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Abstract

Modal transition systems (MTS) is a well-studied specification formalism of reac-

tive systems supporting a step-wise refinement methodology. Despite its many ad-

vantages, the formalism as well as its currently known extensions are incapable of

expressing some practically needed aspects in the refinement process like exclusive,

conditional and persistent choices. We introduce a new model called parametric

modal transition systems (PMTS) together with a general modal refinement notion

that overcome many of the limitations and we investigate the computational com-

plexity of modal refinement checking.
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†The author is a holder of Brno PhD Talent Financial Aid and is supported by the Czech Science

Foundation, grant No. P202/10/1469.
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1 Introduction

The specification formalisms of Modal Transition Systems (MTS) [LT88, AHL+08] grew

out of a series of attempts to achieve a flexible and easy-to-use compositional develop-

ment methodology for reactive systems. In fact the formalism of MTS may be seen as a

fragment of a temporal logic [BL92], while having a behavioural semantics allowing for

an easy composition with respect to process constructs.

In short, MTS are labelled transition systems equipped with two types of transi-

tions: must transitions which are mandatory for any implementation, and may transi-

tions which are optional for an implementation. Refinement of an MTS now essentially

consists of iteratively resolving the unsettled status of may transitions: either by remov-

ing them or by turning them into must transitions.

It is well admitted (see e.g. [RBB+09]) that MTS and their extensions like disjunc-

tive MTS (DMTS) [LX90], 1-selecting MTS (1MTS) [FS08] and transition systems with

obligations (OTS) [BK10] provide strong support for a specification formalism allowing

for step-wise refinement process. Moreover, the MTS formalisms have applications in

other contexts, which include verification of product lines [GLS08, LNW07], interface

theories [UC04, RBB+09] and modal abstractions in program analysis [GHJ01, HJS01,

NNN08].

Unfortunately, all of these formalisms lack the capability to express some intuitive

specification requirements like exclusive, conditional and persistent choices. In this

paper we extend considerably the expressiveness of MTS and its variants so that it

can model arbitrary Boolean conditions on transitions and also allows to instantiate

persistent transitions. Our model, called parametric modal transition systems (PMTS), is

equipped with a finite set of parameters that are fixed prior to the instantiation of the

transitions in the specification. The generalized notion of modal refinement is designed

to handle the parametric extension and it specializes to the well-studied modal refine-

ments on all the subclasses of our model like MTS, disjunctive MTS and MTS with obli-

gations.

To the best of our knowledge, this is the first sound attempt to introduce persistence

into a specification formalism based on modal transition systems. The most related

work is by Fecher and Schmidt on 1-selecting MTS [FS08] where the authors allow to

model exclusive-or and briefly mention the desire to extend the formalism with persis-

tence. However, as in detail explained in Appendix A, their definition does not capture
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the notion of persistence. Our formalism is in several aspects semantically more general

and handles persistence in a complete and uniform manner.

The main technical contribution, apart from the formalism itself, is a comprehensive

complexity characterization of modal refinement checking on all of the practically rele-

vant subclasses of PMTS. We show that the complexity ranges from P-completeness to

Π
p
4-completeness, depending on the requested generality of the PMTS specifications on

the left-hand and right-hand sides.

2 Parametric Modal Transition Systems

In this section we present the formalism of parametric modal transition systems (PMTS),

starting with a motivating example and continuing with the formal definitions, fol-

lowed by the general notion of modal refinement.

2.1 Motivation

Modal transition systems and their extensions described in the literature are lacking the

capability to express several specification requirements like exclusive, conditional and

persistent choices. We shall now discuss these limitations on an example as a motivation

for the introduction of parametric MTS formalism with general Boolean conditions in

specification requirements.

Consider a simple specification of a traffic light controller that can be at any moment

in one of the four predefined states: red, green, yellow or yellowRed. The requirements of

the specification are: when green is on the traffic light may either change to red or yellow

and if it turned yellow it must go to red afterward; when red is on it may either turn to

green or yellowRed, and if it turns yellowRed (as it is the case in some countries) it must

go to green afterwords.

Figure 1a shows an obvious MTS specification (defined formally later on) of the pro-

posed specification. The transitions in the standard MTS formalism are either of type

may (optional transitions depicted as dashed lines) or must (required transitions de-

picted as solid lines). In Figure 1c, Figure 1d and Figure 1e we present three different

implementations of the MTS specification where there are no more optional transitions.

The implementation I1 does not implement any may transition as it is a valid possibility

to satisfy the specification S1. Of course, in our concrete example, this means that the

light is constantly green and it is clearly an undesirable behaviour that cannot be, how-
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(f) Specification S3
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Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red)⊕ (ready, yellow))

∧(reqYfromG⇔ (ready, yellow))
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYfromR⇔ (ready, yellowRed))

(g) PMTS specification S4

Figure 1: Specifications and implementations of a traffic light controller

ever, easily avoided. The second implementation I2 on the other hand implements all

may transitions, again a legal implementation in the MTS methodology but not a desir-

able implementation of a traffic light as the next action is not always deterministically

given. Finally, the implementation I3 of S1 illustrates the third problem with the MTS

specifications, namely that the choices made in each turn are not persistent and the im-

plementation alternates between entering yellow or not. None of these problems can be

avoided when using the MTS formalism.

A more expressive formalism of disjunctive modal transition systems (DMTS) can

overcome some of the above mentioned problems. A possible DMTS specification S2
is depicted in Figure 1b. Here the ready and stop transitions, as well as ready and go

ones, are disjunctive, meaning that it is still optional which one is implemented but

at least one of them must be present. Now the system I1 in Figure 1c is not a valid
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implementation of S2 any more. Nevertheless, the undesirable implementations I2 and

I3 are still possible and the modelling power of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [BK10], we can

model the traffic light using specification as a transition system with arbitrary1 obliga-

tion formulae. These formulae are Boolean propositions over the outgoing transitions

from each state, whose satisfying assignments yield the allowed combinations of out-

going transitions. A possible specification called S3 is given in Figure 1f and it uses the

operation of exclusive-or. We will follow an agreement that whenever the obligation

function for some node is not listed in the system description then it is implicitly under-

stood as requiring all the available outgoing transitions to be present. Due to the use

of exclusive-or in the obligation function, the transition systems I1 and I2 are not valid

implementation any more. Nevertheless, the implementation I3 in Figure 1e cannot be

avoided in this formalism either.

Finally, the problem with the alternating implementation I3 is that we cannot en-

force in any of the above mentioned formalisms a uniform (persistent) implementation

of the same transitions in all its states. In order to overcome this problem, we propose

the so-called parametric MTS where we can, moreover, choose persistently whether the

transition to yellow is present or not via the use of parameters. The PMTS specification

with two parameters reqYfromR and reqYfromG is shown in Figure 1g. Fixing a priori

the (Boolean) values of the parameters makes the choices permanent in the whole im-

plementation, hence we eliminate also the last problematic implementation I3.

2.2 Definition of Parametric Modal Transition System

We shall now formally capture the intuition behind parametric MTS introduced above.

First, we recall the standard propositional logic.

A Boolean formula over a set X of atomic propositions is given by the following

abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ∧ψ | ϕ∨ψ

where x ranges over X. The set of all Boolean formulae over the set X is denoted by

B(X). Let ν ⊆ X be a truth assignment, i.e. a set of variables with value true, then the

satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and the satisfaction

of the remaining Boolean connectives is defined in the standard way. We also use the

1In the transition systems with obligations only positive Boolean formulae are allowed.
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standard derived operators like exclusive-or ϕ⊕ψ = (ϕ∧¬ψ)∨ (¬ϕ∧ψ), implication

ϕ⇒ ψ = ¬ϕ∨ψ and equivalence ϕ⇔ ψ = (¬ϕ∨ψ) ∧ (ϕ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.

Definition 2.1. A parametric MTS (PMTS) over an action alphabet Σ is a tuple (S, T, P,Φ)

where S is a set of states, T ⊆ S×Σ×S is a transition relation, P is a finite set of parameters,

andΦ : S→ B((Σ×S)∪P) is an obligation function over the atomic propositions containing

outgoing transitions and parameters. We implicitly assume that whenever (a, t) ∈ Φ(s) then

(s, a, t) ∈ T . By T(s) = {(a, t) | (s, a, t) ∈ T } we denote the set of all outgoing transitions of s.

We recall the agreement that whenever the obligation function for some node is not

listed in the system description then it is implicitly understood as Φ(s) =
∧
T(s), with

the empty conjunction being tt.

We call a PMTS positive if, for all s ∈ S, any negation occurring in Φ(s) is applied

only to a parameter. A PMTS is called parameter-free if P = ∅. We can now instantiate

the previously studied specification formalisms as subclasses of PMTS.

Definition 2.2. A PMTS is called

• transition system with obligation (OTS) if it is parameter-free and positive,

• disjunctive modal transition system (DMTS) if it is an OTS and Φ(s) is in the con-

junctive normal form for all s ∈ S,

• modal transition system (MTS) if it is a DMTS and Φ(s) is a conjunction of positive

literals (transitions) for all s ∈ S, and

• implementation (or simply a labelled transition system) if it is an MTS and Φ(s) =∧
T(s) for all s ∈ S.

Note that positive PMTS, despite the absence of a general negation and the impos-

sibility to define for example exclusive-or, can still express useful requirements like

Φ(s) = p ⇒ (a, t) ∧ ¬p ⇒ (b, u) requiring in a state s a conditional presence of

certain transitions. Even more interestingly, we can enforce binding of actions in dif-

ferent states, thus ensuring certain functionality. Take a simple two state-example:

Φ(s) = p ⇒ (request, t) and Φ(t) = p ⇒ (response, s). We shall further study OTS with

formulae in the disjunctive normal form that are dual to DMTS and whose complexity

of parallel composition is lower [BK10] while still being as expressive as DMTS.
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2.3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal refinement

that allows for a step-wise system design (see e.g. [AHL+08]). We shall now provide

such a refinement notion for our general PMTS model so that it will specialize to the

well-studied refinement notions on its subclasses. In the definition, the parameters are

fixed first (persistence) followed by all valid choices modulo the fixed parameters that

now behave as constants.

First we set the following notation. Let (S, T, P,Φ) be a PMTS and ν ⊆ P be a truth

assignment. For s ∈ S, we denote by Tranν(s) = {E ⊆ T(s) | E ∪ ν |= Φ(s)} the set of all

admissible sets of transitions from s under the fixed truth values of the parameters.

We can now define the notion of modal refinement between PMTS.

Definition 2.3 (Modal Refinement). Let (S1, T1, P1, Φ1) and (S2, T2, P2, Φ2) be two PMTSs.

A binary relation R ⊆ S1 × S2 is a modal refinement if for each µ ⊆ P1 there exists ν ⊆ P2
such that for every (s, t) ∈ R holds

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s ′) ∈M : ∃(a, t ′) ∈ N : (s ′, t ′) ∈ R ∧

∀(a, t ′) ∈ N : ∃(a, s ′) ∈M : (s ′, t ′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if there exists a modal refinement R such

that (s, t) ∈ R.

Example 2.4. Consider the rightmost PMTS in Figure 2. It has two parameters reqYfromG

and reqYfromR whose values can be set independently and it can be refined by the system in the

middle of the figure having only one parameter reqY. This single parameter simply binds the two

original parameters to the same value. The PMTS in the middle can be further refined into the

implementations where either yellow is always used in both cases, or never at all. Notice that

there are in principle infinitely many implementations of the system in the middle, however, they

are all bisimilar to either of the two implementations depicted in the left of Figure 2.

In the next section, we shall investigate the complexity of positive subclasses of

PMTS. For this reason we prove the following lemma showing how the definition of

modal refinement can be simplified in this particular case.

We shall first realize that in positive PMTS and for any truth assignment ν, Tranν(s)

is upward closed, meaning that ifM ∈ Tranν(s) andM ⊆M ′ ⊆ T(s) thenM ′ ∈ Tranν(s).
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Figure 2: Example of modal refinement

Lemma 2.5. Consider Definition 2.3 where the right-hand side PMTS is positive. Now the

condition in Definition 2.3 can be equivalently rewritten as a conjunction of conditions (1) and

(2)

∀M ∈ Tranµ(s) : ∀(a, s ′) ∈M : ∃(a, t ′) ∈ T(t) : (s ′, t ′) ∈ R (1)

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t) (2)

where matcht(M) denotes the set {(a, t ′) ∈ T(t) | ∃(a, s ′) ∈M : (s ′, t ′) ∈ R}. If the left-hand

side PMTS is moreover positive too, Condition (1) is equivalent to

∀(a, s ′) ∈ T(s) : ∃(a, t ′) ∈ T(t) : (s ′, t ′) ∈ R . (3)

Proof. We shall first argue that the condition of modal refinement is equivalent to the

conjunction of Conditions (4) and (5).

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s ′) ∈M : ∃(a, t ′) ∈ N : (s ′, t ′) ∈ R (4)

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, t ′) ∈ N : ∃(a, s ′) ∈M : (s ′, t ′) ∈ R (5)

Let µ, ν, R, s and t be fixed. Definition 2.3 trivially implies both Conditions (4) and

(5). We now prove that (4) and (5) imply the condition in Definition 2.3.

Let M ∈ Tranµ(s) be arbitrary. There is some N1 ∈ Tranν(t) satisfying (4) and some

N2 ∈ Tranν(t) satisfying (5). Let now N ′1 = {(a, t ′) ∈ N1 | ∃(a, s ′) ∈ M : (s ′, t ′) ∈ R}.

Consider N = N ′1 ∪N2. Clearly, as Tranν(t) is upward closed, N ∈ Tranν(t). Moreover,

due to Condition (4) we have some (a, t ′) ∈ N1 such that (s ′, t ′) ∈ R. Clearly, (a, t ′) ∈ N ′1
and thus also in N.

Now let (a, t ′) ∈ N be arbitrary. If (a, t ′) ∈ N2, due to Condition (5) we have some

(a, s ′) ∈ M such that (s ′, t ′) ∈ R. If (a, t ′) 6∈ N2 then (a, t ′) ∈ N ′1. The existence of

(a, s ′) ∈M such that (s ′, t ′) ∈ R is then guaranteed by the definition of N ′1.
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Let us now proceed with proving the claims of the lemma. Condition (4) is trivially

equivalent to (1) since Tranν(t) is upward closed. Condition (5) is equivalent to (2).

Indeed, (2) clearly implies (5) and we show that also (5) implies (2). Let M be arbitrary.

We then have some N satisfying (5). Clearly, N ⊆ matcht(M). Since Tranν(t) is upward

closed, N ∈ Tranν(t) implies matcht(M) ∈ Tranν(t). Due to the upward closeness of

both Tranµ(s) and Tranν(t) in the case of a positive left-hand side, the equivalence of (1)

and (3) follows.

Theorem 2.6. Modal refinement as defined on PMTS coincides with the standard modal refine-

ment notions on MTS, DMTS and OTS. On implementations it coincides with bisimulation.

Proof. The fact that Definition 2.3 coincides with modal refinement on OTS as defined

in [BK10] is a straightforward corollary of Lemma 2.5 and its proof. Indeed, the two

conditions given in [BK10] are exactly conditions (3) and (5). As the definition of modal

refinement on OTS coincides with modal refinement on DMTS (as shown in [BK10]) and

thus also on MTS, the proof is done.

However, for the reader’s convenience, we present a direct proof that Definition 2.3

coincides with modal refinement on MTS. Assume a parameter-free PMTS (S, T, P,Φ)

where Φ(s) is a conjunction of transitions for all s ∈ S, in other words it is a standard

MTS where the must transitions are listed in the conjunction and the may transitions

are simply present in the underlying transition system but not a part of the conjunc-

tion. Observe that every transition (s, a, t) ∈ T is contained in some M ∈ Tran∅(s).

Further, each must transition (s, a, t) ∈ T is contained in all M ∈ Tran∅(s). Therefore,

the first conjunct in Definition 2.3 requires that for all may transition from s there be a

corresponding one from t with the successors in the refinement relation. Similarly, the

second conjunct now requires that for all must transitions from t there be a correspond-

ing must transition from s. This is exactly the standard notion of modal refinement as

introduced in [LT88].

3 Complexity of Modal Refinement Checking

We shall now investigate the complexity of refinement checking on PMTS and its rele-

vant subclasses. Without explicitly mentioning it, we assume that all considered PMTS

are now finite and the decision problems are hence well defined. The complexity

bounds include classes from the polynomial hierarchy (see e.g. [Pap94]) where for ex-

ample Σp
0 = Π

p
0 = P, Πp

1 = coNP and Σp
1 = NP.
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Table 1: Complexity of modal refinement checking of parameter-free systems

Boolean Positive pCNF pDNF MTS

Boolean Π
p
2-complete coNP-complete

∈ coNP
coNP-complete

∈ coNP

P-hard P-hard

Positive Π
p
2-complete coNP-complete P-complete coNP-complete P-complete

pCNF Π
p
2-complete coNP-complete P-complete coNP-complete P-complete

pDNF Π
p
2-complete P-complete P-complete P-complete P-complete

MTS Π
p
2-complete P-complete P-complete P-complete P-complete

Impl NP-complete P-complete P-complete P-complete P-complete

3.1 Parameter-Free Systems

Since even the parameter-free systems have interesting expressive power and the com-

plexity of refinement on OTS has not been studied before, we first focus on parameter-

free systems. Moreover, the results of this subsection are then applied to parametric

systems in the next subsection. The results are summarized in Table 1. The rows in

the table correspond to the restrictions on the left-hand side PMTS while the columns

correspond to the restrictions on the right-hand side PMTS. Boolean denotes the gen-

eral system with arbitrary negation. Positive denotes the positive systems, in this case

exactly OTS. We use pCNF and pDNF to denote positive systems with formulae in con-

junctive and disjunctive normal forms, respectively. In this case, pCNF coincides with

DMTS. The special case of satisfaction relation, where the refining system is an imple-

mentation is denoted by Impl. We do not include Impl to the columns as it makes sense

that an implementation is refined only to an implementation and here modal refinement

corresponds to bisimilarity that is P-complete [BGS92] (see also [SJ05]). The P-hardness

is hence the obvious lower bound for all the problems mentioned in the table.

We start with the simplest NP-completeness result.

Proposition 3.1. Modal refinement between an implementation and a parameter-free PMTS is

NP-complete.

Proof. The containment part is straightforward. First we guess the relation R. As s is an

implementation then the set Tran∅(s) is a singleton. We thus only need to further guess

N ∈ Tranν(t) and then in polynomial time verify the two conjuncts in Definition 2.3.
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The hardness part is by a simple reduction from SAT. Let ϕ(x1, . . . , xn) be an

given Boolean formula (instance of SAT). We construct two PMTSs (S, T, P,Φ) and

(S ′, T ′, P ′, Φ ′) such that (i) S = {s, s ′}, T = (s, a, s ′), P = ∅, Φ(s) = (a, s ′) and Φ(s ′) = tt

and (ii) S ′ = {t, t1, . . . , tn}, T = {(t, a, ti) | 1 ≤ i ≤ n.}, P ′ = ∅, Φ(t) = ϕ[(a, ti)/xi] and

Φ(ti) = tt for all i, 1 ≤ i ≤ n. Clearly, ϕ is satisfiable if and only if s ≤m t.

Next we show that modal refinement is Πp
2-complete. The following lemma intro-

duces a gadget used also later on in other hardness results. We will refer to it as the

∗-construction.

Proposition 3.2. Modal refinement between two parameter-free PMTS is Πp
2-hard even if the

left-hand side is an MTS.

Proof. The proof is by polynomial time reduction from the validity of the quantified

Boolean formula ψ ≡ ∀x1 . . . ∀xn∃y1 . . . ∃ym : ϕ(x1, . . . , xn, y1, . . . , ym) to the refinement

checking problem s ≤m twhere s and t are given as follows.

s

s ′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s ′)
t

t ′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Let M ∈ Tran∅(s) (clearly (∗, s ′) ∈ M) and we want to argue

that there isN ∈ Tran∅(t) with (∗, t ′) ∈ N such that for all (xi, s
′) ∈M there is (xi, t

′) ∈ N
(clearly the states s ′, t ′ and ti are in modal refinement) and for all (xi, t

′) ∈ N there is

(xi, s
′) ∈M. Such an N can be found by simply including (xi, t

′) whenever (xi, s
′) ∈M

and by adding also (∗, t ′) intoN. Asψ is true, we include intoN also all (∗, ti) whenever

yi is set to true in ψ. Hence we get s ≤m t.

On the other hand if ψ is false then we pick M ∈ Tran∅(s) such that M corresponds

to the values of xi’s such that there are no values of y1, . . . , ym that make ψ true. This

means that from t there will be no transitions as Tran∅(t) = ∅ assuming that (xi, t
′) have

to be set to true whenever (xi, s
′) ∈ M, otherwise the refinement between s and t will

fail. However, now (∗, s ′) ∈M cannot be matched from t and hence s 6≤m t.

Proposition 3.3. Modal refinement between two parameter-free PMTS is in Πp
2 .
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Proof. The containment follows directly from Definition 2.3 (note that the parameters

are empty) and the fact that the last conjunction in Definition 2.3 is polynomially verifi-

able once the setsM andNwere fixed. The relation R could be in principle guessed be-

fore it is verified, however, this would increase the complexity bound to Σp
3 . Instead, we

will initially include all pairs (polynomially many) into R and for each pair ask whether

for every M there is N such that the two conjuncts are satisfied. If it fails, we remove

the pair and continue until we reach (after polynomially many steps) the greatest fixed

point. The complexity in this way remains in Πp
2 . We shall use this standard method

also in further proofs and refer to it as a co-inductive computation of R.

3.1.1 Positive Right-Hand Side.

We have now solved all the cases where the right-hand side is arbitrary. We now look at

the cases where the right-hand side is positive. In the proofs that follow we shall use the

alternative characterization of refinement from Lemma 2.5. The following proposition

determines the subclasses on which modal refinement can be decided in polynomial

time.

Proposition 3.4. Modal refinement on parameter-free PMTS is in P, provided that both sides

are positive and either the left-hand side is in pDNF or the right-hand side is in pCNF.

Proof. Due to Lemma 2.5, the refinement is equivalent to the conjunction of (3) and (2).

Clearly, (3) can be checked in P. We show that Condition (2) can be verified in P too.

Recall that (2) says that

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t)

where matcht(M) = {(a, t ′) ∈ T(t) | ∃(a, s ′) ∈M : (s ′, t ′) ∈ R}.

First assume that the left-hand side is in pDNF. If for some M the Condition (2) is

satisfied then it is also satisfied for all M ′ ⊇M, as Tranµ(s) is upwards closed. It it thus

sufficient to verify the condition for all minimal elements (wrt. inclusion) of Tranµ(s). In

this case it correspond to the clauses of Φ(s). Thus we get a polynomial time algorithm

as shown in Algorithm 1.

Second, assume that the right-hand side is in pCNF. Note that Condition (2) can be

equivalently stated as

∀M : matcht(M) 6∈ Tranν(t)⇒M 6∈ Tranµ(s) (6)
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Algorithm 1: Test for Condition (2) of modal refinement (pDNF)
Input : states s and t such thatΦ(s) is in positive DNF andΦ(t) is positive,

relation R

Output: true if s, t satisfy the refinement condition, false otherwise

foreach clause (a1, s1) ∧ · · ·∧ (ak, sk) in Φ(s) do
N← {(a, t ′) ∈ T(t) | ∃i : ai = a∧ (si, t

′) ∈ R};

if N 6∈ Tranν(t) then return false;
return true;

As Φ(t) is in conjunctive normal form then N ∈ Tranν(t) is equivalent to saying that

N has nonempty intersection with each clause of Φ(t). We may thus enumerate all

maximal N 6∈ Tranν(t). Having a maximal N 6∈ Tranν(t), we can easily construct M

such that N = matcht(M). This leads to the polynomial time Algorithm 2.

Algorithm 2: Test for Condition (2) of modal refinement (pCNF)
Input : states s and t such thatΦ(s) is positive andΦ(t) is in positive CNF,

relation R

Output: true if s, t satisfy the refinement condition, false otherwise

foreach clause (a1, t1) ∨ · · ·∨ (ak, tk) in Φ(t) do
M← T(s) \ {(a, s ′) ∈ T(s) | ∃i : ai = a∧ (s ′, ti) ∈ R};

ifM ∈ Tranµ(s) then return false;
return true;

The statement of the proposition thus follows.

Proposition 3.5. Modal refinement on parameter-free PMTS is in coNP, if the right-hand side

is positive.

Proof. Due to Lemma 2.5 we can solve the two refinement conditions separately. Fur-

thermore, both Condition (1) an (2) of Lemma 2.5 can be checked in coNP. The guessing

of R is done co-inductively as described in the proof of Proposition 3.3.

Proposition 3.6. Modal refinement on parameter-free systems is coNP-hard, even if the left-

hand side is in positive CNF and the right-hand side is in positive DNF.

Proof. We reduce SAT into non-refinement. Let ϕ(x1, . . . , xn) be a formula in CNF. We

modifyϕ into an equivalent formulaϕ ′ as follows: add new variables x̃1, . . . , x̃n and for

all i change all occurrences of ¬xi into x̃i and add new clauses (xi ∨ x̃i) and (¬xi ∨ ¬x̃i).

13



Table 2: Complexity of modal refinement checking with parameters

Boolean positive pCNF pDNF

Boolean Π
p
4-complete Π

p
3-complete

∈ Πp
3

Π
p
3-complete

Π
p
2-hard

positive Π
p
4-complete Π

p
3-complete Π

p
2-complete Π

p
3-complete

pCNF Π
p
4-complete Π

p
3-complete Π

p
2-complete Π

p
3-complete

pDNF Π
p
4-complete Π

p
2-complete Π

p
2-complete Π

p
2-complete

MTS Σ
p
3-complete NP-complete NP-complete NP-complete

Impl NP-complete NP-complete NP-complete NP-complete

Observe now that all clauses contain either all positive literals or all negative literals.

Let ψ+ denote a CNF formula that contains all positive clauses of ϕ ′ and ψ− denote a

CNF formula that contains all negative clauses of ϕ ′. As ϕ ′ = ψ+ ∧ ψ− it is clear that

ϕ ′ is satisfiable if and only if (ψ+ ⇒ ¬ψ−) is not valid.

Now we construct two PMTSs (S, T, P,Φ) and (S ′, T ′, P ′, Φ ′) over Σ =

{x1, . . . , xn, x̃1, . . . , x̃n} as follows: (i) S = {s, s ′}, T = {(s, xi, s
′), (s, x̃i, s

′) | 1 ≤ i ≤ n},

P = ∅, Φ(s) = ψ+[(xi, s
′)/xi, (x̃i, s

′)/x̃i] and Φ(s ′) = tt, and (ii) S ′ = {t, t ′}, T ′ =

{(t, xi, t
′), (t, x̃i, t) | 1 ≤ i ≤ n}, P ′ = ∅, Φ(t) = ¬ψ−[(xi, t

′)/xi, (x̃i, t
′)/x̃i] and Φ(t ′) = tt.

Note that by pushing the negation of ψ− inside, this formula can be written as pDNF. It

is easy to see that now s ≤m t if and only if (ψ+ ⇒ ¬ψ−) is valid. Therefore, s 6≤m t if

and only if ϕ is satisfiable.

Note that the exact complexity of modal refinement with the right-hand side being

in positive CNF or MTS and the left-hand side Boolean remains open.

3.2 Systems with Parameters

In the sequel we investigate the complexity of refinement checking in the general case

of PMTS with parameters. The complexities are summarized in Table 2. We start with

an observation of how the results on parameter-free systems can be applied to the para-

metric case.

Proposition 3.7. The complexity upper bounds from Table 1 carry over to Table 2, as follows. If

the modal refinement in the parameter-free case is in NP, coNP orΠp
2 , then the modal refinement
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with parameters is in Πp
2 , Π

p
3 and Πp

4 , respectively. Moreover, if the left-hand side is an MTS, the

complexity upper bounds shift from NP and Πp
2 to NP and Σp

3 , respectively.

Proof. In the first case, we first universally choose µ, we then existentially choose ν and

modify the formulaeΦ(s) andΦ(t) by evaluating the parameters. This does not change

the normal form/positiveness of the formulae. We then perform the algorithm for the

parameter-free refinement. For the second case note that implementations and MTS

have no parameters and we may simply choose (existentially) ν and run the algorithm

for the parameter-free refinement.

We now focus on the respective lower bounds (proof of Proposition 3.9 can be found

in Appendix B).

Proposition 3.8. Modal refinement between an implementation and a right-hand side in posi-

tive CNF or in DNF is NP-hard.

Proof. The proof is by reduction from SAT. Letϕ(x1, . . . , xn) be a formula in CNF and let

ϕ1,ϕ2, . . . ,ϕk be the clauses ofϕ. We construct two PMTSs (S, T, P,Φ) and (S ′, T ′, P ′, Φ ′)

over the action alphabet Σ = {a1, . . . , ak} as follows: (i) S = {s, s ′}, T = {(s, ai, s
′) | 1 ≤

i ≤ k}, P = ∅, Φ(s) =
∧
1≤i≤k(ai, s

′) and Φ(s ′) = tt and (ii) S ′ = {t} ∪ {ti | 1 ≤ i ≤ k},
T ′ = {(t, ai, ti) | 1 ≤ i ≤ k}, P ′ = {x1, . . . , xn}, Φ ′(t) =

∧
1≤i≤k(ai, ti) and Φ ′(ti) = ϕi

for all 1 ≤ i ≤ k. Notice that each ϕi in Φ ′(ti) is in positive form as we negate only the

parameters xi and every clause ϕi is trivially in DNF. Now we easily get that s ≤m t if

and only if ϕ is satisfiable.

Proposition 3.9. Modal refinement is Σp
3-hard even if the left-hand side is MTS.

The following proof introduces a gadget used also later on in other hardness results.

We refer to it as CNF-binding. Further, we use the ∗-construction here.

Proposition 3.10. Modal refinement is Πp
4-hard even if the left-hand side is in positive CNF.

Sketch. Consider aΠp
4-hard QSAT instance, a formulaψ = ∀x∃y∀z∃w : ϕ(x, y, z,w) with

ϕ is in CNF and x, y, z,w vectors of length n. We construct two system s and t and use

the variables {x1, . . . , xn} as parameters for the left-hand side system s, and {y1, . . . , yn}

as parameters for the right-hand side system t.

s

s ′

ti fi zi ∗

Φ(s) = (∗, s ′) ∧ CNF-binding

t

t ′ ui

ti fi zi ∗ ∗

Φ(t) = (∗, s ′) ∧ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi,

(zi, t
′)/zi, (∗, ui)/wi]

for all 1 ≤ i ≤ n
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On the left we require Φ(s) = (∗, s ′) ∧
∧
1≤i≤n

(
(xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)
)

and

call the latter conjunct CNF-binding. Thus the value of each parameter xi is “saved” into

transitions of the system. Note that although both ti and fi may be present, a “minimal”

implementation contains exactly one of them. On the right-hand side the transitions

look similar but we require Φ(t) = (∗, t) ∧ ϕ ′ where ϕ ′ is created from ϕ by changing

every positive literal xi into (ti, t
′), every negative literal ¬xi into (fi, t

′), every zi into

(zi, t
′), and every wi into (∗, ui).

We show that ψ is true iff s ≤m t. Assume first that ψ is true. Therefore, for every

choice of parameters xi there is a choice of parameters yi so that ∀z∃w : ϕ(x, y, z,w) is

true and, moreover, ti or fi is present on the left whenever xi or ¬xi is true, respectively

(and possibly even if it is false). We set exactly all these transitions ti and fi on the

right, too. Further, for every choice of transitions zi on the left there are wi’s so that

ϕ(x, y, z,w) holds. On the right, we implement a transition (zi, t
′) for each zi set to true

and (∗, ui) for eachwi set to true. Now ϕ ′ is satisfied as it has only positive occurrences

of (ti, t
′) and (fi, t

′) and hence the extra ti’s and fi’s do not matter. Now for every

implementation of s we obtained an implementation of t. Moreover, their transitions

match. Indeed, ti’s and fi’s were set the same as on the left, similarly for zi’s. As for the

∗-transition, we use the same argumentation as in the original ∗-construction. On the

left, there is always one. On the right, there can be more of them due towi’s but at least

one is also guaranteed byΦ(t).

Let now s ≤m t. Then for every choice of xi’s—and thus also for every choice of

exactly one transition of ti, fi for each i—there are yi’s so that every choice of transitions

zi can be matched on the right so that ϕ ′ is true with some transitions (∗, ui). Since

choices of ti/fi correspond exactly to choices of xi it only remains to setwi true for each

transition (∗, ui) on the right, thus making ϕ true.

Based on the idea of CNF-binding, the following propositions are proved in Ap-

pendix B.

Proposition 3.11. Modal refinement is Πp
3-hard for the left-hand side in positive CNF and the

right-hand side in positive DNF.

Proposition 3.12. Modal refinement is Πp
2-hard even if both sides are in positive CNF.

The last three propositions use a modification of the CNF-binding idea called DNF-

binding. Instead of (xi ⇒ (ti, s
′)) ∧ (¬xi ⇒ (fi, s

′)) we use (xi ∧ (ti, s
′)) ∨ (¬xi ∧ (fi, s

′))
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to bind parameters of the left-hand side system with transitions of the right-hand side

system. Details are in Appendix B.

Proposition 3.13. Modal refinement is Πp
2-hard even if left-hand side is in positive DNF and

right-hand side is in positive CNF.

Proposition 3.14. Modal refinement is Πp
2-hard even if left-hand side is in positive DNF and

right-hand side is in positive DNF.

Proposition 3.15. Modal refinement is Πp
4-hard even if the left-hand side is in positive DNF.

Although the complexity may seem discouraging in many cases, there is an impor-

tant remark to make. The refinement checking may be exponential, but only in the

outdegree of each state and the number of parameters, while it is polynomial in the

number of states. As one may expect the outdegree and the number of parameters to be

much smaller than the number of states, this means that the refinement checking may

still be done in a rather efficient way. This claim is furthermore supported by the exis-

tence of efficient SAT solvers that may be employed to check the inner conditions in the

modal refinement.

4 Conclusion and Future Work

We have introduced an extension of modal transition systems called PMTS for para-

metric systems. The formalism is general enough to capture several features missing

in the other extensions, while at the same time it offers an easy to understand seman-

tics and a natural notion of modal refinement that specializes to the well-known refine-

ments already studied on the subclasses of PMTS. Finally, we provided a comprehensive

overview of complexity of refinement checking on PMTS and its subclasses.

We believe that our formalism is a step towards a more applicable notion of specifi-

cation theories based on MTS. In the future work we will study logical characterizations

of the refinement relation, investigate compositional properties and focus on introduc-

ing quantitative aspects into the model in order to further increase its applicability.

Acknowledgments. We would like to thank to Sebastian Bauer for suggesting the traf-

fic light example and for allowing us to use his figure environments.
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A Note on Expressiveness of Other MTS Variants

DMTS and OTS are capable of expressing positive Boolean conditions, but not exclusive

or, neither persistence. 1MTS are moreover capable of expressing exclusive or. Never-

theless, 1MTS do not support persistence. The reason is that Definition 25 [FS08] of

refinement relation R has he form of:

∀(s, t) ∈ R :∀γ ∈ choice(s 99K) : ∃δ ∈ choice(t 99K)

∀M ∈ s 99K: ∃N ∈ t 99K: γ(M)Rγ(N)∧

∀N ∈ t→: ∃M ∈ s→: γ(M)Rγ(N)

where the choice functions are chosen dependent on the states s, t. Therefore, in dif-

ferent states refining the same state, different decisions can be made. As an example

consider a specification S with a hypermust transition under a and b to itself and the

corresponding may hypertransition. This systems has an implementation Iwith transi-

tions (I, a, J) and (J, b, I). Indeed, both I and J refine S as in the former case we choose

δ so that δ({(a, S), (b, S)}) = a while in the latter case δ({(a, S), (b, S)}) = b. Thus, the

alternation problem is still present in 1MTS.

B Proofs from Section 3

In this section, we prove Propositions 3.9, 3.11, 3.12, 3.13, 3.14 and 3.15 giving the lower

bounds for the cases not proved in the main text. We start with Proposition 3.9, as its

setting is the simplest.

Proposition 3.9. Modal refinement is Σp
3-hard even if the left-hand side is MTS.

Proof. The proof is done using the construction of the proof of Proposition 3.2 with

parameters added on the right-hand side.

We will make a reduction from the validity of the quantified Boolean formula ψ ≡
∃z1, . . . , zk : ∀x1 . . . ∀xn∃y1 . . . ∃ym :ϕ(z1, . . . , zk, x1, . . . , xn, y1, . . . , ym) to the refinement

checking problem s ≤m t where s and t are given as follows. Moreover, the right-hand

side system has {z1, . . . , zk} as its set of parameters.
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s

s ′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s ′)
t

t ′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Then there exists a valuation ν on {z1, . . . , zk} such that ∀x :

∃y : ϕ(x, y) is true. Using now the same argument as that in the proof of Proposition 3.2,

we get that s ≤m t.

On the other hand letψ be false and let ν be an arbitrary valuation on {z1, . . . , zk}. We

then may again use the reasoning in the proof of Proposition 3.2 to get that s 6≤m t.

We now prove Proposition 3.12, followed by Proposition 3.11. The reason for this

ordering is that the setting of Proposition 3.12 is simpler and the proof involves just one

method, namely that of the CNF-binding, no ∗-construction is used and no additional

actions are needed.

Proposition 3.12. Modal refinement is Πp
2-hard even if both sides are in positive CNF.

Proof. Recall that positive means that there may be negations, but only limited to param-

eter literals. The proof is done by reduction from the validity of ∀x1, . . . , xn∃y1, . . . , ym :

ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is in CNF. The idea is that the left-hand side has only

xi as parameters while the right-hand side has yi as parameters. To ensure that the

valuation of xi is the same on both sides, we bind them through transitions.

Let Σ = {t1, . . . , tn, f1, . . . , fn} be the set of actions. The systems (S, T, P,Φ) and

(S ′, T ′, P ′, Φ ′) are built as follows: S = {s, s ′}, T = {(s, ti, s
′), (s, fi, s

′) | 1 ≤ i ≤ n},

P = {x1, . . . , xn}, Φ(s) =
∧
1≤i≤n((xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)) (note that this may be

written in positive CNF), Φ(s ′) = tt; S ′ = {t, t ′}, T ′ = {(t, ti, t
′), (t, fi, t

′) | 1 ≤ i ≤ n},

P ′ = {y1, . . . , ym}, Φ ′(t) = ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi], Φ ′(t ′) = tt. We now claim that

∀x∃y : ϕ holds if and only if s ≤m t. We show the two implications separately.

Let first ∀x∃y : ϕ hold. Let µ ⊆ P1 be arbitrary. As this is a truth valuation on the xi
variables, we know that there exists a valuation on the yi variables such that ϕ holds.

Let ν ⊆ P2 be such a valuation. Let further M ∈ Tranµ(s) be arbitrary. Clearly, if xi ∈ µ
then (ti, s

′) ∈M and if xi 6∈ µ then (fi, s
′) ∈M.
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We set N = {(x, t ′) | (x, s ′) ∈ M}. Clearly, such N satisfies both conjuncts of the

refinement definition. We need to show that N ∈ Tranν(t). We thus need to show that

N satisfies all the clauses inΦ ′(t) = ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi].

We use the fact that ϕ holds, given the current valuation µ on xi and ν on yi. Let

(`1 ∨ `2 ∨ · · · ∨ `k) be an arbitrary clause of ϕ. Clearly, at least one literal was satisfied.

If that literal was yi or ¬yi then the same literal appears in the modified clause of Φ ′(t)

and we are done. If that literal was xi then it has been changed into (ti, t
′), but as xi ∈ µ,

we have that (ti, t
′) ∈ N. Similarly, if that literal was ¬xi then it has been changed into

(fi, t
′), but as xi 6∈ µ, we have that (fi, t

′) ∈ N. Thus s ≤m t.

For the other implication let ∃x∀y : ¬ϕ hold. We show that s 6≤m t. Let µ be the

valuation of xi such that ∃x∀y : ¬ϕ holds. Let ν be arbitrary. This corresponds to a

valuation on yi.

We now set M = {(ti, s
′) | xi ∈ µ} ∪ {(fi, s

′) | xi 6∈ µ}. Clearly, M ∈ Tranµ(s). Let

further N ∈ Tranν(t). (If Tranν(t) = ∅, we are done.)

We know that given the current x and y valuation, ϕ does not hold. This means

that there exists at least one clause of ϕ that is false. Let (`1 ∨ `2 ∨ · · · ∨ `k) be such

clause. All `j are false, given current valuation µ and ν. However, the modified clause

of Φ ′(t) corresponding to this one is satisfied by N (valuation of (ti, t
′) and (fi, f

′)) as

N ∈ Tranν(t).

Therefore, for some i, either (ti, t
′) ∈ N while xi 6∈ µ or (fi, t

′) ∈ N while xi ∈
µ. In both cases N does not satisfy the second conjunct part of the modal refinement

definition. Therefore s 6≤m t.

The next proposition again reuses the idea of CNF-binding in the very same fashion

as above. Moreover, it handles more actions, more precisely those that appear as zi’s in

Proposition 3.10. Thus, the proof is the same, omitting the ∗-construction. Therefore,

we only provide the reduction without repeating the formal arguments that it indeed

works.

Proposition 3.11. Modal refinement is Πp
3-hard for the left-hand side in positive CNF

and the right-hand side in positive DNF.

Proof. The proof is done by reduction from the validity of the quantified Boolean for-

mula ∀x1, . . . , xk∃y1, . . . , yl∀z1, . . . , zm : ϕwith ϕ in DNF.

Let the action alphabet be Σ = {t1, . . . , tk, f1, . . . , fk, z1, . . . , zm}.
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The two systems (S, T, P,Φ) and (S ′, T ′, P ′, Φ ′) are built as follows: S = {s, s ′},

T = {(s, ti, s
′), (s, fi, s

′) | 1 ≤ i ≤ k} ∪ {(s, zj, s
′) | 1 ≤ j ≤ m}, P = {x1, . . . , xk},

Φ(s) =
∧
1≤i≤n((xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)), Φ(s ′) = tt; S ′ = {t, t ′}, T ′ =

{(t, ti, t
′), (t, fi, t

′) | 1 ≤ i ≤ k} ∪ {(t, zj, t
′) | 1 ≤ j ≤ m}, P ′ = {y1, . . . , yk},

Φ ′(t) = ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi, (zi, t
′)/zi],Φ ′(t ′) = tt.

Now ∀x∃y∀z : ϕ(x, y, z) holds if and only if s ≤m t.

We now modify the idea of CNF-binding to DNF-binding where instead of (xi ⇒
(ti, s

′))∧ (¬xi ⇒ (fi, s
′)) we use (xi∧ (ti, s

′))∨ (¬xi∧ (fi, s
′)) to bind parameters of left-

hand side with transitions of right-hand side. The binding works slightly differently,

as with DNF we are unable to make a conjuction of such formulae for all i. We thus

employ a new special action •. The left-hand side then first requires a •-transition into

n different states si, each requiring the above formula for its respective i.

Proposition 3.13. Modal refinement is Πp
2-hard even if left-hand side is in positive DNF

and right-hand side is in positive CNF.

Proof. The proof is done by reduction from the validity of the quantified Boolean for-

mula ∀x1, . . . , xn∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is in CNF.

Let the action alphabet be Σ = {t1, . . . , tn, f1, . . . , fn, •}. The two systems (S, T, P,Φ)

and (S ′, T ′, P ′, Φ ′) are built as follows: S = {s, s ′} ∪ {si | 1 ≤ i ≤ n}, T =

{(s, •, si), (si, ti, s ′), (si, fi, s ′) | 1 ≤ i ≤ n}, P = {x1, . . . , xn}, Φ(s) =
∧
i(•, si),

Φ(si) = (xi ∧ (ti, s
′)) ∨ (¬xi ∧ (fi, s

′)), Φ(s ′) = tt; S ′ = {t, t ′} ∪ {ui, vi | 1 ≤ i ≤
n}, T ′ = {(t, •, ui), (t, •, vi), (ui, ti, t ′), (ui, fi, t ′), (vi, fi, t ′), (vi, ti, t ′) | 1 ≤ i ≤ n},

P ′ = {y1, . . . , yn}, Φ ′(t) = ϕ[(•, ui)/xi, (•, vi)/¬xi], Φ ′(ui) = (ti, t
′), Φ ′(vi) = (fi, t

′),

Φ ′(t ′) = tt.

Now ∀x∃y : ϕ(x, y) holds if and only if s ≤m t. The reasoning behind this fact is

similar to the proof of Proposition 3.12.

The proof of the next proposition is only a slight alteration of previous proof where

the •-construction is performed in two steps.

Proposition 3.14. Modal refinement is Πp
2-hard even if left-hand side is in positive DNF

and right-hand side is in positive DNF.

Proof. The proof is done by reduction from the validity of the quantified Boolean for-

mula ∀x1, . . . , xn∃y1, . . . , ym : ϕ(x1, . . . , xn, y1, . . . , ym), where ϕ is in CNF. Let ϕ1, . . . ,

ϕk denote the clauses of ϕ.
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Let the action alphabet be Σ = {t1, . . . , tn, f1, . . . , fn, •}. The two systems (S, T, P,Φ)

and (S ′, T ′, P ′, Φ ′) are built as follows: S = {s, s ′, s ′′} ∪ {si | 1 ≤ i ≤ n}, T = {(s, •, s ′)} ∪
{(s ′, •, si), (si, ti, s ′′), (si, fi, s ′′) | 1 ≤ i ≤ n}, P = {x1, . . . , xn}, Φ(s) = (•, s ′), Φ(s ′) =∧
i(•, si), Φ(si) = (xi ∧ (ti, s

′′)) ∨ (¬xi ∧ (fi, s
′′)), Φ(s ′′) = tt; S ′ = {t, t ′} ∪ {ui, vi | 1 ≤

i ≤ n} ∪ {wj | 1 ≤ j ≤ k}, T ′ = {(t, •, wj) | 1 ≤ j ≤ k} ∪ {(wj, •, ui), (wj, •, vi) | 1 ≤ i ≤
n, 1 ≤ j ≤ k} ∪ {(ui, ti, t

′), (ui, fi, t
′), (vi, fi, t

′), (vi, ti, t
′) | 1 ≤ i ≤ n}, P ′ = {y1, . . . , yn},

Φ ′(t) =
∧
jwj,Φ

′(wj) = ϕ ′j where ϕ ′j is created from ϕj by changing all positive literals

xi into (•, ui) and all negative literals ¬xi into (•, vi). Φ ′(ui) = (ti, t
′), Φ ′(vi) = (fi, t

′),

Φ ′(t ′) = tt.

Now ∀x∃y : ϕ(x, y) holds if and only if s ≤m t.

The proof of the last proposition is a combination of DNF-binding (including the

•-construction) with the previously used ∗-construction.

Proposition 3.15. Modal refinement is Πp
4-hard even if the left-hand side is in positive

DNF.

Proof. The proof is done by reduction from the validity of the quantified Boolean for-

mula ∀x∃y∀z∃w : ϕ(x, y, z,w) where x, y, z,w are all n-dimensional binary vectors and

ϕ is in CNF.

We let Σ = {t1, . . . , tn, f1, . . . , fn, z1, . . . , zn, ∗, •} and we create the two systems

(S, T, P,Φ), (S ′, T ′, P ′, Φ ′) over the action alphabet Σ as follows:

S = {s, s ′} ∪ {si | 1 ≤ i ≤ n}, T = {(s, •, si), (si, ti, s ′), (si, fi, s ′), (s, zi, s ′) | 1 ≤ i ≤ n} ∪
{(s, ∗, s ′)}, P = {x1, . . . , xn},Φ(s) = (∗, s ′)∧

∧
i(•, si),Φ(si) = (xi∧(ti, s

′))∨(¬xi∧(fi, s
′))

for all 1 ≤ i ≤ n, Φ(s ′) = tt;

S ′ = {t, t ′} ∪ {ui, vi, wi | 1 ≤ i ≤ n}, T ′ = {(t, zi, t
′), (t, •, ui), (t, •, vi), (t, ∗, wi),

(ui, ti, t
′), (ui, fi, t

′), (vi, ti, t
′), (vi, fi, t

′) | 1 ≤ i ≤ n} ∪ {(t, ∗, t ′)}, P ′ = {y1, . . . , yn},

Φ ′(t) = (∗, t ′) ∧ ϕ[(•, ui)/xi, (•, vi)/¬xi, (zi, t ′)/zi, (∗, wi)/wi], for all 1 ≤ i ≤ n:

Φ ′(ui) = (ti, t
′), Φ ′(vi) = (fi, t

′), Φ ′(wi) = Φ ′(t ′) = tt.

It can be verified, using similar arguments as before, that s ≤m t if and only if

∀x∃y∀z∃w : ϕ(x, y, z,w).
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