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1 Introduction

In this work, we study the problem of Word Translation Disambiguation (WTD) which

essentially deals with selecting the best possible translations of words, given a sentence

in the source language, according to a bilingual dictionary or some other translation

model, as a source language word can often have several translations in the target lan-

guage. We address the problem through two distinct approaches to model the TL lan-

guage. (i) First, using a novel method which relies on Kohonen’s Self-Organising Map

(SOM) [4], [5] , and (ii) second using the frequencies of n-gram occurences.

In the first part of this work, we employ the SOM to determine the semantic rele-

vance of a “candidate” translated term with respect to its context, and thus, allow for

a quantitative comparison among all the available alternatives that are suggested as

candidate translations by a bilingual dictionary. In essence, using a monolingual cor-

pus, we associate each encountered word from the corpus with a single matching from

the SOM given its context. In practice, words that appear together frequently seem to

be associated with neighboring matching units. As a result, we can compare different

translations by adding the distances between all consecutive pairs of translated words

and then selecting the translation that corresponds to the minimum overall route.

The second part of this work presents a conventional approach which is based on

n-grams. An n-gram is a contiguous sequence of n words from a given corpus. An

n-gram model is a type of statistical language model for predicting the next item in

such a sequence in the form of a (n − 1)-order Markov model. Hence, we are able

to quantify how probable is a single combination of m translated words by forming

m − n + 1 n-grams and then multiplying the probability of all separate n-grams, as if

they were independent from each other. Therefore, given all possible translations of a

single sentence we are able to select the most likely to appear in the target language.

Finally, additional models are developed using the aforementioned approaches, and we

report results demonstrating their effectiveness.

2 SOM-based Disambiguation

For the purposes of this project with respect to word-translation disambiguation [9], a

specialized language model is created by using the Self-Organizing Map (SOM) [4],[5].

SOM is a type of artificial neural network that is trained using unsupervised learning
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to produce a two-dimensional, discretized representation of a high-dimensional input

space of the training samples. Self-organizing maps are different from other artificial

neural networks in the sense that they use a neighborhood function that changes over

time in order to preserve the topological properties of the input space. More specifically,

self-organizing maps learn to classify input vectors according to their similarity in the

patterns space. Thus, self-organizing maps learn both the distribution and topological

relation of the input vectors they are trained on and map the pattern space onto the

output layer neurons. During training, the neuron that is located closest to an input

vector is selected to adjust its weight vector toward those input vectors. Specifically,

the network first identifies the winning neuron (or alternatively Best Matching Unit or

BMU) for each input vector. Then, each weight vector moves to the average position of

all of the input vectors for which it is a winner or for which it is in the neighborhood of a

winner. The distance that defines the size of the neighborhood is altered during training

through two phases, the first corresponding to the rough training and the second to the

fine-tuning step. During rough training, the input patterns are ordered relative to one

another while in the fine-tuning phase the weight vector of each node is fine-tuned to

specific patterns. The neurons in the SOM output layer are arranged in a lattice with

either square or hexagonal topologies. In the present work, a hexagonal topology is

used. Figure 1 depicts a two-dimensional example of how the BMUs of a hexagonal

topology are arranged into space for a uniform and a clustered dataset (two gaussian

clusters). The popularity of SOM in terms of diverse applications is due to its flexibility

and efficiency in unsupervised clustering tasks. The novelty of the SOM application in

the PRESEMT prototype focuses on its integration in an MT system for word translation

disambiguation. In the context of language processing, the features chosen to map the

linguistic data to SOM are frequencies of occurrence of words within the sentences.

In the chosen approach, the input set consists of multi-dimensional vectors that de-

scribe the co-occurrences of encountered lemmas with a well-defined class of represen-

tative words. What makes this approach particularly attractive in the context of PRE-

SEMT is that, in order to model a monolingual corpus, it does not require any external

knowledge resources besides a large text corpus, the modeling process is fully unsu-

pervised in the creation of the map and most of the processing is performed off-line.

During the actual machine translation process, only the final SOM-generated mapping

of words onto the map lattice needs to be accessed for disambiguation. This mapping

is compact in terms of memory required and thus can be processed very quickly and
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(a) uniform (b) clustered

Figure 1: BMUs of a hexagonal SOM topology for two-dimensional datasets.

efficiently. Moreover, this work focuses on the definition of an effective method for de-

termining the semantic relevance of a “candidate” translated term with respect to its

context. Thus, a quantitative comparison and ranking is performed among all the avail-

able alternatives that are congregated in a set of lemmas. Towards this end, the mono-

lingual corpora produced by the PRESEMT corpus creation and annotation module are

used to train SOM maps. In particular, our training set consists of multi-dimensional

vectors that describe the co-occurrences of encountered lemmas with a set of feature

words, determined using frequency-based criteria to exclude both very frequent (such

as function words) and very rare words, via a modification of the ABC analysis. Once

this language model is available, an adaptation of the well-known Viterbi algorithm is

used for the Translation equivalent selection module in order to empower the overall

optimal phrase selection efficiently. This task consists in selecting one lemma from each

set and that way disambiguating multiple translations of single- or multi-words units.

To elaborate, for the i-th alternative term of the phrase in the target language, we com-

pute the transition cost from all the possible previous word forms. We also consider

recursively the cost of selecting those forms given previous transitions. Then, from all

j different word forms that lead to the i-th term at the k-th position of the phrase, we

set cost(k, i) equal to minj distance(n(k, i), n(k− 1, j)) + cost(k− 1, j), where the dis-

tance signifies the Euclidean distance of the winner SOM neurons for the corresponding

terms. The optimal path reaching term i at position k contains the optimal sub-path

reaching j, and thus, when selecting the next alternative word-form there is no need to

expand and compute any suboptimal paths from j as they have been pruned before-
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hand, thus reducing processing time. For example, in the trellis diagram of Figure 2,

only the best paths that lead to the j translations of the (k − 1)-th word of the sentence

are kept. Then, we compute the cost of the shortest transition for each different trans-

lation of the k-th word and the route that corresponds to the minimum cost route plus

the optimal transition is chosen.

Figure 2: Trellis diagram example.

2.1 Implementation Details

In this section, we present the efforts we made to create an effective language map

leveraging Self-Organizing Maps (also known as Kohonen maps). Apart from the dis-

ambiguation method for all tokens based on SOMs described earlier, we also developed

a special version used to disambiguate first the heads and the functional heads of all

phrases in a sentence, and then the rest of each phrase in isolation, having its heads

fixed from the previous stage. To elaborate, we propose a two stage disambiguation

paradigm. First, we congregate all words that are marked as heads and functional heads

of the same sentence by themselves in the same structure with the same turn they ap-

pear in the sentence. As a result, for any given map, we evaluate the performance of

two distinct methods, first the full-scale disambiguation noted as ‘sentence-level’, and

the two-stage variation, noted as “FHP”, that relies on head words. Then, in order

to evaluate the disambiguation results from our system, we make use of a simplistic

unigram-based measure, according to which we divide the number of disambiguated

words which also appear in the reference translation (given by linguists and expert

users) by the total number of assigned words, and then, we average the scores from all

evaluated sentences. More formally, we have that,
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ScoreABCD|ABXY =
#(DisambiguatedWords ∩ ReferencedWords)

#AllWords
(1)

For example a disambiguated phrase containing words “A B C D”, given the ref-

erence phrase “A B X Y”, achieves a score of 50%, in a sense that half of the resolved

words can also be found in the reference phrase.

Furthermore, for each SOM we also provide a 3-dimensional illustration which cor-

responds to a histogram indicating the distribution of words on the SOM. Specifically,

for each neuron we draw a bar with a height analogous to the number of words for

which the examined neuron is the best-matching unit.

2.2 ABC Analysis

ABC analysis was first incorporated into SOMs in [12]. The basic assumption made

in [12] and also in this work is that words that occur frequently in similar contexts in

natural-language expressions will bear related meanings. More specifically, the contexts

considered here are sentences, i.e., text windows from one full stop to the next one. The

use of such text windows is based on the hypothesis that the full stop between sentences

is the least ambiguous point at which the description of an idea is completed. This basic

hypothesis is frequently made in experiments involving word clustering. Ideally, for

each lemma, the co-occurrences with all other lemmas would be recorded, although

at the cost of a high feature-vector dimensionality. To limit this dimensionality, only a

subset of available lemmas was chosen as the feature set, so that every lemma would be

described by its cooccurrences with the lemmas from the feature set.

Pareto’s principle, also known as the 80-20 rule [2] states that 20% of the causes are

responsible for 80% of results. Pareto’s principle, which is used in the ABC analysis, has

mostly been applied to quality control and management tasks. According to the ABC

analysis, a portion of the causes is characterized as A, which indicates important events,

with B and C corresponding to less important and to unimportant events, respectively.

In the word disambiguation application, category A contains highly frequent lemmas

(corresponding to stop-words, such as articles, conjunctions, and auxiliary verbs, as

well as other frequent words), B contains relatively frequent lemmas, and C contains

rare lemmas. Lemmas from category B are selected for the feature set, since these lem-

mas do not correspond to very common words (that do not reflect a specialized content)

yet are frequent enough to collectively describe all remaining lemmas. Initial limits of

9



the ABC analysis are set to implement an appropriate split of the input data in terms of

frequency. For instance, in document organization applications on the basis of content

[12], the following categories were used.

• Category A contains the most-frequent lemmas that collectively amount to a cer-

tain percentage (usually to 70%) of all occurrences.

• Category B contains lemmas that contribute the next 10%-15% of all occurrences.

• Category C contains lemmas that correspond to the remaining percentage of oc-

currences. In addition, to avoid studying exceptionally rare tokens, lemmas that

occur less than three times throughout the corpus are omitted from category C.

B category is employed to represent each word from the corpus by its cooccurrences

with the lemmas from the B category in a numeric vector for each word. More specif-

ically, each lemma from categories A and C is represented by a vector of m elements,

each indicating the number of times the given lemma cooccurs with the correspond-

ing lemma from the B category. In order to implement the ABC analysis, initially each

lemma’s occurrences in the document set are counted. Then, the lemmas are ranked in

descending order of frequency. Then category A is created iteratively, by introducing

the current most-frequent lemmas in category A without substitution until the sum of

normalized frequencies reaches the threshold of category A. When the sum ranges be-

tween thresholds A and B, the corresponding lemmas are assigned to category B and

the rest are assigned to category C.

2.3 English Monolingual Language Models

According to the corpus used for training SOM, we separate the maps into four main

sets, Ca, Cb, Cc and Cd. Set Ca SOMs correspond to all maps that were trained using

a small English (filtered) corpus of 10 MBs in VERT format (three columns). Set Cb
SOMs correspond to a larger corpus of 25 MBs in VERT format, set Cc to a 100 MBs

corpus and set Cd to a large 1.5 GBs corpus. In corpus Ca 11050 distinct lemmas ap-

pear, set Cb corpus contains 18408 distinct lemmas, set Cc 42954. Last, set Cd corpus

comprises 88090 distinct lemmas. Generally, the suggested dimensionality of a map

is computed the same way it is computed in the SOM_PAK (http://www.cis.hut.fi/

research/som-research/). When map dimensionality is manually set is made explicit

in the experiment definition.
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2.3.1 Standard Model

For the first SOM, we make use of the set Ca corpus whist the B category limits are set to

.70 and .85 for the lower and the upper bound, respectively. There are three variations of

this experiment and their only difference involves the number of cycles allowed during

training. The size of the SOM was automatically selected, based on a SOM criterion,

and set to 14 by 36 at all times. In addition, three-dimensional diagrams of these maps

depicting histogram frequencies are shown in Figures 3 and 4. Moreover, Figures 5, 6,

7, 8 and 9 depict all the intermediate states SOM passes through until it converges to its

final state in Figure 10. In Table 1 we present an overview of how scores scale as SOM

training evolves with the number of iterations reached. Obviously, there is a remarkable

increase in the quality of the results as the training process progresses. This is also

indicated in the SOM evolution graphs in Figures 5-10. Apparently, the distribution of

words to neurons becomes smoother as more iterations are performed. Especially, all

major peaks that appear for the first 100 iterations are substantially reduced as many

words are dispersed to neighboring neurons. To sum up with, we have three different

configurations for our first set Ca map:

1. Rough stage training took 100 iterations while fine tuning took 20 iterations.

2. Rough stage training took 500 iterations while fine tuning took 100 iterations.

3. Rough stage training took 1000 iterations while fine tuning took 200 iterations.

Iterations 0 100 400 800 1000 1200

sentence-level 20.92% 25.38% 40.01% 46.34% 49.73% 50.3%

FHP 16.85% 22.15% 29.41% 34.67% 41.51% 47.3%

Table 1: SOM evolution scores.

We observed that disambiguation performance improves as the number of iterations

increases. In particular, as presented in Table 2, we take for the first case 49.73% and

36.51%, for sentence-level disambiguation and FHP, respectively, for the second we have

49.8% and 40.1% for each method, and for the last method we take 50.3% and 47.3%.

Clearly, there is a significant improvement for the FHP technique especially, since it

starts from a lower level, but it still fails to outperform sentence-level disambiguation.

This same configuration was used for a much larger English corpus of approximately

100 MBs in VERT format (set Cc corpus). Due to the size of the corpus, we allowed 400
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Figure 3: set Ca using B category bounds 70%-85% for 100 iterations.
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Figure 4: set Ca using B category bounds 70%-85% for 500 iterations.
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Iterations 120 600 1200

sentence-level 49.73% 49.8% 50.3%

FHP 36.51% 40.1% 47.3%

Table 2: SOM evolution scores.

iterations and 80 cycles during fine tuning. The map’s dimensionality was automati-

cally selected and set to 17 x 56 . Even though we used a corpus ten times larger, the

produced language model was not much better than the previous one. One can suspect

that the limited number of iterations is responsible for the unexpectedly poor perfor-

mance. In particular, the system produced a language model which when evaluated

returned a score of 49.6% for the sentence-level disambiguation, and 46.7% for FHP. A

three-dimensional representation of this is shown in Figure 11.

In Figure 12, we present a disambiguated example for a Greek sentence. We note that

the referenced sentence was “British scientists believe that pomegranate juice may help

us overcome stress at work”. Thus, this specific result achieves a score of 8
15
≈ 53.3%

(articles are not considered in calculating the score).

2.3.2 Increasing the Number of Training Iterations

The same small filtered English corpus (set Ca corpus) was used in another experiment.

However, a great amount of iterations were used this time, as rough stage training took

5000 iterations while fine tuning took 1000 iterations. Map’s dimensionality was auto-

matically selected and set to 14 x 36 nodes. However, the system produced identical

scores with our first experiment for 1000 iterations, 50.3% and 47.3%, for sentence-level

disambiguation and FHP, respectively. The reason this attempt failed to produce better

results was probably the limited size of the corpus. A three-dimensional representation

of the distribution of words to SOM nodes is shown in Figure 13.

Therefore, for our next experiment we investigate the effect of training using a larger

corpus (set Cb corpus), 25MB compared to the 10MB previously used, even at the cost

of a reduced number of iterations, namely 1000. Indeed, introducing more information

into the system results in an improved disambiguation performance. Specifically, we

got 51.1% and 49.4%, for sentence-level disambiguation and FHP, respectively. A three-

dimensional representation of this is shown in Figure 14.
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Figure 5: Representation of the training process for a setCa map with B category bounds

set to 70%-85% for 0 iterations (initialization).
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Figure 6: Representation of the training process for a setCa map with B category bounds

set to 70%-85% for 100 iterations.
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Figure 7: Representation of the training process for a setCa map with B category bounds

set to 70%-85% for 400 iterations.
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Figure 8: Representation of the training process for a setCa map with B category bounds

set to 70%-85% for 800 iterations.
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Figure 9: Representation of the training process for a setCa map with B category bounds

set to 70%-85% for 1000 iterations.
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Figure 10: Representation of the training process for a set Ca map with B category

bounds set to 70%-85% for 1200 iterations.
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Figure 13: set Ca SOM using B category bounds 70%-85% for 5000 iterations.
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Figure 14: set Cb SOM using B category bounds 70%-85% for 1000 iterations.
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Figure 15: set Cb SOM using B category bounds 70%-85% for 5000 iterations.

Figure 16: The Pareto cumulative distribution that the ABC analysis is based on.
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2.3.3 Appropriate Configuration of B Category Bounds

The next experiments from set Cb are critical as certain conclusions will be drawn to al-

low for training using larger corpora. Since there is no chance of keeping the same limits

for category B (.70-.85) due to the fact that extremely large feature vectors are produced

for corpora over 100 MBs, we have to investigate how it is possible to reduce the breadth

of category B, but still preserve as much information it is possible. Table 3 presents the

number of features for different configurations for each of the used corpora. A great

number of iterations was reached during training for both experiments: 5000 cycles for

rough stage training and 1000 iterations for fine tuning. We also used the same corpus

we used in the previous experiment. For the first instance of this experiment we set

Cb category limits set to .70 and .75 for the lower and the upper bound, respectively,

whereas for the second instance the same bounds are set to .80 and .85. We choose these

bounds since they comprise words that are neither too rare, nor appear extremely of-

ten. In fact, the first approach was more successful than the latter, even though both

windows share the same breadth (.05). Specifically, we got 51.1% and 48% for sentence-

level disambiguation and FHP, respectively, from the first experiment, and 50.1% and

47% from the latter. This is due to two reasons. First, the first case contains more words.

As shown in Figure 2.3.2, using the ABC analysis, the 70%-75% of outputs corresponds

to fewer features than the 80%-85%. Second, the first group of words is a little further

than the extremely frequent words from which we cannot extract enough information

as they appear almost in every sentence, e.g. conjuctive words, prepositions, etc. There-

fore, we henceforth set the limits of the B category to .70 and .75 whenever we use a

large corpus which exceeds in size the 100 MBs threshold. The dimensions of the maps

were 17 x 38 and 19 x 34, respectively. Three-dimensional representations of these maps

are shown in Figures 15 and 17. The prominent peaks appear for neurons to which a dis-

proportional amount of words are matched. In our case, having just a few overloaded

neurons is a great problem since the ability to discern one word from another by their

matching units and their eligibility in a given translated sentence is ineffective. There-

fore, we cannot ascertain what translation to select from all the available translations

returned from the dictionary that correspond to the same neuron.
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70%-75% 80%-85% 70%-85%

Ca 314 705 1448

Cb 347 848 1716

Cc 375 1001 2022

Cd 436 1262 2651

Table 3: Feature vector cardinality for different configuations.
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Figure 17: set Cb SOM using B category bounds 80%-85% and 5000 iterations.

2.3.4 The Effect of Map Dimensionality

For the next set Ca experiment, we wanted to study how the size of SOM affects dis-

ambiguation. We have already made an appropriate selection for what the breadth of

a representative B category should be to allow for efficient processing of large corpora,

while still carrying enough information in order to enable effective word translation

disambiguation and achieve good performance. More specifically, using a small corpus

of 10 MBs we created maps of dimensions varying from 10 x 20 for small maps, to 30

x 50. Indeed, there was a slight increase in the results of the small map (46.32% and

45.21%, for sentence-level disambiguation and FHP) to 50.28% and 48.4%, which can
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Figure 18: set Cb SOM using B category bounds 70%-75% and 2500 iterations.
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Figure 19: set Ca SOM using B category bounds 70%-75% and 3000 iterations.
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Figure 20: set Cd SOM using B category bounds 70%-75% and 1200 iterations.
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Figure 21: set Cd SOM using B category bounds 70%-75% and 2500 iterations.
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further improve if we use a larger corpus. A three-dimensional representation of the

SOM for Cb is shown in Figure 18, while the SOM for Ca is shown in Figure 19.

For the next SOM we trained, we used a corpus of approximate size 1.5 GBs in total

in VERT format (set Cd). Map’s dimensionality was automatically selected and set to

15 x 97. From Figure 20 we conclude that 1200 cycles in total (1000 iterations for rough

stage training and 200 for fine tuning) are not sufficient to spread appropriately word

vectors to the neurons of the map mainly due to the vast size of the corpus used. In other

words, the more data you use to train a SOM, the more iterations you need. Specifically,

the scores this map achieved were 51.3% and 48.6%, for sentence-level disambiguation

and FHP, respectively. In fact when we repeated the same experiment for 2500 iterations

in total (2000 for rough stage training and 500 for fine tuning) we achieved slightly better

scores, 52.1% and 49.2%, for sentence-level disambiguation and FHP. The histogram of

patterns assigned per SOM node of this map is shown in Figure 21.
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Figure 22: set Ca SOM using B category bounds 70%-75% and 3000 iterations with

threshold set to 6.

In Figure 25 we compare our SOM disambiguation technique with other competitor

schemes, like Vector Space Model (VSM) proposed in [8]. We depict with an orange

dashed line a baseline disambiguation scheme that relies on the most frequent transla-

tion overall. With a red dashed line we depict another baseline which returns each time
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Figure 23: set Ca SOM using B category bounds 70%-75% and 3000 iterations with

threshold set to 8.

the most frequent translation of the examined word in the source language. Yet, another

approach which is based on five-grams is shown with gray. Quite remarkably, the red

line which corresponds to the baseline which has been built on a parallel corpus is quite

successful despite its simplicity.

2.3.5 Filtering by Tag

Our next step was to try a different approach to improve performance. In this set Ca
experiment, we concentrate on removing from the training corpus the terms that do

not impart the system with enough information to allow for effective disambiguation.

These are instead considered to add noise to the system indirectly, and thus, overall

performance deteriorates. Hence, we chose to remove from the training corpus all

articles, prepositions, pronouns, possessive pronouns, predeterminers (all, half, etc.),

wh-words (where, who, how, etc.), wh-pronouns (who, whom), adverbs, wh-adverbs,

modal verbs, conjunctions and cardinals, etc. We also used the corpus of 25 MBs from

which all words with frequency less that 10 were filtered out. We then manually set the

dimensions of the resulting maps to 30 x 50. In addition, during training 2500 iterations
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Figure 24: set Ca SOM using B category bounds 70%-75% and 3000 iterations with

threshold set to 10.

Figure 25: Comparison of different disambiguation methods.

were consumed, 2000 during rough stage, and 500 iterations during fine tuning. From

the standard processed map, with this configuration, we received 50.21% and 47.56%
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for sentence-level disambiguation and FHP, respectively. Then, after filtering out all the

words that fall into the aforementioned categories, we created a language model from

which the disambiguation results were 52.46% and 49.87% for sentence-level disam-

biguation and FHP, respectively.

2.3.6 Reduced Feature Vector

We recently augmented the SOM training process with certain optimizations to allow

for the processing of larger corpora in less time. In particular, we concentrated our ef-

forts on post-processing the extracted feature vector used to represent each word by a

vector that corresponds to its co-occurrences in a sentence with a special category of

words that carry the most information. Two aspects of this approach were investigated.

(i) First, we defined a new parameter to specify the maximum length of the feature vec-

tor. If the length of the feature vector exceeds the declared parameter, say K, then only

the K highest frequency constituents of the feature vector are kept, while the remain-

ing elements are discarded. As a result, both memory usage and processing time are

reduced due to the shorter vector used. (ii) We also implemented a modification of this

technique according to which we repeat the same procedure for each word separately,

allowing for a more precise intervention to the feature vector by keeping the K most

frequent elements of the feature vector for each word. In addition, these two methods

can be combined naturally.

This experiment aims at studying the effect of the threshold parameter which ranges

from 2 to 10. The main reason we did not proceed with threshold values larger that 10,

lies with the fact that we observed that normal words together the insignificant and the

incorrect ones seem to be cut off. At all cases, map dimensionality was manually set

to 40 x 50. In particular, we trained all these maps using the set Ca corpus and each

experiment reached 2500 iterations for rough stage training and 500 iterations for fine

tuning. In Table 4 we present analytically the results of each threshold we test.

Threshold 2 4 6 8

sentence-level 50.81% 50.93% 51.20% 51.55%

FHP 48.53% 48.41% 48.56% 49.2%

Table 4: Disambiguation results for varying cut-off frequency thresholds for the rarest

words of the corpus.
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In Table 5 we show the effects of reducing the feature vector for a set Cb experiment.

A reduction of up to 20% ameliorates translation quality only slightly, though. How-

ever, for even greater reduction scores seem to diminish instead, as expected due to

information loss. Finally, the gains in time and memory consumption were very small.

Reduction Max Features Score Time/Iteration Memory

0% 213 57.17 127” 862 MBs

20% 151 57.19 123” 824 MBs

30% 149 57.02 124” 823 MBs

40% 128 56.32 123” 819 MBs

50% 107 56.44 121” 815 MBs

60% 85 55.53 121” 814 MBs

70% 64 54.65 106” 812 MBs

80% 43 54.50 105” 750 MBs

Table 5: Results for the 25MB English corpus.
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Figure 26: set Cb using B category bounds 70%-75% and 3000 iterations with dimen-

sionality 15 x 20
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Figure 27: set Cb using B category bounds 70%-75% and 3000 iterations with dimen-

sionality 17 x 38

2.4 German Monolingual Language Models

Following the same approach, we developed SOMs that were used for disambiguation

for German as the target language. Such an example is illustrated in the map histograms

in Figures 35 and 36. In particular, we used a German corpus of 100 MBs to train two

SOMs with different limits for the the B category. Specifically, the map presented in

Figure 35 uses during training a feature vector containing the words that correspond

to the 80%-82% of the occurences in the corpus. Analogously, for the map shown in

Figure 36 we set the bounds of the B category to 70% and 80%. Clearly, in the latter map

we see a more uniform distribution which is more appropriate for the disambiguation

task, as it groups words into small clusters in terms of their context in the corpus, and

hence, we are able to distinguish a good choice from a bad one when asked to resolve

a disjunction arising from the numerous translations of the lexicon from each word in

the source language. On the other hand, the map shown in Figure 35 shows an uneven

distribution of words into neurons which is rather inconvenient for our purposes since

a large proportion of the vocabulary is associated with just a few neurons, and thus,
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Figure 28: set Cb using B category bounds 70%-75% and 3000 iterations with dimen-

sionality 30 x 50

makes it impossible in many cases to discern one word from another in terms of their

matching units.

3 N-gram based Disambiguation

We have developed a module for the same purposes that relies on a language model

which leverages n-gram modeling techniques. However, in our case an n-gram is a

contiguous sequence of phrase heads and/or functional heads. More specifically, our

language model consists of a composite model that combines trigrams and bigrams,

as well. In particular, if a specific trigram, say (a, b, c), is absent from the language

model that we have extracted from the available English corpus, then the specific tri-

gram is analyzed into bigrams, namely (a, b) and (b, c). Next, assuming independence,

we are able to compute the probability of the initial trigram p(a, b, c) from the prod-

uct of p(a, b) and p(b, c) using our complementary bigram language model. On the

downside, no smoothing technique is used for the unseen words of n-grams.
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Figure 29: set Cb SOM using B category bounds 70%-75% and 3000 iterations with fil-

tered 20% of the rarest words

The input of the algorithm consists of a sequence of disjunctive heads and/or func-

tional heads (d1, · · · , dn). Each disjunctive word expresses a number of different word

translations for the corresponding word in the source language. As a result, a large

number of translations can be compiled by combining different translations from each

disjunctive word. Therefore, our main concern is to retrieve efficiently the most prob-

able sequence of words given a sequence of disjunctive words. In this work, we adapt

the well-known Viterbi algorithm accordingly.

To elaborate, the probability of a given sequence of n words, say (w1, · · · , wn),
p(w1, · · · , wn) under our independence assumption it is equal to p(w1, w2, w3) ×
p(w2, w3, w4) × · · · × p(wn−2, wn−1, wn) =

∏n−2
j=1 p(wj, wj+1, wj+2). To this end, we ex-

amine in turn all congregated words from each disjunctive word in the given sequence.

Then, when the i-th word wi from the m-th disjunctive word dm is examined, the tri-

gram probability p(dm.wi, dm−1.wj, dm−2.wk) is retrieved from the extracted language

model, which is stored on the disk, for each alternative combination of the previous

words comprised in the disjunctive words preceding dm. Note that the same combina-

tions of words precede each word wi comprised in dm. However, each has a different

occurrence probability generally when combined with wi.
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Figure 30: set Cb SOM using B category bounds 70%-75% and 3000 iterations with fil-

tered 30% of the rarest words

In the core of the disambiguation process lies matrix Pwith length equal to the num-

ber of disjunctive words in the sequence. In turn, each element Pm has a length equal

to the number of distinct word translations returned by the PRESEMT lexicon for the

m-th word in the source language. Then, each element Pm,i,j, which is associated with

word wi from disjunctive word dm and word wj for disjunctive word dm−1 is set to the

maximum probability of occurrence of the trigram dm.wi, dm−1.wj, dm−2.wk from all k

alternatives for disjunctive word dm−2. Hence, Pm,i,j will be set to Pm−1,j,k×p(wi, wj, wk),
if and only if, this is the combination with the maximum probability, whereas all other

options are discarded, and thus, contributing to reduced memory requirements and

processing time. Note that we also take into account the occurrence probability of the

best previous sequence of words when we multiply the probability of the triple with

Pm−1,j,k which corresponds to the optimum combination of word translations up to the

j-th word of the m − 1-th disjunctive word dm−1.wj. Additionally, an auxiliary matrix

J of the same dimensionality as P is used to store all options made for optimum sub-

sequences of word translations. More formally, Jm,i,j = argmax
x
Pm−1,j,x × p(wi, wj, wx).

After all disjunctive words have been examined, the path with the alternatives which

altogether constitute the translation of maximum probability is formed by backtracking
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Figure 31: set Cb SOM using B category bounds 70%-75% and 3000 iterations with fil-

tered 40% of the rarest words

and selecting the minimum “cost” translations. We start by finding the position of the

last element of the path of the maximum probability argmax
x,y
Pn,x,y, where n stands for

the total length of the sequence of disjunctive words, and we then add the J(n, x, y)-th

translation of the n-th (last) word translation to the result. Next, we proceed progres-

sively with adding to the answer the next element at position J(n− 1, y, J(n, x, y)), and

so on ... The increased complexity of the algorithm emanates from the fact that instead

of keeping track of just one transition for each possible word translationwi, as we would

do for bigrams, we need to process words and transitions in pairs as if they constitute

one symbol, though, in such a manner that we are still able to tell them apart when

needed.

Finally, results are shown in the next section where we combine this disambiguation

method with other techniques in order to accomplish a desirable result. Towards this

end, we use the SRILM toolkit [1] to process efficiently large monolingual corpora (of

approximate size tens of gigabytes in our case) and build our language models.
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Figure 32: set Cb SOM using B category bounds 70%-75% and 3000 iterations with fil-

tered 50% of the rarest words

4 Phrase Heads and Functional Heads Processing

Furthermore, we developed a special version for our SOM disambiguation tool and the

n-gram disambiguation module, which are both used to disambiguate the heads and

the functional heads of all phrases in a sentence. Specifically, we propose a two stage

disambiguation paradigm. First, we congregate all heads and functional heads of the

same sentence by themselves in the same structure with their initial turn. Next, all dis-

junctions are resolved using either of the aforementioned techniques, namely (i) SOMs,

or (ii) n-grams, and the disambiguated words will replace the corresponding disjunctive

words. Then, the rest of each phrase is processed separately according to a similarity cri-

terion which compares each phrase with a large pool of similar phrase instances to select

the best one (see [10] for more details on the technique). We also developed two main

variations of this technique which ameliorate the quality of the results from the disam-

biguation process. The first variation of the original method includes extracting only the

heads from the phrases producing a language model dedicated to disambiguating head

words. Then a second separate language model is produced which is used for deciding

prepositions, and functional head words in general, according to the already set head
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Figure 33: set Cb SOM using B category bounds 70%-75% and 3000 iterations with fil-

tered 60% of the rarest words

words. Last but not least, we also created a language model for the disambiguation of

verbs and nouns and then the remaining elements of each phrase are processed accord-

ing to their frequencies in the monolingual corpus and the similarity of the phrase to

already seen examples from the monolingual corpus.

In the following we present indicative examples for our head-processing paradigm.

Consider the sentence: “be the year {that/that/which/who} {drive/driven/guide/lead/result}

{at/in/into/on/to/upon} {eruption/explosion/outbreak/outburst} of the civil war” which is sepa-

rated into five phrases, namely:

• be

• the year {that/that/which/who}

• {drive/driven/guide/lead/result}

• {at/in/into/on/to/upon} {eruption/explosion/outbreak/outburst}

• of the civil war
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Figure 34: set Cb SOM using B category bounds 70%-75% and 3000 iterations with fil-

tered 70% of the rarest words
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Figure 35: set Cc German SOM using B category bounds 80%-82% and 600 iterations.
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Figure 36: set Cc German SOM using B category bounds 70%-75% and 480 iterations.

0

5

10

15

20

25

30

0

10

20

30

40

500

50

100

150

200

250

300

Figure 37: Training headSOM using English corpus (3GBs) with B category bounds

70%-85% and 1200 iterations.
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Figure 38: Training headSOM using English corpus (3GBs) with B category bounds

70%-75% and 1200 iterations.

Next, we extract the head and the functional head of each phrase in a single sequence

of disjunctive and single words. More analytically, we have for each phrase:

• head: be

• head: year

• head: {drive/driven/guide/lead/result}

• fhead: {at/in/into/on/to/upon} head: {eruption/explosion/outbreak/outburst}

• head: war

Then, using our n-gram based disambiguator we end up with the following se-

quence of disambiguated head words and functional heads: “be”, “year”, “lead”, “to”,

“outbreak”, “war”. On the other hand, using our SOM-based disambiguation paradigm

we get: “be”, “year”, “result”, “to”, “eruption”, “war”. Given the referenced translation

to be compared “it be the year that lead to the outbreak of the civil war”, we can easily ob-

serve that it coincides with the result from the n-gram based disambiguation example.
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Figure 39: Training headSOM using German corpus with B category bounds 70%-75%

and 500 iterations.
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Figure 40: A representation of the disjunctive words over the Kohonen map along with

the selected route that includes the selected head-words.

Overall, n-gram based disambiguation results are significantly better than the corre-

sponding SOM-based disambiguation results. More specifically, we make use of an
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indicative unigram-based measure which captures the success of a specific translation.

To elaborate, for each sentence we divide the number of disambiguated words which

also appear in the referenced translation by the total number of words. Then, we av-

erage the scores from all evaluated sentences, as in Eq. 1. Therewith, for a particular

test-set consisting of 40 random sentences extracted from various sources, like press,

blogs, web-sites, etc., we see that our SOM-based disambiguation paradigm achieves a

general score of 45.61%, accounting for head and functional words only and not all pos-

sibilities, whereas the n-gram based disambiguation raises the bar a great deal by easily

overpassing the 60% threshold, thereby, resulting in a performance gap of 18 units ap-

proximately.
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Figure 41: A representation of the disjunctive words over the Kohonen map along with

the selected route.

Method heads-fheads j-heads vn-heads

BLEU score 0.2557 0.2989 0.3202

Table 6: Disambiguation results for various head-based models.

Two successful variations of the aforementioned model, we will henceforth refer

to as heads-fheads, were also developed. First, we tried disambiguating only the head

words of the phrases, just like we described earlier, and then in each phrase separately
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Bank Movement Occupation Passage Plant AVG

n-grams 38.64 35.82 31.25 23.48 30.77 31.99

SOM 31.25 30.77 20.0 15.38 21.43 23.77

Baseline 2.49 3.91 13.45 4.58 11.70 7.23

Table 7: Disambiguation results for the SEMEVAL benchmark.

we disambiguate each functional head word according to the best matching bigram us-

ing the predetermined head word from the previous stage. Henceforth, we will refer

to this disambiguation method as j-heads. Second, an alternative model was imple-

mented according to which we disambiguate just the head words and the functional

head words whose part-of-speech is also verbs or nouns. Again, the rest of each phrase

is disambiguated according to similarity and frequency criteria as proposed in [10]. In

particular, we compare the remaining part of each phrase with a large pool of similar

phrase instances to select the best one in the translation. We will henceforth refer to

this disambiguation method as vn-heads. More specifically, in Table 6 we present the

results for a development test-set of 200 sentences after we created language models

based on an English corpus of approximately 10.5 GBs (in VERT format). The first ba-

sic method achieved a BLEU score of 0.2557, the second 0.2989 and the last 0.3202. In

particular, our language model for the first approach, heads-fheads, includes 8002227 tri-

grams and 4221878 bigrams. The second approach, j-heads, considers 4739597 trigrams,

since it uses only a subset of first approach where all included words are head words

(functional heads are omitted) and 5402581 bigrams. It also uses the bigrams from the

first approach as an auxiliary language model when resolving disjunctions for func-

tional heads by considering the already determined head words. The last language

model, vn-heads, which comprises only verbs and nouns includes 4702581 trigrams and

3739597 bigrams.

To the best of our knowledge, the most conspicuous benchmark in analyzing the

strengths and weaknesses of word sense disambiguation (WSD) applications is SE-

MEVAL [7]. This evaluation procedure involves translating a set of 100 sentences, and

each time we concentrate on the translation of a specific word. Specifically, these 100

sentences are divided into five groups of twenty sentences comprised in each group. In

each of the five groups we compare the translations of a specific English word which

exists in all sentences of the group as it is returned by our system with the correspond-
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ing referenced ones. Namely, the words representing each group are: bank, movement,

occupation, passage, plant.

However, since we want to analyze the performance of just the first stage of the dis-

ambiguation process, which involves only the disambiguation of head and functional

head words, using each of the aforementioned techniques, we have to remove from

each group the sentences which have their test words neither as a head word, nor as

a functional head. Otherwise, our results would be obscured by the complementary

disambiguation method of the second stage of the procedure and we would not be able

to make solid judgements about the performance of our SOM-based and n-gram based

disambiguation methods. Next, after isolating these sentences from the original bench-

mark out of necessity, we have 15 sentences for the sentence-group represented by the

word bank, 17 for the group represented by movement, 16 for the occupation-group, all 20

for the passage group but only 10 for the plant-group.

Then, we construct result Table 7 using the normalized variant proposed by Jabbari

et al. in [3], here referred to as BestJHG. For each sentence ti, with 1 ≤ i ≤ N , where

N stand for the number of test items, let Hi denote the set of human translations. For

each ti there is a function freqi returning the count of how many annotators chose it

for each term in Hi (0 for all others) and a value maxfreqi for the maximum count for

any term in Hi . The pairing of Hi and freqi constitutes a multiset representation of the

human answer set. Let |Si| denote the multiset cardinality of S according to freqi, i.e.,∑
α∈Ai

freqi(α), the sum of all counts in S. The BestJHG measure is defined as follows:

BestJHG(i) =

∑
α∈Ai

freqi(α)

maxfreqi × |Ai|
(2)

where Ai is the set of translations for test item i produced by the system. The optimal

score of 100.0% is achieved by returning a single translation whose count is maxfreqi ,

with proportionally lesser credit given to answers in Hi with smaller counts.

The baselines from [6] are based on the output of the GIZA++ word alignments on

the Europarl corpus and just returns the most frequent translation of a given word. We

observe a similar pattern of results emerging from Table 7. In Figure 41 we present

an example for translating into German the sentence from SEMEVAL (English to Ger-

man): “der BIS koennen abschliessen Alarmbereitschaft Akkreditiv abkommen bei der glaeubiger

gegend zentrale Bank falls sie haette also abfragen”.
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5 Conclusions

To recapitulate, we studied the problem of Word Translation Disambiguation (WTD) in

the context of two completely different approaches. First, we consider the applicabil-

ity of SOMs in order to resolve disjunctions among different translations. A number

of routes is formed on the SOM the vertexes of which correspond to the selection of a

specific translation. Hence, among all possible routes we select the shortest in a sense

that is comprises translations that are more relevant to each other as they cooccur more

frequently in the corpus used to train the SOM. Second, we implemented a conven-

tional disambiguation module which relies on a combination of trigrams and bigrams.

In particular, whenever an encountered trigram is not available in our language model,

its probability is given by the normalized product of the probabilities of the two con-

secutive bigrams it is reduced to. Both approaches were scrutinized and studied metic-

ulously under a number of different scenarios. However, the n-gram based approach

was more effective and produced better results.
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