed to detect different attacks on WSNs. In this

paper, we focus on a distributed IDS, where sensor nodes themselves monitor the overall

network area by promiscuous listening on the transmissions among their neighbors

[SMR+05].

However, most of proposed IDSs are designed for a specific purpose or topology

and their proper reconfiguration for different purposes or topologies is not discussed

or left to the user. Moreover, the limited sensor nodes’ resources are also often left

unresolved. In a recent work [SSMS14], we proposed and evaluated an optimization

framework consisting of a simulator and an optimization engine that can optimize IDS for

particular needs. The optimization engine designs IDS solutions that are evaluated by

a network simulator and simulation results are provided back to the optimization en-

gine for further optimization. This process continues until sufficiently good results are

found. We experienced a very good performance of evolutionary algorithms to design

new IDS configurations. For the simulations, we used the MiXiM framework [KSW+08]

based on the widely used OMNeT++ network simulator. MiXiM enables precise and

quite accurate simulations, as we investigated in [SSM11].

In [SSSM13], we demonstrated the benefits of multiobjective evolutionary algo-

rithms (MOEAs) on a simple IDS where no collaboration among the sensor nodes was

performed. The main benefit of MOEAs is elimination of limits given by single-objective

evolutionary algorithms, where all objectives like memory consumption and IDS accu-

racy have to be blended into a single fitness function with given weights specified by

a network operator before the optimization process. In case of changes in the require-

ments for the IDS’s performance (giving more weight to one objective and less to an-

other one), the evolution process has to be run again. Moreover, finding suitable weights

for the fitness function can be a very hard task. Using MOEAs, the network operator
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can choose any IDS setting from the Pareto front1 [Tal09] approximation and change the

selection to another optimized one any time according to current requirements. We eval-

uated 48 different MOEA’s configurations for two widely used algorithms – NSGA-II

[DPAM02] and SPEA2 [ZLT01]. For each of the evolution results, we compared con-

vergence and diversification of the found solutions with optimal results found using

exhaustive search. We also compared time consumption.

In this technical report, we extend our paper [SMS16] by details of experiment set-

tings and results. In [SMS16] and this report, we propose and – based on the previous

experience [SSSM13] – optimize two more complex collaborative detection techniques

that utilize communication between IDS nodes before making a decision about a moni-

tored node.

The contributions of this work are threefold:

1) We provide a novel technique detecting delay attack where an attacker intentionally

delays ongoing packets. This detection technique is optimized using an enhanced

IDS optimization framework.

2) We propose and optimize a collaborative IDS for selective forwarding attack based

on [KDF07] and compare it with simple IDS evaluated in [SSSM13]. Various attacker

strategies are discussed. We explore optimized IDS performance in case of changes

in the number of malicious sensor nodes.

3) We enhance and evaluate a complex IDS optimization framework for WSNs with dis-

tributed simulations. MOEA is used to optimize the IDS and we show that MOEAs

can be efficiently used even without a computation cluster.

Furthermore, we point out a non-trivial bug that we have found in ParadisEO

[INR13, LJT11], a frequently used software framework for metaheuristics. The bug was

reported to the authors.

The paper is organized as follows. In Section 2, we discuss related work. The op-

timized detection techniques and their parameters are presented in Section 3. Experi-

ment settings are described in Section 4 and the approach that we used to evaluate the

1Pareto front is a set of non-dominated solutions with respect to all objectives. Thus, a network oper-

ator can easily choose between a solution A with a better IDS accuracy but higher resource consumption

or solution B with a worse IDS accuracy but consuming lower resources. Solution C, that is dominated

by A and B in all objectives is dominated and, thus, is not a member of the Pareto front.
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solutions found by evolution are described in Section 5. Results of the experiments are

presented and discussed in Section 6. The paper is concluded in Section 7.

2 Related Work

Selective forwarding attack has been among the most discussed attacks in WSNs in last

years. Karlof et al. in [KW03] introduced selective forwarding attack in WSNs and

discussed the possibilities of an attacker to place a malicious sensor node on a path

between data source and base station. Silva et al. in [SMR+05] defined a “retransmis-

sion rule” as listening to a packet by an IDS whether it was forwarded by monitored

sensor node or not. Krontiris et al. in [KDF07] set a threshold value for the percent-

age of packets dropped to 20%. Another proposals of detection techniques for selective

forwarding attack where the parameter setting is left unresolved can be found, e.g., in

[HH08, TACC09]. To the best of our knowledge, no work has been published on such

a complex parameter optimization for collaborative detection of selective forwarding

attack.

The delay attack detection has not been discussed very much either. Silva et al. in

[SMR+05] defined a “delay” rule as a timeout before which a retransmission by mon-

itored sensor node must occur. Liu et al. in [LCC07] used the forwarding delay time

measurement for their complex insider detection technique, but its parametrization was

left unresolved. To the best of our knowledge, we are the first presenting complex col-

laborative detection technique aimed at the delay attack detection.

The optimization problem in different aspects of WSNs has been considered in sev-

eral papers. Anjum et al. in [ASSS04] presented strategy on optimal placement of

IDS nodes. Two types of sensor nodes and specific clustered topology was assumed.

Cheng et al. in [CCL04] proposed the energy-aware node placement of sensor nodes

and the relay sensor node placement was considered in [CDWX07]. Khanna et al. used

single-objective evolutionary algorithms for several optimization issues in WSNs in

[KLC06, KLC07, KLC09]. In [KLC09], the placement problem of nodes monitoring intru-

sion was optimized. In [SSMS14], we presented a framework aimed at the optimization

of intrusion detection system in terms of detection accuracy and resource consumption.
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3 Detection Techniques

In this section, we describe details of detection techniques that we evaluate in this pa-

per. All proposals are aimed at distributed detection where an IDS runs on each sensor

node deployed in a WSN. Thus, all network area can be monitored to detect malicious

behavior by sensor nodes themselves. On the other hand, the IDS consumes additional

sensor nodes’ resources like memory.

First, we present a non-collaborative technique detecting selective forwarding at-

tack that we optimized in [SSMS14]. Executing the selective forwarding attack, mali-

cious sensor nodes forward only a fraction of received packets. Second, we present a

more complex collaborative detection technique evaluated in this work aimed at the

same kind of attack. The idea behind the collaborative approach basically comes from

[KDF07] regarding to voting scheme and time windows. However, we enriched the col-

laborative approach presented in [KDF07] by parameters “voting threshold” and “min-

imum received votes”. Finally, we propose a novel collaborative technique detecting

delay attack [SMR+05] where the forwarded packets are intentionally delayed by the

malicious nodes.

We use the following notations to explain the functionality of the IDS [SSMS14]:

Notation 1. The set A = {a1, ..., anm} is a set of all malicious nodes in a network.

Notation 2. The set C = {c1, ..., cnb
} is a set of all benign nodes in a network.

Notation 3. The function x : N → N takes a sensor node index as an argument, and returns a

number of the neighbors that consider this node benign.

Notation 4. The function y : N → N takes a sensor node index as an argument, and returns a

number of the neighbors that consider this node malicious.

Notation 5. The function n : N → N takes a sensor node index as an argument, and returns a

number of the neighbors of this node.

Neighbor bk ∈ C ∪A of a node cj ∈ C is each node such that cj overheard at least one

packet from bk since the beginning of the WSN operation time.

Monitored neighbor bl ∈ C∪A of a node cj ∈ C is such a neighbor of the node cj that the

IDS running on the node cj collects the statistics of the packet forwarding of the node

bl. The selection process for the set of the monitored neighbors is described in Section

3.2.
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Solution s is a specific configuration of the IDS in a form of a detection technique and

specific values given to each of the parameters used by that technique.

Ranges of values of IDS parameters discussed in the following text are then dis-

cussed in more detail in Section 5.

3.1 Objectives

We use the three following. All the objectives are minimized.

Objective function 1. The number of false negatives (fn) of a solution s is calculated as

follows:

fn(s) =
1

|A|
∗
∑
ai∈A

x(ai)

n(ai)
. (1)

The values of fn range from 0 to 1. If every malicious node in the network is correctly

detected by all of its neighbors, fn is equal to 0 and if none of malicious nodes is detected

by any of its neighbors, fn equals to 1.

Objective function 2. The number of false positives (fp) of a solution s is calculated as

follows:

fp(s) =
1

|C|
∗
∑
ci∈C

y(ci)

n(ci)
. (2)

The values of fp range from 0 to 1. If every benign node in the network is considered

benign by all of its neighbors, fp is equal to 0 and if all benign nodes are considered

malicious by all of its neighbors, fp equals to 1.

Objective function 3. The consumed memory (mem) in a solution s is calculated as fol-

lows:

mem(s) = 8 ∗ p1 + 16 ∗ p2, (3)
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8 bytes are required for every monitored neighbor (4 bytes for node ID, 2 bytes for

PR counter and 2 bytes for PF counter) and 16 bytes are required for one slot in the

buffer (4 bytes for source address, 4 bytes for receiver address, 4 bytes for destination

address in a case of multiple base stations in the WSN and 4 bytes for unique ID of a

packet). The memory demands come from our real application (ProtectLayer for WSN

[MSS+15]).

The values of mem range from 0, where the IDS is potentially switched off, to 288

bytes for our upper bounds of p1 = 30 and p2 = 3 used for selective forwarding attack,

respective 400 bytes for our upper bounds of p1 = 30 and p2 = 10 used for the delay

attack.

3.2 Non-collaborative Detection of Selective Forwarding Attack

In [SSSM13], we evaluated MOEAs on a simple IDS detecting selective forwarding at-

tack. An IDS was running on each sensor node and continuously monitoring its own

sent and also overheard packets addressed to all monitored sensor nodes whether they

were forwarded or dropped by those monitored sensor nodes.

The basic principle is illustrated in Figure 1. The black dots represent sensor nodes

that are placed within communication range of sensor node bi ∈ C ∪ A and, thus, can

monitor bi for selective forwarding attack. However, the number of monitored neigh-

bors is limited to p1 (max monitored nodes), not only due to memory reasons – the IDS can

have incomplete information about furthest neighbors (the IDS nodes can be interfered,

far from the monitored node or hidden behind an obstacle) causing additional false

positives. Thus, each IDS monitors at most p1 nearest neighbors (according to received

signal strengths). The arrows represent routing directions of the packets – bi forwards

all received packets to a parent node bj ∈ C ∪A. The IDS maintains a table, where each

of p1 rows corresponds to a certain monitored node. The table contains the number of

packets received (PR) and forwarded (PF) by each monitored node.

The IDS stores all overheard packets addressed to all monitored neighbors in a single

buffer limited to p2 packets (buffer size). Each time a packet P addressed to a monitored

node bi is overheard by the IDS, the PR counter of bi is incremented and packet P stored

in the buffer. Once the node bi forwards the packet P, the IDS increments PF of the node

bi and packet P is removed from the buffer. In case the packet P is being the oldest one

and the buffer is full, it is removed from the buffer without incrementing the PF counter.
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Figure 1: Non-collaborative intrusion detection.

Finally, during the evaluation phase, a sensor node bi is considered as attacker by

the IDS node if two following conditions hold:

(i) The IDS node has overheard (or sent) at least p3 packets (min received packets) ad-

dressed to bi.

(ii) The ratio of forwarded and received packets (PF/PR) is lower than p4 (detection

threshold).

3.3 Collaborative Detection of Selective Forwarding Attack

In this work, we demonstrate the usability of the enhanced optimization framework

incorporating MOEAs on two more complex detection techniques, where the IDS nodes

cooperate on decision, whether a monitored node bi ∈ C ∪A is malicious or not.

We extended the non-collaborative IDS in the following way. The monitored nodes

are not evaluated by the IDS nodes at the end of the simulation. Instead, the simulation

time is divided into windows of size p5 (time window). The time windows are of the

same fixed size among all the IDS nodes, but they are asynchronous – the first window

of each IDS node is started randomly within the time interval of p5. At the end of each

time window, all monitored neighbors are evaluated by the IDS node and if an attack

was detected, a voting process can be executed.

An example situation is depicted in Figure 2 where an IDS node ck locally considers

a monitored node bi malicious since the end of window marked as “Attack!” (where

ck observed too many dropped packets) in Figure 3 until the end of the whole WSN

operation time. This decision is based on the same principle as for non-collaborative IDS

discussed in Section 3.2. However, to label the node as malicious, a “global” decision

has to be made. Thus, ck broadcasts a voting request to its neighbors (arrows from

ck point the neighbors of ck that can also monitor node bi). Each of the asked nodes

that also monitors node bi answers at the end of its own time window. If an asked
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Figure 2: Collaborative intrusion detection.

Figure 3: Time windows. Since the end of the window in which the attack was detected,

node ck always vote positively about node bi. Node bi can be globally considered mali-

cious by ck since the end of window following the one in which the attack was detected

if voting result is positive.

IDS node consider bi as an attacker (either locally or globally), it answers positively,

otherwise negatively. Node ck waits the following time window to collect the responses.

Finally, the monitored node bi is considered an attacker globally by ck if two following

conditions hold:

(i) At least p6 votes (min votes received) were received.

(ii) The ratio of positive and all responses is at least p7 (voting threshold).

The collaborative approach should eliminate false positives. IDS nodes that, e.g.,

cannot overhear all forwarded packets can falsely label a monitored node as malicious.

In the collaborative approach, a voting among other neighboring IDS nodes has to be

performed. Other IDS nodes participating in the voting can deny the false decision of

IDS node that has invoked the voting. At least some of the IDS nodes participating in

the voting are placed at better positions overhearing the outgoing packets of monitored

node more precisely. On the other hand, no or only negligible increase of false negatives

is assumed since each benign node participating in the voting can recognize dropping

easily.

9



3.4 Collaborative Detection of Delay Attack

Time related attacks result in long delays and traffic imbalance [RLG08]. We believe

that a WSN should guarantee the delivery time for some applications (e.g., movement

monitoring or fire detection). In [SMR+05], the delay detection rule is defined as follows:

“The transmission of a message by a monitor’s neighbor must occur before a defined

timeout”. We adapt this rule to our IDS detecting delay attack.

A technique that is similar to that one used for selective forwarding attack can be

extended to detect intentional delays. Using the buffering technique discussed above,

a packet can finally be considered forwarded even though some malicious node delayed

its transmission. If the size of the buffer is not exhausted, the monitored packet can be

stacked in the buffer for a long time and finally forwarded by the monitored neighbor

with a big delay before being removed from the buffer by the IDS. Thus, such a packet

is undetected for selective forwarding attack, yet useless for a base station if real-time

sensing is required.

An important issue to consider is how long the IDS should wait until the packet is

considered delayed and how many packets have to be delayed to consider a monitored

neighbor as delay attacker. We suggest to assign a time attribute to each of the buffered

packets. If a predefined timeout passes, the packet is considered delayed. As for the

selective forwarding attack, an alert is produced when p5 time units pass and the ratio

of delayed packets is higher than p4. In such a case, majority voting scheme is applied for

decision about delay attack.

Our proposed and evaluated detection technique for delay attacks is an extension of

the selective forwarding attack detection technique specified in Sections 3.2 and 3.3. We

incorporate another parameter p8 that is a timeout when a packet in the IDS buffer is

marked as delayed.

4 Experiment Settings

In this section, we describe experiment settings and optimization scenarios that we use

for evaluation of our IDSs. We also provide simulation settings of the MiXiM simulator

[KSW+08], wireless channel model used and its parametrization. Basically, the simula-

tion models are set up according to [SSSM13] to enable a comparison.

Note that the simulated WSN evaluated in this work is near-realistic application

inspired by the mobile police unit scenario in [MSS+15]. Each sensor node sends peri-

10



odically every 1 second “still alive” packets that can be either dropped or delayed by

malicious sensor nodes. The main goal of our optimization framework is to optimize

the IDS for given specific scenario (application, topology, environment, etc.), not to pro-

vide a general IDS setting for any WSN. We assume a role of a network administrator

that is responsible for the specification of the target WSN before optimizing according

to the reality. However, attacker strategies that also have to be simulated, can hardly

be predicted by the network administrator. Our approach to the attacker strategies is

discussed in Subsection 4.3.

In our case, we simulate a WSN consisting of sensor nodes equipped with the

CC2420 transceiver (widely used by MICAz and TelosB platforms) in an open envi-

ronment. The description of settings of different simulation models follows:

4.1 Wireless Channel and Low Layers Models

All the following settings correspond to the experiments presented in [SSSM13].

An open changing environment is simulated using the log-normal shadowing model

[Rap01] that is the most widely used wireless channel model among the simulators

[SSM11]. The pass loss exponent representing the signal propagation was set up to 2

(outdoor environment). The variations in received signal are reflected by a Gaussian

random variable with zero mean and standard deviation set up to 2. The time interval

of the changes was set up to 0.001 s.

Protocol CSMA-CA according to the IEEE 802.15.4 standard is used on data link

layer.

On the physical layer, the radio model represents the CC2420 transceiver that is com-

pliant to the IEEE 802.15.4 standard and is used by MICAz and TelosB sensor nodes. The

transmitting power is set up to -25 dBm (0.00316227766017 mW) for all sensor nodes.

4.2 Topology and Routing

We build on the topology and routing same as in [SSSM13], so that we are able to com-

pare the collaborative and non-collaborative IDS results. The network consists of 250

uniformly distributed sensor nodes deployed in an area of 200 x 200 meters. The aver-

age area for one node is 160 m2 and the distance between two nearest neighbors is 12.65

m on average. During the simulation, a node bj ∈ C ∪ A has 41 neighbors (nodes from

which bj heard at least one packet during the simulation) on average.
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Figure 4: Topology of the evaluated WSN. The sensor nodes are represented by circles

while the base station is represented by red diamond. The black circles represent mali-

cious sensor nodes for the scenario with 2% malicious sensor nodes and together with

the gray circles for the scenario with 10% malicious sensor nodes.

The routing tree is static with longest branches of 8 hops. The topology and the

routing tree are depicted in Figure 4.

4.3 Attacker Strategies

We distinguish the attacker strategy into the three following categories – 1) behavior

of a malicious node; 2) patterns in deployment of malicious nodes; and 3) number of

deployed malicious nodes.

4.3.1 Attacker behavior

Ongoing packets can be dropped (delayed) purely randomly. Random dropping can

be parametrized by the percentage of packets dropped. A network administrator spec-

ifies a percentage of packets that have to be dropped2 (delayed) to consider a node as

malicious and this behavior is then simulated during the optimization process. If the

2Some of the packets can be lost (delayed) by interference, other aspects of unreliable wireless com-

munication or by malfunction, not by maliciousness.
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percentage of dropped (delayed) packets is lower, the behavior is acceptable. Other-

wise, the malicious nodes are detected even more reliably.

Other strategy can be dropping (delaying) the packets in a bulk – a malicious node

drops (delays) some number of consecutive packets but from the longer perspective,

the percentage is below the IDS threshold. (Not only) to detect this kind of attack,

we introduce the time windows in our IDS. Dropping (delaying) several consecutive

packets leads to a dropping (delaying) above a given IDS threshold within a specific

time window in which the maliciousness can be detected. A network administrator

has to decide on the maximum window size to detect such a consecutive dropping

(delaying).

Finally, an attacker can drop the packets based on their contents (importance). Re-

garding to the example of mobile police unit scenario discussed above, an attacker can,

e.g., drop a packet that informs the base station about presence of an intruder. To detect

this kind of attack, we encourage a network administrator to use an IDS with a sepa-

rate buffer and table for such important packets. This would mean additional (approx.

doubled) requirements on the amount of memory used by the IDS but the optimization

process would be analogous.

4.3.2 Deployment of malicious nodes

An attacker can deploy malicious sensor nodes into a WSN in specific “patterns”

[JSM14, YX06]. Apart from random deployment considered in this work and most of

other publications, the malicious nodes can be deployed to all neighboring places in a

specific area (e.g., around the base station), around a line segment on which an attacker

passed through the environment of WSN, etc. These deployment strategies are out of

the scope of this paper and we plan to elaborate on them in future. However, to pro-

vide robust IDS solutions for various deployment strategies, all such strategies should

be simulated for each IDS setting considered during the evolution. Performance of each

IDS setting in each of the deployment strategy could be then, e.g., averaged during the

evolution.

4.3.3 Number of deployed malicious nodes

The number of present malicious nodes can vary for each deployment strategy. For this

reason, we elaborate on the changes of IDS behavior in cases where the percentage of
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malicious nodes is different during the simulation. The analysis can be found in Section

6.1.2.

4.3.4 Our test case

In this work, we assume presence of 5 (2%) and 25 (10%) randomly placed malicious

sensor nodes that drop randomly 50% of packets that should be forwarded for selective

forwarding attack. Evaluating delay attack, the same sensor nodes delay all packets

randomly within interval < 0, 5 > seconds. Since the delay detection is similar to the

selective forwarding attack detection, we consider only the case with 5 malicious sen-

sor node for the delay attack. Detailed topology illustration including malicious nodes

placement can be found in Figure 4.

Note that we do not assume any “edge” sensor node to be an attacker since it can

neither be detected by the IDS (no packets are addressed to these nodes), nor efficiently

perform selective forwarding or delay attack (these nodes only produce their own pack-

ets).

5 IDS Optimization

In this section, we describe two methods that we use to compute Pareto front approxi-

mations – MOEA and sampling. MOEA is used as an efficient optimization tool. Using

sampling, we show that MOEA can find comparable or even better results than sam-

pling through all the objective space in much shorter time. Results of both methods are

compared in Section 6.

5.1 Optimization Using MOEA

We optimize the IDS parameters using MOEA to efficiently speed up the process of

finding good Pareto front approximation as dicussed in Section 6. For both detection

techniques, we evolved the IDS parameters with the widely used NSGA-II algorithm

[DPAM02]. The evolution parameters were set up in two ways, their specific values can

be found in Appendix A.

During the evolution running on a server, we distribute the evaluation of all the indi-

viduals in the population in a form of simulation configurations to multiple computers
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Name Description Range Step Sampling

p1 Maximum monitored nodes 〈1, 30〉 1/3 3, 9, 27

p2 Buffer size 〈1, 3〉/〈1, 10〉 1 1, 2, 3/3, 6, 9

p3 Minimum received packets 〈1, 30〉 1/5 1, 15, 30

p4 Detection threshold 〈0.05, 0.95〉 / 〈0.1, 0.9〉 0.05/0.1 0.25, 0.5, 0.75

p5 Time window 〈10, 300〉 10/30 10, 150, 300

p6 Minimum received votes 〈1, 10〉 1/2 1, 5, 10

p7 Voting threshold 〈0.1, 1〉 0.1 0.25, 0.5, 0.75

p8 Delay timeout 〈1, 5〉 1 1, 3, 5

Table 1: The list of IDS. If multiple values are presented and divided by “/”, the first

values were used for the detection of the selective forwarding attack and the second

values for the delay attack detection.

using BOINC distributed computing platform [And01]. Once all simulation results are

uploaded to the server, new generation is produced.

5.1.1 Parameter Ranges

In Table 1, we summarize all eight parameters, their maximum and minimum values,

step and sampling values used for sampling discussed later.

5.1.2 ParadisEO and Bug Discovered

For the evolution optimization, we use a widely used framework for metaheuristics –

ParadisEO [INR13, LJT11]. The framework provides various techniques for evolution

algorithms including MOEA. Using ParadisEO, one can easily switch among different

algorithms like NSGA-II, SPEA2 or IBEA.

During our early experiments, we encountered an unexpected low diversity of the

resulting population. Based on this observation, we evaluated the population selec-

tion during the optimization process step-by-step after each generation. A behavior

inconsistent with the definition of NSGA-II was encountered – disappearance of non-

dominated solutions that evinced extreme values of any of the objectives. Note that

these solutions should definitely preserve in the population based on NSGA-II diver-

sity criterion. This observation led us to a thorough investigation and discovery of a

wrong comparison of solutions that are in the same “dominance” front in ParadisEO.
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Figure 5: Sampling Pareto front approximation for the collaborative selective forward-

ing attack detection compared to the true Pareto front for the non-collaborative selective

forwarding attack detection. All the solutions found by sampling for the collaborative

detection dominate the solutions found by exhaustive search for the non-collaborative

detection.

This bug significantly influences selection of all population members – not only the so-

lutions at the edges of current Pareto front approximation. More details can be found in

Appendix B.

5.2 Sampling

In order to show that evolution found good enough results, we compared the results

found by MOEAs with a true Pareto front found using exhaustive search on multiple

computers in [SSSM13]. However, we are not able to compute all possible settings for

this more complex IDS with additional parameters even if we can run about 200 sim-

ulations in parallel in our computational cluster. The exhaustive search would require

148, 770, 000 simulation runs for the scenario with the selective forwarding attack and

2, 479, 500, 000 for the scenario with the delay attack if all possible settings searched by

evolution would be evaluated. One simulation takes approx. 5− 8 minutes.
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We decided to sample the search space in the following way. For each parameter

pi, where i ∈ {1, ..., 7} for selective forwarding attack and i ∈ {1, ..., 8} for delay attack,

we chose three carefully considered “sampling” values presented in Table 1. The selec-

tion is based on experience and results obtained during early experiments. Then, we

iterate over all parameters p1, ..., p7 for selective forwarding attack, respective p1, ..., p8

for delay attack. For each of the parameters, we evaluate all settings within their ranges

using steps provided in Table 1. For each value of each parameter, we evaluate all “sam-

pling” settings of all other parameters. Using this approach, we reduce the number of

simulations to 84, 564 for selective forwarding attack and to 122, 472 for the delay attack.

Having the set of solutions obtained from aforementioned sampling, we extract only

those solutions that are not strictly dominated by any other solutions within this set.

We call this extracted set Sampling Pareto front approximation. This set is compared to

Pareto front approximations found by evolutions. Note that finding Sampling Pareto

front approximation is much more computationally demanding than finding Pareto front

approximations using evolution as discussed in Section 6.

5.2.1 Parameter Ranges

In Table 1, we summarize all eight parameters, their maximum and minimum values,

step and sampling values.

5.2.2 Coverage Metric

As mentioned above, we are not able to compare the Pareto front approximations found

by different optimization techniques (sampling or evolution) with the true Pareto front.

Thus, we use a coverage metric that was introduced by Zitzler et al. in [ZT99] to com-

pare solutions found by two different optimization processes. This metric is used to

compute the percentage of solutions found in Pareto front approximation A that are not

dominated by any solution found in Pareto front approximation B, and vice versa. See

a sample comparison in 6.1.1.

6 Experiment Results

In this section, we provide experimental results of the optimized IDSs that we obtained

both using the sampling and evolution. We also compare the performance of IDS de-
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Figure 6: Results for detection of selective forwarding attack (a) and delay attack (b)

found by evolution compared to results of Sampling Pareto front approximations.

tecting selective forwarding attack presented in [SSSM13] with collaborative version

presented in this paper (same metrics and simulation setting were used).

6.1 Selective Forwarding Attack

First, we present results for detection of selective forwarding attack found by sampling

(the Sampling Pareto front approximation3). We compare the results with the true Pareto

front of non-collaborative IDS to show the improvements of IDS performance. In Fig-

ure 5, we show different views of the optimized solutions in the three-dimensional ob-

jective space.

In Figure 5 (a), we show that all sampled non-dominated solutions found for collab-

orative IDS dominate the Pareto optimal solutions found for non-collaborative IDS. In

Figure 5 (b), we confirm the assumption that collaboration among the IDS nodes can

significantly decrease the number of false positives. This reduction is caused by the fact

that a node can be labeled as attacker only if a consensus among several IDS nodes is

made. Also, a decrease of false negatives can be observed from the same view. It is

caused by dividing the monitoring time into smaller windows, where, in each of them,

a potential dropping can be recognized and agreed among the neighbors. The view

depicted in Figure 5 (c) shows that even better solutions regarding number of false

positives are reachable even if the same amount of memory is allocated for the IDS.

However, the solutions with a higher number of false positives come with lower false

negatives. Finally, the view in Figure 5 (d) confirm the assumption that collaborative

3We extracted 201 non-dominated solutions out of all 84, 564 samples.
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decision making does not increase number of false negatives. In Figures 5 (c) and (d),

we can see that higher memory consumption caused particularly by a higher number

of monitored neighbors decrease false negatives on one hand (more neighbors being

monitored means also higher number of truly recognized droppers), but increase false

positives on the other hand (if a neighbor is not monitored, it can neither be labeled as

malicious one truly, nor falsely).

Evolution can speedup the process of finding good enough solutions or solutions

that even dominate the solutions in the Sampling Pareto front approximation. We present

results of two multiobjective evolution runs (marked as “Evo #1” and “Evo #2”) set

according to the experience from [SSSM13]. The evolution settings can be found in

Appendix A.

The solutions found by evolution for the selective forwarding attack are depicted in

Figure 6 (a). 13, 502 simulation runs were needed for the “Evo #1” and 23, 558 for “Evo

#2”. However, the evolutions converged to the found results set already after approx.

100 generations, that would reduce the number of simulations needed to about a half.

We found out that most solutions found by evolution dominate the solutions obtained

in the Sampling Pareto front approximation set, especially regarding to the number of false

positives. For detailed results, see Appendix A.

6.1.1 Coverage Metric

Using coverage metric, we computed that “Evo #1” found 94 out of all 144 solutions

(65%) that are not dominated by any solution of “Evo #2”. On the other hand, “Evo #2”

found 126 out of all 153 solutions (82%) that are not dominated by any solution of “Evo

#1”. Comparing the two evolution runs, we can conclude that “Evo #2” found “better”

Pareto front approximation at the cost of higher number simulation runs.

To strengthen the observation that evolution outperformed sampling not only re-

garding the time demands and observation in Figures 6 and 8, we use the coverage

metric also to compare both evolution runs with the sampling. The results are the fol-

lowing. Any of 144 solutions found by “Evo #1” is not dominated by any solution found

by sampling (100%) and only 3 out of 153 solutions (98%) are dominated for “Evo #2”.

However, 45 out of 201 solutions (22%) and 39 out of 201 solutions (19%) found by the

sampling are not dominated by any solution found by “Evo #1” and “Evo #2”, respec-

tively. We found some of these solutions behind the “edges” of Pareto front approxi-

mations of “Evo #1” and “Evo #2” that is an advantage of the sampling comparing to
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Evo #1 Evo #2 Sampling

Evo #1 – 65% 100%

(94/144) (144/144)

Evo #2 82% – 98%

(126/153) (150/153)

Sampling 22% 19% –

(45/201) (39/201)

Table 2: Coverage metric results for the selective forwarding attack. For each Pareto

front approximation in a row, the values specify the number of found solutions that

are not dominated by any solution within the result set of Pareto front approximation

specified in the column.

evolution. More specifically, sampling found slightly lower minimal values of the false

negatives (0.096) in comparison with the evolution (0.112 and 0.101 for “Evo #1” and

“Evo #2”, respectively). Nevertheless, we consider this difference negligible. All results

obtained using coverage metric are summarized in Table 2.

6.1.2 Comparison of Results For 2% And 10% Malicious Sensor Nodes

As we outlined in Subsection 4.3, we analyze the influence of increased or decreased

percentage of malicious sensor nodes on IDS performance.

In Figures 7 (a-c), we show how the performance of IDS settings optimized for WSN

with 2% malicious sensor nodes4 changes in a WSN with 10% malicious sensor nodes.

Figures 7 (d-f) show how the IDS performance of IDS optimized by evolution for 10%

malicious sensor nodes5 changes in the WSN with 2% malicious sensor nodes.

The memory consumed by the IDS is same for both testing scenarios (the IDS is

configured in the same way and, thus, the memory demands are constant). In Figures

7 (b) and (e), we can see that changes in percentage of malicious sensor nodes (both up

and down) have negligible impact on number of false positives. Some improvement

of false positives if the percentage of malicious nodes is higher (better observable for

solutions with higher numbers of false positives) is caused by higher ratio of “edge”

sensor nodes (that can never be marked as malicious by the IDS – see Subsection 4.3.4)

and decreased number of other benign sensor nodes.

4Pareto front approximation optimized by “Evo #2” (see Figure 6 (a)).
5157 non-dominated solutions were found using “Evo #2”.
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Figure 7: Influence of changed percentages of malicious sensor nodes on performance

of each optimized IDS setting. Green crosses represent IDS performance in an environ-

ment for which the IDS was optimized (2% for Figures (a-c) and 10% for Figures (d-f)).

Red circles represent IDS performance in an environment with increased (Figures (a-c))

and decreased (Figures (d-f)) percentage of malicious sensor nodes. Lines connect equal

IDS settings.
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The most significant change in IDSs performance in case of increased percentage of

malicious sensor nodes is higher number of false negatives (see Figures 7 (a) and (c);

Figures 7 (d) and (f) depict opposite trend for decreasing percentage of malicious sen-

sor nodes). Investigating the number of false negatives on “per-node” basis, we found

out that malicious sensor nodes close to the edges of the WSN in the situation with in-

creased percentage of malicious sensor nodes evince higher number of false negatives.

Such “close-to-edge” malicous sensor nodes cannot be detected as malicious by suf-

ficient number of neighbors6. In some IDS settings, we encountered individual false

negatives differing in range of approx. 〈0.2, 1〉 based on the position in the WSN. To

enable more reliable detection of “close-to-edge” sensor nodes, we suggest (if possible

in real WSN) to decrease the number of the voting threshold and possibly the number

of the minimum received votes individually for neighboring IDSs.

6.2 Delay Attack

In this section, we present non-dominated results for detection of delay attack found

both by the Sampling Pareto front approximation and evolution.

In Figure 6 (b) we can see that the number of solutions found by Sampling Pareto front

approximation7 is reduced comparing to selective forwarding attack. It is caused by the

fact that we were not able to compute such “dense” sampling since the search space is

much larger for delay attack and hence we lost some non-dominated solutions. Since

the basic principle of delay attack detection is similar to the selective forwarding attack

detection, we can observe a similar pattern in Figure 6 and in all views in Figure 9 in

Appendix A.

We present results of evolution runs “Evo #1” and “Evo #2” that were set in the same

way as for the selective forwarding attack detection. Also in this case, the evolution

found results that dominate the results found by the Sampling Pareto front approximation.

Only 13, 539 simulation runs had to be executed for “Evo #1” that is about nine times

less than for the “sampling” and 23, 953 simulation runs were required for “Evo #2”

(about five time less than for sampling). For detailed results, see Appendix A.

6These sensor nodes receives, at extreme case, packets only from one descendant. Such traffic can

be overheard by less (if any) number of neighbors comparing to a sensor node placed closer to the BS

receiving packets from several directions.
7We extracted 139 non-dominated solutions out of all 122, 472 samples.
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Evo #1 Evo #2 Sampling

Evo #1 – 61% 97%

(72/118) (115/118)

Evo #2 79% – 99%

(112/141) (139/141)

Sampling 22% 14% –

(30/139) (19/139)

Table 3: Coverage metric results for the delay attack. For each Pareto front approxima-

tion in a row, the values specify the number of found solutions that are not dominated

by any solution within the result set of Pareto front approximation specified in the col-

umn.

6.2.1 Coverage Metric

Such as for the selective forwarding attack, we found out that evolution outperformed

sampling and “Evo #2” provided better results than “Evo #1”. Since the observations

are similar to observations discussed in 6.1.1, we only summarize all obtained results in

Table 3.

7 Conclusion

Selective forwarding and delay attacks are quite simple but effective attacks on WSNs.

Especially the selective forwarding attack and its detection have been often discussed

by the community during the last decade. Several detection techniques have been pro-

posed, but to the best of our knowledge, none of the works discussed parametrization

for a specific application, topology, environment or attacker strategy.

In our work, we propose two highly parametrized detection techniques for selective

forwarding and delay attacks and showed the influence of careful parameter settings

on the IDS performance. We evaluated the IDSs using extensive simulations and opti-

mized using two approaches: 1) computationally demanding sampling, where we uti-

lized our computational cluster where we computed up to 250 simulations in parallel;

and 2) multiobjective evolutionary algorithms that speedup the optimization process in

such a way that the results can be computed also on a single computer in reasonable
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time. We also discussed various attacker strategies and evaluated the impact of changes

in deployment of malicious sensor nodes in the WSN on the IDS performance.

We believe that the approach where we can choose from a set of non-dominated

solutions based on current WSN application, security and other requirements anytime

after the optimization process can be easily adapted to practical applications. How-

ever, the optimization should be performed on a carefully configured simulator with an

accurate model of target WSN.

Both proposed detection techniques can be easily combined into a single IDS distin-

guishing selective forwarding and delay attack.
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Figure 8: Results for detection of selective forwarding attack found by evolution com-

pared to results of Sampling Pareto front approximation.

In Figure 8 (a), we show that solutions found by evolution are similar or even dom-

inate the solutions found by the Sampling Pareto front approximation. Figure 8 (b) clearly

shows that evolution can find solutions that strictly dominate solutions found by the

Sampling Pareto front approximation with regards to the number of false positives and

false negatives. In Figure 8 (c), we can see that some of the solutions found by evolution

also strictly dominate the solutions found by Sampling Pareto front approximation with

regards to the number of false positives and consumed memory. Finally, in the view de-

picted in Figure 8 (d), we can see that the solutions are equally distributed comparing

to the Sampling Pareto front approximation with regards to the number of false negatives

and consumed memory.

Figure 9 shows the three-dimensional objective space of the found non-dominated

solutions for the delay attack. Comparing the selective forwarding attack, the found

results come with lower number of false positives both for the Sampling Pareto front

approximation and evolution. To reach comparable number of false negatives, higher

memory consumption is required. This demand is caused by higher number of packets

stored in the IDS buffer. With regards to the consumed memory, the distribution of

found non-dominated solutions come with similar patterns. The views in Figures 9 (b-

28



400

Memory

(a) Memory / FN / FP view

200
00

0.5
FN

0

0.1

0.2

0.3

1

F
P

F
P

0

0.05

0.1

0.15

0.2

0.25

FN

0 0.2 0.4 0.6 0.8 1

(b) FN / FP view

Sampling Pareto

front approximation

Evo #1

Evo #2

F
P

0

0.05

0.1

0.15

0.2

0.25

Memory

0 100 200 300 400

(c) Memory / FP view

Memory

0 100 200 300 400

F
N

0

0.2

0.4

0.6

0.8

1
(d) Memory / FN view

Figure 9: Results for detection of delay attack found by evolution compared to results

of Sampling Pareto front approximation.

d) show that the solutions found by evolution are equally distributed comparing to the

Sampling Pareto front approximation.

B Bug in ParadisEO

As discussed in Subsection 5.1.2, we revealed a bug in ParadisEO – framework for meta-

heuristics [INR13, LJT11], the latest version 2.0.1.

The bug was related to wrong evaluation of the individuals for diversification

in the population before selection in each generation. The erroneous part was

the calculation of the distances to closest neighbors for each individual, because

of incorrect sorting. The bug was found in the header file moeoFrontByFront-

CrowdingDiversityAssignment.h in the function setDistances(), line 127: std::sort-

(sortedptrpop.begin(), sortedptrpop.end(), cmp2);. This sorting is performed

consecutively for each of the objectives, but should be done only within the same “dom-

inance” front (bounded by variables a and b). However, all the population is stored in

sortedptrpop and since all the population is being sorted at line 127, this leads to a
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mixing of the individuals across different “dominance” fronts. Each time this sorting

is called, it should be performed only on the corresponding part of the population con-

taining individuals with the same dominance rank that is specified by interval 〈a;b〉.
We correct the discussed bug by the following:

std::sort(sortedptrpop.begin()+a, sortedptrpop.begin()+b+1, cmp2);
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