
FI MU
Faculty of Informatics

Masaryk University Brno

PRESEMT Phrase Model Generator

by

Michalis Troullinos

FI MU Report Series FIMU-RS-2013-3

Copyright c© 2013, FI MU March 2013

Copyright c© 2013, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanicka 68a
602 00 Brno
Czech Republic

PRESEMT Phrase Model Generator

Michalis Troullinos

November 29, 2013

1 Phrasing model generator (PMG)

1.1 Basic aspects & design

The Phrasing model generator uses the output of the Phrase aligner module to train

a phrasing model for the SL. The output of the Phrase aligner module contains the

segmentation into phrases of the SL side of the bilingual corpus. This model is then

applied for segmenting an SL text being input to the PRESEMT system for translation.

The aforementioned procedure is illustrated in figure 1.

The main method for extracting the phrasing model is statistical-based, since a sub-

stantial amount of research has already been invested in creating statistical language

models in NLP tasks (e.g. [2]).

1.2 Design of Phasing Model Generator

The Phrasing model generator uses as input the PAM output and specifically the XML

string representing the phrase-aligned SL side of the parallel corpus. The PMG out-

put consists of the SL texts to be translated by PRESEMT, which are segmented into

phrases compatible with the phrasing model used in the TL. The method for extracting

the phrasing model is statistical and following comparative evaluations is based on the

CRF (Conditional Random Fields) model [1].

The CRF model that is trained with the above process is being used by the PRESEMT

machine translation system as a phrasal segmentation module for the SL. The purpose

of CRF is to group together words that form a complete phrase as a pre-processing op-

eration to the translation. In the translation process, the phrases created by the Phrasing

model generator will be used to generate a segmentation of the input sentence and,

1

Figure 1: Overview of PMG

based on that, to search for appropriate translations. One main requirement for the

methodology used to develop this module is to be language-independent, in a way that

the proposed model can adapt to any language provided that a training set of accept-

able quality is available, in the form of a parallel corpus of sentences coupled with a

parser that splits TL-side sentences into phrases.

1.3 PMG Implementation

For implementation, the MALLET package was chosen as it is written in Java (which

is the programming language favored in the PRESEMT project) and has more extensive

support in comparison to other existing software implementations of CRF. Additionally,

for parameter passing and object injection the Spring1 framework was used. The Spring

framework made executing experiments easier as for each set of experiments it only re-

quires the creation of a set of xml configuration files (with no need to modify java code).

1http://www.springsource.org/

2

http://www.springsource.org/

Finally the training method used for the CRF was the CRFTrainerByLabelLikelihood

as provided by MALLET.

The regular expressions concept was selected for tag manipulation and transforma-

tion within PMG, as it provides a wide range of capabilities. In the current implemen-

tation only the PoS information per word is taken into account. In addition, in the case

of PoS tags which have a case, this type of information is retained (e.g. Nominative,

Accusative). This choice was made since much less training data would be required

for training in order to elicit syntactic relationships involving only tag sets rather than

words (given that the number of possible tags is much lower than the number of po-

tential words/lemmas). As the number of sentences is limited to approximately 200 to

simplify the creation of MT systems for new language pairs, the use of PoS tags confers

the ability to train a realistic model even with this limited set, by extracting sufficient

training data. Besides, by using only tags, the model is easier to adapt to an arbitrary

new language.

Mapping

The CRF model provided within the MALLET open source toolkit was used in order

to create a mapping between the sequence of tags that constitute a period and the se-

quence of attributes that describe the words’ role inside each phrase. In the experiments

reported here, the annotation of segments is summarised as follows:

• A three-column format was used for training data, where each word occupies one

line, the first column containing the actual token, the second one the PoS tag and

the third column the clause information.

• The segment information is expressed as a single-letter label, (“B", if this is the

first token in the given segment, “I" otherwise), followed by the type of segment

(e.g. B-NPAC indicates the first token of a segment, which is a Noun Phrase whose

head is in Accusative). At a second level of abstraction, only the type of phrase

was included, without a case feature (e.g. the segmentation information would be

of the form B-NP or I-NP).

• Tokens not belonging to any specific segment are identified by a “0" entry in the

third column. This is used when, for instance, a token is a punctuation mark.

• The end of a sentence is identified by an empty line.

3

As the type of phrase is carried over from the TL, the diversity of phrase types for a

PMG-generated MT system for a given language pair is defined by the parser used in

the TL.

1.4 Experimental setup and results

Experimental results

For the PMG experiments, subsets of the parallel corpora available for each language

pair have been created, in order to have two independent resources for each language

pair. The first set used for training the phrase model and the second set for evaluat-

ing the segmentation accuracy. The accuracy of the second set is compared against the

golden segmentation and as a result the accuracy has been evaluated within the PRE-

SEMT project only for the language pairs with available golden sets.

Additionally for the language pair Greek-English, an extra corpus that is termed

“development corpus" has been used for evaluation. The segmentation accuracy is

compared against the reference (golden) segmentation (which manually created), by

using two distinct evaluator functions. Both of the functions are implemented in soft-

ware, and evaluate the edit distance between the optimum segmentation and the CRF

model’s segmentation. The first one is based on the edit distance calculated over the

tokens while the second one is calculated over phrases. The evaluation of the devel-

opment corpus allows the use of each sentence from the bilingual parallel corpus for

training.

1.4.1 Performance factors

A number of modifications and extensions have been tested on the CRF model used to

obtain the best possible performance, these including:

1. modifying the CRF order parameter which sets the time window based on which

the model creates connections between the training sequence and the observed

symbols,

2. adding a different feature counter functionality by creating a java class implement-

ing the MALLET basic Pipe interface used for feature measurement, employing

regular expressions to modify input sequences,

4

3. combining different input parameters such as tags and lemmas to represent

n-gram features by replacing each plain symbol at a given time with a more com-

plex combination of “previous", “current", and “next seen" symbols and

4. the merging of the lower frequency tags with the high frequency ones based on

linguistic similarities (for tags with a very low accuracy, very few instances can be

expected to occur, so an accurate CRF model could not be trained).

Order of CRF model – Regular Expression

In order to determine the best CRF order parameter and the regular expression have

been used the default n-gram feature that replaces each plain symbol with the current

one. Experiments with higher order than 2 have not been performed because models of

such a high order cause out of memory errors due to the large model size. Table 1 illus-

trates that the best performance obtained by using the order-1 and a regular expression

that grouping the PoS and the case.

Table 1: Evaluation results for EL-EN in development corpus

N-Gram Features

Within the current implementation, the option of combining different input parameters

such as tags and lemmas is also provided. This functionality represents n-gram features

by replacing each plain symbol (corresponding to a single token) at a given time with a

more complex combination of “previous", “current", and “next seen" symbols based on

configured time slots. In order to determine the N-Gram and the corresponding regular

expression that cause the optimum performance it is used the CRF of order 1 is used,

5

as determined from the previous step. Experiments with an order higher than 2 cannot

be performed, because they cause out-of-memory errors. Table 2 illustrates that the best

results are obtained for two distinct cases marked as bold.

Table 2: Evaluation results for EL-EN in development corpus

Merging of tags

The segmentation performance was evaluated for various experiments by merging low

frequency tags with high frequency tags. The merging of tags was based on linguistic

similarities. The main purpose of this modification was to further simplify the proposed

model and thus attain a higher accuracy, since the total number of tags is decreased,

effectively increasing the availability of training patterns. For instance, in the case of

the Greek taggers, most foreign words (denoted as “Rg") can be seen to correspond to

nouns. However, the frequency of “Rg" is approximately 20 over the 200 sentences.

Thus, if all “Rg" tags are replaced by “No", the frequencies of the two tag categories are

combined to provide a more comprehensive training set that leads to a more accurate

model trained, in particular for the lower frequency “Rg" category. Table 3 illustrates

that the best result are obtained for the merging of tag “DIG" with the tag “No[Nm]".

6

PMG performance for the various experiments was evaluated by using two distinct

evaluators. The first one (the evaluator that is based on words) evaluates the number

of words and phrase types that belong to the correct phrase against the number of the

total words. The second one (the evaluator which is based on phrases) evaluates the

number of correct phrases against the total number of phrases. In order to evaluate the

PMG output it is first transformed to an appropriate format, which is then processed by

the evaluators.

PC(Βρετανοί επιστήμονες) VC(θεωρούν) πως PC(ο χυμός ροδιού) VC(μπορεί) να PC(μας)

VC(βοηθήσει) VC(να νικήσουμε) PC(το στρες) PC(στη δουλειά). (EL200-1)

PC(Οι αλλαγές) PC(στην παρούσα συμφωνία) VC(θα ισχύουν) PC(από τη στιγμή) PC(που)

VC(θα ανακοινωθούν) PC(στον ιστότοπο). (EL200-2)

PC(Οι γνώσεις) PC(των παιδιών) VC(δεν μένουν) PC(περιορισμένες) PC(στα ίδια βιβλία)

PC(επί χρόνια). (EL200-3)

PC(Ο λαός), PC(σ΄ αυτό το νοητικό και πραγματικό σχήμα) , VC(παίζει) PC(καταλυτικό ρόλο)

. (EL200-4)

Figure 2: Optimal segmentation of the word evaluator

PC_Βρετανοί_επιστήμονες VC_θεωρούν πως PC_ο_χυμός_ροδιού VC_μπορεί να PC_μας

VC_βοηθήσει VC_να_νικήσουμε PC_το_στρες PC_στη_δουλειά (EL200-1)

PC_Οι_αλλαγές PC_στην_παρούσα_συμφωνία VC_θα_ισχύουν PC_από_τη_στιγμή PC_που

VC_θα_ανακοινωθούν PC_στον_ιστότοπο (EL200-2)

PC_Οι_γνώσεις PC_των_παιδιών VC_δεν_μένουν PC_περιορισμένες PC_στα_ίδια_βιβλία

PC_επί_χρόνια (EL200-3)

PC_Ο_λαός, PC_σ΄_αυτό_το_νοητικό_και_πραγματικό_σχήμα,

VC_παίζει PC_καταλυτικό_ρόλο (EL200-4)

Figure 3: Optimal segmentation of the phrase evaluator

Phrasing Model Generator’s Evaluation

Table 4 illustrates the segmentation accuracy for each language pair with available

golden set by using the optimum configuration parameters as they obtained from the

previous experiments. The segmentation accuracy is calculated by counting the num-

ber of phrases that have exactly the same segmentation as the golden segmentation to

7

Table 3: Evaluation results with merging of tags for Greek-English

the total number of phrases. For all experiments, subsets of the parallel corpus are used

in order to have two independent resources. More specifically, the first fifty sentences

of each language pair are used as testing data, while the remaining sentences serve as

training data.

8

Table 4: Evaluation results for each language pair

9

2 References

[1] Lafferty, J., McCallum, A., & Pereira, F. 2001. Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labelling Sequence Data, Proceedings of ICML

Conference, June 28-July 1, Williamstown, USA 282-289.

[2] Manning, C.D. & Schuetze, H. 1999. Foundations of Statistical natural Language

Processing. MIT Press, Cambridge, Massachussetts.

[3] Wallach, H. M. 2004. Conditional Random Fields: An Introduction. CIS Technical

Report, MS-CIS-04-21. 24 February 2004, University of Pennsylvania.

[4] Tambouratzis, G., Simistira, F., Sofianopoulos, S., Tsimboukakis, N. & Vassiliou, M.

2011. A resource-light phrase scheme for language-portable MT, Proceedings of the

15th International Conference of the European Association for Machine Translation,

(eds. M. L. Forcada, H. Depraetere & V. Vandeghinste) 30-31 May 2011, Leuven,

Belgium, pp. 185-192.

10

3 PMG’s User Manual

Introduction

This is a mini guide on how to use the Phrasing model generator (PMG). PMG sup-

ports two distinct operations. The first operation processes the output of Phrase Aligner

Module to train a phrasing model for the SL of the specified language pair. The second

operation makes use of the phrasing model established to parse any SL text input and

split it into phrases in preparation for the translation process.

How to run PMG

Training a phrasing model (1st operation): PMG needs a number of arguments denot-

ing the language pair for which a phrasing model is trained. If the required resources

for the specific language pair are not available, the program terminates.

The command line arguments for invoking PMG have the following form:

pmg -train -lang [<srcLang>-<tgtLang>]

where

• <srcLang>: the source language denoted by the first two characters and

• <tgtLang>: the target language denoted by the first two characters.

Example: pmg -train -lang DE-EN

Training a phrasing model for the language pair German → English

Example: pmg -train -lang EL-DE

Training a phrasing model for the language pair Greek → German

The output of the PMG train operation is stored under the path data/PMG/models/ and

is named model_language_pair.crf (e.g. model_DE-EN.crf and model_EL-DE.crf re-

spectively in the above examples).

Parsing a text input (2nd operation): PMG needs a number of arguments denoting the

language pair, the text to be processed, the encoding and the name of the output file.

If the required resources for the specific language pair are not available, the program

terminates. The command line arguments for invoking PMG have the following form:

pmg -parse -lang [<srcLang>-<tgtLang>] -encoding [<encode>] \

-input [<inputPathfile>] -output [<outputPathfile>]

11

where

• <srcLang>: the source language denoted by the first two characters,

• <tgtLang>: the target language denoted by the first two characters,

• <encode>: the encoding of the output file,

• <inputPathfile>: the path of the input file containing the unparsed SL text and

• <outputPathfile>: the path of the file with the output parsed text.

Example:

pmg -parse -lang DE-EN -encoding UTF-8 -input data/unparsedFile.xml \

-output data/parsedFile.xml

This command results in the parsing of the text that is contained in the file “un-

parsedFile.xml" for the language pair German → English and finally storing the output

(the parsed DE-side) into the file “parsedFile.xml", based on the phrasing of the EN side

parser.

3.1 How to handle a language pair in PAM

Training a phrasing model (1st operation): PMG requires the following resources for

each language pair: (a) the parsed sentences and (b) the configuration file. Each one of

those resources is described below.

The parsed sentences: The parsed sentences that are created

by the Phrase Aligner Module and are stored under the path

/data/Corpora/<SL_LANG>-<TL_LANG>/parsed.xml. The parsed sentences are used

only within the training mode for generating the phrasing model.

Example: The parsed sentences for the language pair German-English are stored under

the path /data/Corpora/DE-EN/parsed.xml:

<?xml version="1.0" encoding="UTF-8"?>

<text>

<sent id="1">

<clause id="16" type="">

<phrase id="12" type="PC">

<word id="2" head="n" fhead="n" token="Innere" tag="ADJA.Pos.Nom.Sg.Fem" lemma="inner"/>

<word id="3" head="n" fhead="n" token="und" tag="CONJ.Coord.-2" lemma="und"/>

<word id="4" head="n" fhead="n" token="äußere" tag="ADJA.Pos.Nom.Sg.Fem" lemma="äußer"/>

12

<word id="5" head="y" fhead="n" token="Sicherheit" tag="N.Reg.Nom.Sg.Fem" lemma="Sicherheit"/>

</phrase>

<phrase id="13" type="VC">

<word id="6" head="n" fhead="y" token="sind" tag="VFIN.Sein.3.Pl.Pres.Ind" lemma="sein"/>

</phrase>

<phrase id="14" type="PC">

<word id="7" head="n" fhead="n" token="zwei" tag="CARD" lemma="zwei"/>

<word id="8" head="y" fhead="n" token="Seiten" tag="N.Reg.Nom.Pl.Fem" lemma="Seite"/>

</phrase>

<phrase id="15" type="PC">

<word id="9" head="n" fhead="n" token="derselben" tag="PRO.Dem.Attr.-3.Gen.Sg.Fem"

lemma="dieselbe"/>

<word id="10" head="y" fhead="n" token="Medaille" tag="N.Reg.Gen.Sg.Fem" lemma="Medaille"/>

</phrase>

<word id="11" head="n" fhead="n" token="." tag="SYM.Pun.Sent" lemma="."/>

</clause>

</sent>

<sent id="2">

<clause id="24" type="">

<phrase id="17" type="PC">

<word id="2" head="n" fhead="n" token="Die" tag="ART.Def.Nom.Sg.Fem" lemma="der"/>

<word id="3" head="y" fhead="n" token="EU" tag="N.Name.Nom.Sg.Fem" lemma="EU"/>

</phrase>

<phrase id="18" type="VC">

<word id="4" head="n" fhead="y" token="muss" tag="VFIN.Mod.3.Sg.Pres.Ind" lemma="müssen"/>

</phrase>

<phrase id="20" type="PC">

<word id="5" head="n" fhead="n" token="wirksame" tag="ADJA.Pos.Acc.Pl.Fem" lemma="wirksam"/>

<word id="6" head="y" fhead="n" token="Maßnahmen" tag="N.Reg.Acc.Pl.Fem" lemma="Maßnahme"/>

</phrase>

<phrase id="19" type="VC">

<word id="7" head="y" fhead="n" token="ergreifen" tag="VINF.Full.-2" lemma="ergreifen"/>

<word id="8" head="n" fhead="n" token="," tag="SYM.Pun.Comma" lemma=","/>

<word id="9" head="n" fhead="n" token="um" tag="CONJ.SubInf.-2" lemma="um"/>

</phrase>

<phrase id="22" type="PC">

<word id="10" head="n" fhead="n" token="die" tag="ART.Def.Acc.Sg.Fem" lemma="der"/>

<word id="11" head="y" fhead="n" token="Sicherheit" tag="N.Reg.Acc.Sg.Fem" lemma="Sicherheit"/>

</phrase>

<phrase id="23" type="PC">

<word id="12" head="n" fhead="n" token="ihrer" tag="PRO.Poss.Attr.-3.Gen.Pl.Neut" lemma="ihr"/>

<word id="13" head="y" fhead="n" token="Mitglieder" tag="N.Reg.Gen.Pl.Neut" lemma="Mitglied"/>

</phrase>

<phrase id="21" type="VC">

<word id="14" head="n" fhead="n" token="zu" tag="PART.Zu" lemma="zu"/>

<word id="15" head="y" fhead="n" token="gewährleisten" tag="VINF.Full.-2" lemma="gewährleisten"/>

</phrase>

<word id="16" head="n" fhead="n" token="." tag="SYM.Pun.Sent" lemma="."/>

</clause>

</sent>

</text>

13

The configuration file: It contains the Spring framework’ s parameters which defines

(a) the regular expression, (b) the order of the CRF model, (c) the n-gram features and

(d) the variation. In order to create a configuration file, the following steps need to be

followed:

(1) Add the default header as illustrated in figure 4. The header is required for generat-

ing the declared java classes.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:util="http://www.springframework.org/schema/util"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util.xsd">

Figure 4: The default header of Spring framework

(2) Add the default configuration parameters as illustrated in figure 5 for the class

“pmg.AlgorithmBean" except for the parameters in bold typeface: the regular expres-

sion and the model order. The regular expression consists of two parts and their values

are customized based on the SL and the modifications in terms of input tags. The fol-

lowing figure 5 illustrates a regular expression that modifies Greek tags by removing

all parts except the PoS and the cases. The CRF order parameter sets the time window

based on which the CRFmodel creates connections between the training sequence and

the observed symbols. The following figure illustrates the use of a CRF model with

order 1.

(3) Add the default configuration parameters as illustrated in figure 6 for the

class “pmg.pipe.SentTransContext2FeatureVSequence“except the parameter “times-

lots". This parameter combines different input parameters such as tags and lemmas to

represent n-gram features by replacing each plain symbol at a given time with a more

complex combination of “previous", “current", and “next seen" symbols. The following

figure illustrates a n-gram that replaces each plain symbol with the “current" symbol.

(4) Add the default configuration parameters as illustrated in figure 7 for the class

“cc.mallet.fst.CRF".

14

<bean id="algorithmBeanClass" class="ilsp.pmg.AlgorithmBean">

<property name="featurePipe" ref="featurePipeClass"/>

<property name="crf" ref="crfClass"/>

<property name="trainer" ref="trainerClass"/>

<property name="defaultStateName" value="myDefaultStateName"/>

<property name="iterations" value="1000"/>

<property name="regex"

value="(^(at|aj|no|vbmnpp|aspppa).*(nm|ge|ac|da|vo)$)|

(^(vb|abbr|date|ad|asppsp|cj|dig|pterm_p|rg).*$)|

(^(nm|pn).*(..)(..)$)|(^(vb)(mnpp).*(xx)$)|(^(pt)(..)$)"/>

<property name="replacement" value="$2[$3]$5$7[$8]$11$15"/>

<property name="modelOrder">

<array>

<value>0</value>

<value>1</value>

</array >

</property>

</bean>

Figure 5: The configuration for the class “pmg.AlgorithmBean“.

<bean id="featurePipeClass" class="ilsp.pmg.pipe.SentTransContext2FeatureVSequence">

<property name="fieldDelimiter"><value>	</value></property>

<property name="expressions">

<array>

<bean class="ilsp.pmg.pipe.model.MultiGramExpression">

<description>x[0,1]</description>

<property name="endChar" value="not_found"/>

<property name="endCharIndex" value="1"/>

<property name="timeSlots">

<list>

<value>0</value>

</list>

</property>

</bean>

</array>

</property>

</bean>

Figure 6: The configuration for the class “pmg.pipe.SentTransContext2FeatureVSequence"

15

<bean id="crfClass" class="cc.mallet.fst.CRF">

<constructor-arg name="inputPipe">

<ref local="featurePipeClass"/>

</constructor-arg>

<constructor-arg name="outputPipe">

<null/>

</constructor-arg>

</bean>

Figure 7: The configuration for the class “cc.mallet.fst.CRF"

(5) Add the default configuration parameters as illustrated in figure 8 for the class

“cc.mallet.fst.CRFTrainerByLabelLikelihood".

<bean id="trainerClass" class="cc.mallet.fst.CRFTrainerByLabelLikelihood">

<constructor-arg name="crf" type="cc.mallet.fst.CRF">

<ref local="crfClass"/>

</constructor-arg>

<property name="gaussianPriorVariance" value="10.0"/>

</bean>

Figure 8: The configuration for the class “cc.mallet.fst. CRFTrainerByLabelLikelihood"

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:util="http://www.springframework.org/schema/util"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util.xsd">

<bean id="algorithmBeanClass" class="ilsp.pmg.AlgorithmBean">

<property name="featurePipe" ref="featurePipeClass"/>

<property name="crf" ref="crfClass"/>

<property name="trainer" ref="trainerClass"/>

<property name="defaultStateName" value="myDefaultStateName"/>

<property name="iterations" value="1000"/>

<property name="regex" value="(^(at|aj|no|vbmnpp|aspppa).*(nm|ge|ac|da|vo)$)|

(^(vb|abbr|date|ad|asppsp|cj|dig|pterm_p|rg).*$)|

(^(nm|pn).*(..)(..)$)|(^(vb)(mnpp).*(xx)$)|(^(pt)(..)$)"/>

<property name="replacement" value="$2[$3]$5$7[$8]$11$15"/>

<property name="modelOrder">

<array>

<value>0</value>

16

<value>1</value>

</array>

</property>

</bean>

<bean id="featurePipeClass" class="ilsp.pmg.pipe.SentTransContext2FeatureVSequence">

<property name="fieldDelimiter"><value>	</value></property>

<property name="expressions">

<array>

<bean class="ilsp.pmg.pipe.model.MultiGramExpression">

<description>x[0,1]</description>

<property name="endChar" value="not_found"/>

<property name="endCharIndex" value="1"/>

<property name="timeSlots">

<list>

<value>0</value>

</list>

</property>

</bean>

</array>

</property>

</bean>

<bean id="crfClass" class="cc.mallet.fst.CRF">

<constructor-arg name="inputPipe">

<ref local="featurePipeClass"/>

</constructor-arg>

<constructor-arg name="outputPipe">

<null/>

</constructor-arg>

</bean>

<bean id="trainerClass" class="cc.mallet.fst.CRFTrainerByLabelLikelihood">

<constructor-arg name="crf" type="cc.mallet.fst.CRF">

<ref local="crfClass"/>

</constructor-arg>

<property name="gaussianPriorVariance" value="10.0"/>

</bean>

</beans>

The example above illustrates the configuration file for the language pair Greek-

German.

The configuration file that is created with the above process must be stored under

the path /data/PMG/AppContext/ in an XML file. The XML file should be named as

appContext_<SL_LANG>-<TL_LANG>.

Example: The configuration file for the language pair German-English is stored un-

der the path /data/PMG/AppContext/appContext_DE-EN.xml

Parsing a text input (2nd operation): PMG requires the following resources for each lan-

guage pair: (a) the configuration file that is created by the previous process and stored

17

under the filename /data/PMG/AppContext/appContext_<SL_LANG>-<TL_LANG>.xml

and (b) the phrasing model that is created by the previous process and stored under

the filename /data/PMG/Models/model_<SL_LANG>-<TL_LANG>.crf.

18

	Phrasing model generator (PMG)
	Basic aspects & design
	Design of Phasing Model Generator
	PMG Implementation
	Experimental setup and results
	Performance factors

	References
	PMG’s User Manual
	How to handle a language pair in PAM

