
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Computing Strongly Connected
Components in Parallel on CUDA

(full version)

by

Jiří Barnat, Petr Bauch, Luboš Brim, and Milan Češka

FI MU Report Series FIMU-RS-2010-10

Copyright c© 2010, FI MU July 2010

Copyright c© 2010, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Computing Strongly Connected Components in
Parallel on CUDA (full version)∗

Jiří Barnat, Petr Bauch, Luboš Brim, and Milan Češka

Faculty of Informatics, Masaryk University,

Botanicka 68a, 60200 Brno, Czech Republic

{xbarnat, xbauch, brim, xceska }@fi.muni.cz

July 20, 2010

Abstract

The problem of decomposition of a directed graph into its strongly connected

components is a fundamental graph problem inherently present in many scientific

and commercial applications. In this paper we show how existing parallel algo-

rithms can be reformulated in order to be accelerated by NVIDIA CUDA technol-

ogy. In particular, we design a new CUDA-aware procedure for pivot selection and

we redesign the parallel algorithms in order to allow for CUDA accelerated compu-

tation. We also experimentally demonstrate that with a single GTX 280 GPU card

we can easily outperform optimal serial CPU implementation, which is particularly

interesting result as unlike the serial CPU case, the asymptotic complexity of the

parallel algorithms is not optimal.

1 Introduction

Fundamental graph algorithms such as breadth first search, spanning tree construction,

shortest paths, etc., are building blocks to many applications. Serial implementations

of these algorithms became impractical as graphs to be processed are extremely large

in many application domains. As a result parallel algorithms for processing of large

∗This work has been partially supported by the Czech Grant Agency grants No. 201/09/P497,

201/09/1389 and 102/09/H042.

1

graphs have been devised to efficiently use compute clusters and multi-core architec-

tures. The transformation of a serial algorithm into a parallel algorithm is not necessar-

ily an easy task. For example, most likely there is not an efficient parallel solution to the

DFS problem [22]. Even if the algorithmic shift to parallel processing can be done, serial

codes still need to be rewritten to take proper advantage of parallel processing. This

is especially the case of recently introduced general purpose graphics processing units

(GP GPUs). These devices contain hundreds of arithmetic units and can be harnessed

to provide tremendous acceleration for many intensive scientific applications. The key

to effective utilization of GP GPUs for scientific computing is the design and implemen-

tation of efficient data-parallel algorithms that can scale to hundreds of tightly coupled

processing units. The use of several GPUs at a coarser level of parallelism can bring

even more computational power.

Implementations of most fundamental graph algorithms on the GPU, using the

CUDA programming model have been reported and high performance of these im-

plementations on very large graphs has been experimentally confirmed for example in

[18] and [19].

In this paper we focus on the problem of decomposing a directed graph into its

strongly connected components (SCC decomposition). This problem has many applica-

tions leading to very large graphs and requiring high performance processing. One

example is web analysis based on web archives, such as topic tracking, time-frequency

analysis of blog postings, and web community extraction. A particular application we

also have in mind is automated verification of software (model checking, dataflow anal-

ysis, bad cycle detection, etc.), where SCC decomposition is typically used as a sub-

procedure and its fast performance is crucial.

Parallel SCC decomposition is a particularly tricky problem. The reason is that the

(optimal) serial algorithm strongly relies on depth-first search post ordering of vertices

whose computation is known to be P-complete and thus, difficult to be computed in

parallel. Hence, different approaches suitable for parallel processing have been consid-

ered. See e.g. [17, 12, 1] for algorithm that works in O(log2n) time, but requires O(n2.376)

parallel processors, or [24] for randomized parallel algorithm for the problem.

In this paper we show how selected parallel SCC decomposition algorithms (namely

[16], [21], [9], [7]) can be reformulated in order to be accelerated by NVIDIA CUDA tech-

nology. In particular, we design a new CUDA-aware procedure for pivot selection and

we redesign the parallel algorithms in order to allow for CUDA accelerated computa-

2

tion. We also experimentally demonstrate that with a single GTX 280 GPU card we can

easily outperform optimal serial CPU implementation, which is particularly interest-

ing result as unlike the serial CPU case, the asymptotic complexity of the considered

parallel algorithms is not optimal.

2 Preliminaries

2.1 Notation and Basic Definitions

A directed graph G is a pair (V, E), where V is a set of vertices, and E ⊆ V × V is a

set of directed edges. If (u, v) ∈ E, then v is called (immediate) successor of u, and

u is called (immediate) predecessor of v. The in-degree (out-degree) of a vertex v is the

number of immediate predecessors (successors) of v. GT = (V, ET), the transposed graph

of G = (V, E), is the graph G with all edges reversed, i.e., ET = {(u, v) | (v, u) ∈ E}.

Let G = (V, E) be a directed graph. We say that a vertex t ∈ V is reachable from a

vertex s ∈ V if (s, t) ∈ E+ where E+ denotes a transitive closure of E. A graph is rooted if

there is an initial vertex s0 ∈ V such that all vertices in V are reachable from s0. Given a

graph G, we use n and m to denote the number of vertices and edges in G, respectively.

A set of vertices C ⊆ V is strongly connected, if for any two vertices u, v ∈ C, we have

that v is reachable from u. A strongly connected component (SCC) is a maximal strongly

connected set C ⊆ V , i.e. such that no C ′ with C (C ′ ⊆ V is strongly connected. A

maximal strongly connected component C is trivial if C is made of a single vertex c and

(c, c) /∈ E, and is non-trivial otherwise. To decompose a graph into SCCs means to clas-

sify vertices of the graph according to the strongly connected component they belong

to. The standard sequential algorithmic solution to the problem is due to Tarjan [23]

who gave an O(n + m) depth-first traversal procedure to output the list of all SCCs for

a given directed graph. A subgraph of a directed graph G = (V, E) given by a set of

vertices V ′ ⊆ V is a directed graph G ′ = (V ′, E ∩ (V ′ × V ′)). We say that a subgraph

G ′ = (V ′, E ′) of G respects strongly connected components of G (is SCC-closed) if for

every strongly connected component C of G we have C ∩ V ′ 6= ∅ =⇒ C ⊆ V ′.

For v ∈ W ⊆ V , the forward closure of v in W is the set of reachable states from v in

the subgraph of G given by W. If W is not specified, W = V . The forward closure of

S ⊆ W in W is the union of forward closures in W over all vertices from S. Finally, the

backward closure of v (or S) in W is the forward closure of v (or S) in W in the graph GT .

3

Algorithm 1 FB Algorithm
proc FB(V)

1: if V 6= ∅ then
2: pivot← PIVOT(V)
3: F← FWD(pivot, V)
4: B← BWD(pivot, V)
5: F ∩ B is SCC

6: in parallel do
7: FB(F \ B)
8: FB(B \ F)
9: FB(V \ (F ∪ B)

10: end in parallel
11: end if

2.2 Parallel SCC Decomposition Algorithms

In this section we describe in more detail the basic ideas behind the parallel SCC de-

composition algorithms we have considered for acceleration on CUDA.

2.2.1 Forward-Backward Algorithm

The FB algorithm [16] introduces the basic concept that all the other presented algo-

rithms build on. The algorithm proceeds as follows. A vertex called pivot is selected and

the strongly connected component the pivot belongs to, is computed as the intersection

of the forward and backward closure of the pivot. Computation of the closures divides

the graph into four subgraphs that respect strongly connected components. These sub-

graphs are 1) the strongly connected component with the pivot, 2) the subgraph given

by vertices in the forward closure but not in the backward closure, 3) the subgraph

given by vertices in the backward closure but not in the forward closure, and 4) the

subgraph given by vertices that are neither in the forward nor in the backward closure.

The subgraphs that do not contain the pivot form three independent instances of the

same problem, and therefore, they are recursively processed in parallel with the same

algorithm. The pseudo-code of the algorithm is listed as Algorithm 1.

Practical performance of the algorithm may be further improved by performing

elimination of leading and terminal trivial strongly connected components – the so

called trimming [20]. The trimming procedure builds upon a topological sort elimina-

tion. The key idea is as follows. A vertex cannot be part of a non-trivial strongly con-

nected component if its in-degree (out-degree) is zero. Therefore, such a vertex can be

safely removed from the graph as a trivial SCC, before the pivot vertex is selected and

4

Algorithm 2 COLORING Algorithm
proc COLORING(V)

1: if V 6= ∅ then
2: PredList, (Vk)k∈PredList ← FWD-MAXCOLOR(V)
3: for all k ∈ PredList do
4: in parallel do
5: Bk ← BWD(k, Vk)
6: Bk is SCC

7: COLORING(Vk r Bk)
8: end in parallel
9: end for

10: end if

forward and backward closures are computed. The removal of the vertex may how-

ever produce another vertex or vertices with zero in-degree (out-degree). Therefore,

the elimination is iteratively repeated until no more vertices with zero in-degree (out-

degree) exist. Only after that, the pivot is selected and the algorithm proceeds as stated

above. Note that the elimination procedure is also referred to as OWCTY elimination

procedure and has been used also for other graph related problems, see e.g. [15, 5].

2.2.2 Coloring/Heads-off algorithm

The main limitation of the FB algorithm is that it performs O(m + n) work to detect

a single strongly connected component. This may be rather expensive strategy if the

given graph contains many small but non-trivial components. Completely opposite ap-

proach is taken in the algorithm COLORING [21]. Algorithm COLORING is capable of

detecting many strongly connected components in a single recursion step, however, for

the price of O(n.(m + n)) procedure. The idea of the algorithm relies on a propagation

of unique and totally ordered identifiers (colors) associated with vertices. Initially, each

vertex keeps its own color. The colors are then iteratively propagated along edges of

the graph (the procedure FWD-MAXCOLOR) so that each vertex keeps only the max-

imum color among the initial color and the colors that have been propagated into it

(maximal preceding color). After a fix-point is reached (no color update is possible),

the colors associated to vertices partition the graph into multiple component respecting

subgraphs. All vertices in a subgraph are reachable from the vertex of which color is

the subgraph. Moreover, this vertex lies in the leading strongly connected component

of the subgraph and as such the related component can be identified by performing the

backward closure of the vertex restricted to the subgraph. This is what the algorithm

5

does for all subgraphs in parallel prior the recursion step. See the pseudo-code as listed

in Algorithm 2. Let us also note that the propagation procedure is rather expensive if

there are multiple large components in the graph [8].

2.2.3 Recursive OBF algorithm

Similarly to COLORING algorithm, also the OBF procedure [9] aims at decomposing the

graph in more than three component respecting subgraphs within a single recursion

step. However, unlike the COLORING algorithm, the price of OBF procedure is O(m +

n).

To identify the subgraphs (OBF slices in terminology of RECURSIVE OBF algorithm)

of a rooted chunk (subgraph reachable from a single vertex) the procedure iteratively

employs the following three steps until the whole graph is processed:

O Apply OWCTY elimination to remove leading trivial strongly connected compo-

nents (trimming), and return vertices that were not eliminated, but some of their

immediate predecessors were.

B Compute backward closure of vertices returned in the previous O step, vertices in

the closure form a subgraph (slice) denoted by B.

F Compute forward closure of vertices returned in the previous O step within the

subgraph given by B plus vertices being immediate successors of vertices in B to

remove the slice B from the graph and to identify new initial states (Seeds) in the

rest of the graph.

If the subgraphs (slices) should be processed recursively by RECURSIVE OBF [7, 8]

they first need to be split into rooted chunks. For the pseudo-code of the algorithm see

Algorithm 3. The recursion stops when on a subgraph that is made of a single strongly

connected component.

3 CUDA Architecture

The Compute Unified Device Architectures (CUDA) [13], developed by NVIDIA, is par-

allel programming model and software environment providing general purpose pro-

gramming on Graphics Processing Units. At the hardware level, GPU device is a collec-

tion of multiprocessors each consisting of eight scalar processor cores, instruction unit,

on-chip shared memory, and texture and constant memory caches. Every core has a

6

Algorithm 3 RECURSIVE-OBF(V)

1: while V 6= ∅ do
2: Pick a vertex v ∈ V

3: Range← FWD(v, V)
4: Seeds← {v}

5: V ← V r Range

6: in parallel do
7: OBF-X(Seeds, Range)
8: end in parallel
9: end while

Procedure 4 OBF-X(Seeds, Range)

1: Original_Range← |Range|
2: while Range 6= ∅ do
3: Elim, Reached, Range← OWCTY(Seeds, Range)
4: All elements of Eliminated are trivial SCCs
5: B← BWD(Reached, Range)
6: if |B| = Original_Range then
7: B is SCC
8: else
9: in parallel do

10: RECURSIVE-OBF(B)
11: end in parallel
12: Seeds← FWD_SEEDS(B, Range)
13: end if
14: Range← Range r B

15: end while

large set of local 32-bit registers but no cache. The multiprocessors follow the SIMD

architecture, i.e., they concurrently execute the same program instruction on different

data. Communication among multiprocessors is realized through the shared device

memory that is accessible for every processor core.

On the software side, the CUDA programming model extends the standard C/C++

programming language with a set of parallel programming supporting primitives. A

CUDA program consists of a host code running on a CPU and a device code running on

the GPU. The device code is structured into so called kernels. A kernel executes the same

scalar sequential program in many data independent parallel threads.

Each multiprocessor has several fine-grain hardware thread contexts, and at any

given moment, a group of threads called a warp executes on the multiprocessors in a

lock-step manner. When several warps are scheduled on multiprocessors, memory la-

tencies and pipeline stalls are hidden primarily by switching to another warp.

7

0 3 11

10 8 5 10 2 11 15 22 26 30 3318 8

7 7 9

Size of V

Size of E

11

X5

15

Figure 1: Adjacency list representation

4 CUDA Accelerated SCC Decomposition

Data structures used for CUDA accelerated computation must be designed with care.

First, they have to allow independent thread-local data processing so that the CUDA

hardware can employ massive parallelism. And second, they have to be small so that

the high latency device-memory access and limited device-memory bandwidth are not

large performance bottlenecks. As for the SCC decomposition algorithm, it is the adja-

cency list representation of the graph G to be encoded appropriately in the first place.

Note that uncompressed matrix or dynamically linked adjacency list violate the require-

ments and as such they are inappropriate for CUDA computing. We encode the graph as

the adjacency list that is represented as two one-dimensional arrays, similarly as in [18].

One array stores the target vertices of edges sorted according to source vertex. The sec-

ond array keeps an index to the first array for each vertex. The index points to the first

edge emanating from the vertex. See Figure 1. Other data structures needed are orga-

nized in vectors, which is a representation that is compatible with CUDA processing.

Content stored in these vectors is described together with particular algorithms.

4.1 Computation of closures

The core procedure used in all of the algorithms is the computation of forward and

backward closure (see Algorithm 7). The result of the computation of a closure proce-

dure is a vector visited of |V | bits indicating which of the vertices belong to the closure

or not. Initially, the vector keeps ones only for the vertex/vertices of which the closure

should be computed. To compute the closure we employ a CUDA kernel (Algorithm 5)

in which we define a separate thread for every vertex. In the case of the forward closure,

each thread checks if the corresponding vertex is within the closure set, and if so, it sets

the presence bit for all immediate successors of the vertex. Quite often, the computa-

tion of the closure set needs to be restricted to a subgraph. To that end we denote each

8

Algorithm 5 F-KERNEL(G, visited, terminate)
For all v ∈ V :

1: if (visited[v] = true) then
2: for all u ∈ V. (v, u) ∈ E do
3: if v ∼ u ∧ visited[u] = false then
4: visited[u], terminate← true, false

5: end if
6: end for
7: end if

Algorithm 6 B-KERNEL’(G, visited, terminate)
For all v ∈ V :

1: if visited[v] = false then
2: if ∃u ∈ V. (v, u) ∈ E then
3: if v ∼ u ∧ visited[u] = true then
4: visited[v], terminate← true, false

5: end if
6: end if
7: end if

subgraph with a unique number and use other date structures of size O(|V |) to identify

the subgraph each vertex belongs to. The thread in the closure kernel then updates the

presence bit of a successor only if it is a part of the same subgraph as the original vertex.

In the rest of the paper we will use an equivalence relation ∼ to denote that two vetices

are part of the same subgraph, and [x] to denote vertices equivalent to a vertex x, i.e.

[x] = {v ∈ V | x ∼ v}.

To compute the backward closure there are two options. Either we can compute the

representation of the transposed graph and employ the forward closure CUDA kernel,

or we can devise a separate kernel in which each thread checks the presence bits of

immediate successors of its vertex and then if some of them are in the closure set, it sets

the presence bit for its own vertex. Again this can be done with respect to a particular

subgraph. While obviously the latter solution is more space efficient, our experiments

have shown almost exclusive performance dominance of the first solution, hence we

stick to it. For the difference between the approaches, see pseudo-codes as listed in

Algorithms 5 and 6.

A common drawback of most CUDA kernels for graph procedures is that many

threads read some data from memory, but after evaluating them they do not write any

data back. For example, in the case of the closure procedures each thread accesses the

vector of presence bits and if it reads zero for its corresponding vertex, it terminates

9

Algorithm 7 FWD-REACH - host code
In: G = (V, E), P ⊆ V

Out: ∀v ∈ V : visited[v] = true⇔ ∃u ∈ P : (u, v) ∈ E∗

1: for all u ∈ P do
2: visited[u]← true

3: end for
4: terminate← false

5: while terminate = false do
6: terminate← true

7: F-KERNEL(V, visited, terminate)
8: end while

without making any update to the vector. As a result, the CUDA hardware has to per-

form a lot of useless and expensive memory read operations. A possible solution [19] to

the problem is to reorganize threads so that only those threads are deployed that actu-

ally do some update to the memory. However, this preprocessing is quite an expensive

procedure and does not lead to a consistent speed-up. Therefore, we have devised a dif-

ferent solution to the problem. We maintain an additional vector of d|V |/32e elements

where we keep an information which warps (32 consecutive threads) will perform an

update to the memory in the succeeding iteration. Namely, if all vertices processed

within a single warp are not part of the closure set (all have the presence bit set to zero)

no update to memory will occur due to this warp. By employing special broadcast oper-

ation available in CUDA we can thus replace (potentially up to) two 128-byte and one

64-byte data transactions with a single 32-byte memory read operation followed by the

broadcast to all threads in the warp. According to our experiments this approach led

to an observable speedup in many cases while introducing minimal slowdown in the

other ones.

4.2 Processing of independent subgraphs

Within the scope of SCC decomposition the computation of forward or backward clo-

sures are typically restricted to a particular component respecting subgraph of the orig-

inal graph. As soon as the algorithm is deeper in its recursion, the same procedures are

typically executed over different subgraphs. If each operation such as the computation

of a forward closure, is implemented as a CUDA kernel, we can easily mimic the recur-

sion as suggested by the algorithms within the host code (we let the host code call a sep-

arate kernel for each graph operation over every subgraph in every recursion branch).

However, if a kernel is executed in this approach over a whole matrix, a lot of CUDA

10

threads, namely those that are deployed for vertices out of the processed subgraph, are

idling or performing useless work. We can avoid this inefficiency if we deploy only the

threads for vertices of the subgraph, but to be able to do so we would have to renum-

ber the vertices of the graph so that the vertices of the subgraph are well-distributed in

the vector of vertices, i.e. at least in a number of continuous blocks. This renumbering

would of course kill any benefit the preprocessing might have brought.

We therefore proceed in a different way and share the calls to the kernels that are

made for the same operation over different subgraphs in different recursion branches.

In particular, if we synchronize the recursion of the algorithm so that in the second

recursion step, let us say, the computation of a forward closure is executed simultane-

ously over multiple independent subgraphs, we can employ a single CUDA kernel to

compute all the forward closures at the same time. This synchronization over recursion

deepening and kernel sharing principles allow us to reformulate the recursion present

in the algorithms by means of iterative procedures (while loops). This is exemplified

on pseudo-code for FB algorithm listed in Algorithm 9. According to our experience

the penalty for explicit synchronization due to loop iterations is easily outweighed by

performance gain achieved due to the kernel sharing.

4.3 Trimming and self-loop detection

As explained in Section 2, some algorithms employ trimming procedure to efficiently

deal with leading and terminal trivial SCCs. The goal of the procedure is to identify

vertices of the underlying subgraph that have no immediate predecessors (in the case

of leading components) or immediate successors (in the case of terminal components)

in the subgraph. Such vertices may be iteratively removed from the subgraph as triv-

ial SCCs. The host code of the trimming procedure is quite similar to the host code of

forward closure (listed as Algorithm 7) and therefore we list only the trimming kernel,

see Algorithm 8. The result of the procedure is a vector eliminated of |V | bits indicat-

ing which of the vertices have been eliminated. Note that the procedure can be easily

augmented also to eliminate SCCs made of a single vertex with a self-loop by simply

ignoring the self-loop edges.

4.4 Pivot selection

There are several stages of the algorithms that require a single vertex to be chosen within

a processed subgraph – the so called pivot. Pivot selection plays significant role in

11

Algorithm 8 TRIM-KERNEL(G, eliminated, terminate)
For all v ∈ V :

1: if eliminated[v] = false then
2: elim← true

3: if ∃u ∈ V. (u, v) ∈ E ∧ v ∼ u then
4: elim← false

5: end if
6: if elim = true then
7: eliminated[v], terminate← true, false

8: end if
9: end if

practical performance of the algorithms. As a good heuristics to pivot selection the

algorithms typically rely on a pseudo-random number generator. In our approach, we

not only need to select a single pivot, but since we share kernels for graph procedures

over multiple subgraphs, we need to choose a number of pivots, one for each subgraph.

To that end, the usage of a random number generator seems inappropriate as we cannot

guarantee that after a repeated random selection, the selected vertices will satisfy the

desired distribution.

We have, therefore, opted for a different solution. The basic idea of our pivot selec-

tion is to let all vertices of a subgraph concurrently write their own unique identifiers

to a single memory location. After that the location keeps a single value that identifies

the pivot. Surprisingly, the most challenging problem when implementing the idea was

where to define/store the memory location for a subgraph. Note that within a single

kernel we may select pivots for quite a large number of subgraphs.

To solve the problem we employed the observation that a subgraph when defined is

fully contained within a parent subgraph. For our first solution to the problem suppose

now that the pivot of the parent subgraph has an extra space allocated to it. Then all the

child subgraphs may be learnt about the pivot of their parent subgraph and thus they

may use the extra space allocated to the parent subgraph pivot as the memory location

they need for their own pivot selection. If there are multiple child subgraphs of one

parent subgraph then they are serialized for the usage of the memory location. Since

we do not know in advance which vertices become pivots, we reserve extra space for

every vertex. This requires at least |V |size(v) additional space, where size(v) is the space

necessary for identification of a single vertex.

In our second approach to the problem we have allocated a single shared vector of

memory locations and make sure that every computed subgraph gets a unique pointer

12

Algorithm 9 FB Algorithm - host code
In: Directed graph G = (V, E)
Out: SCC decomposition of G

u ∼ v⇔ range[u] = range[v]

1: while terminate = false do
2: FWD-REACH(G, pivots, visited.f)
3: BWD-REACH(G, pivots, visited.b)
4: TRIMMING(G, elim)
5: PIVOT-SEL(pivots, range, visited, elim)
6: UPDATE(range, visited, elim, terminate)
7: end while

to the vector. If each recursive step defines bounded number of subgraphs, we can

compute the unique number of a child subgraph from the unique number associated

with the parent subgraph. For example, in the case of FB algorithm, the bound is equal

to three, so the three new subgraphs of a parent subgraph with unique number i will

get numbers 3i+ 0, 3i+ 1, and 3i+ 2. An obvious problem of the second solution is that

the number of subgraphs is unknown in advance, hence the unique numbers associated

to the subgraphs may grow beyond the size of the preallocated vector. Note that if that

happens a lot of unique numbers of subgraphs that were parent subgraphs before, are

unused. We therefore postpone the computation of the algorithm and run a heuristics

that renumbers active subgraphs so that they get numbers somewhere at the beginning

of the vector. To compute new unique numbers of active subgraphs we employ hash

function. Collisions due to the hash function are relatively rare, and they are handled

sequentially after the renumbering by the hash function.

4.5 Algorithms

4.5.1 FB Algorithm on CUDA

Once the algorithm is given as iterative procedure, the adaptation for CUDA environ-

ment is rather straightforward. See the pseudo-code as listed in Algorithm 9. We are

using the vector visited indicating which of the vertices belong to the forward respec-

tively backward closure or not (visited.f , visited.b), vector elim keeping the eliminated

vertices and vector pivots determing the particular pivots for next iteration of the al-

gorithm. Finally the vector range identifies the subgraph each vertex belongs to. The

UPDATE kernel recomputes the range vector (the relation ∼) according to the vectors

visited and elim. Moreover it sets the variable terminate to the value true in the case

13

Algorithm 10 COL-KERNEL(G, map, pivots, inner)
For all v ∈ V :

1: map[v]← max{v, map[v]}
2: for all u ∈ V. (u, v) ∈ E do
3: if v ∼ u ∧ map[v] < map[u] then
4: map[v], inner← map[u], true
5: end if
6: end for
7: if map[v] = v then
8: pivots[v]← true

9: end if

that all vertices from previous iteration were visited during the forward and backward

reachability or were eliminated.

4.5.2 Coloring algorithm on CUDA

Similarly to the FB algorithm, also the COLORING algorithm can be reformulated as

iterative algorithm. Then, every loop iteration consists of two procedures: the color-

propagation procedure that partitions the graph into multiple subgraphs, and back-

ward closure procedure that identifies and removes the leading component of every

subgraph. We list pseudo-code of the CUDA kernel for the color propagation only, see

Algorithm 10, as the host code has the similar structure to the FB algorithm 9. Note that

the color propagation procedure also computes the vertex (pivot) that the succeeding

backward closure is computed from, and that variable inner is used to detect that no

fix-point has been reached yet.

4.5.3 OBF algorithm on CUDA

Unlike the case of FB and COLORING algorithms, the adaptation of the OBF algo-

rithm to the CUDA environment was a little bit more involved. In our final solution,

we have decided not to use three independent CUDA kernels for individual phases (O,

B, and F), but instead we have devised a single CUDA kernel that performs all three

phases at the same time. Every vertex keeps extra information to know by which phase

it is currently processed. See Algorithms 11, and 12.

The OBF-KERNEL proceeds until one of the phases terminates, which is detected by

the procedure INTERRUPTION. After the termination, vertex i is returned to identify the

subgraph of the terminating phase. An update procedure is then executed according to

the terminating phase.

14

Algorithm 11 CUDA OBF Algorithm - host code
In: Directed graph G = (V, E)
Out: SCC decomposition of G

u ∼ v⇔ range[u] = range[v]

1: while terminate = false do
2: while INTERRUPTION(i) = false do
3: OBF-KERNEL(O, B, F, V)
4: end while
5: if phase[i] ∈ O then
6: UPDATE_O(i)
7: end if
8: if phase[i] ∈ F then
9: UPDATE_F(i)

10: end if
11: if phase[i] ∈ B then
12: UPDATE_B(i)
13: end if
14: UPDATE(range, elim, terminate)
15: end while

Algorithm 12 OBF-KERNEL(G, phase, reach, elim)

For all v ∈ V :
1: if phase[v] = O ∧ reach.o[v] = true then
2: if (∀u ∈ V.(u, v) ∈ E ∧ u ∼ v) then
3: for all w ∈ V. (v, w) ∈ E ∧ v ∼ w do
4: reach.o[w] = true

5: end for
6: elim[v] = true

7: end if
8: else
9: if phase[v] = B then

10: for all u ∈ V. (u, v) ∈ E ∧ u ∼ v do
11: reach.b[u] = true

12: end for
13: else
14: for all u ∈ V. (v, u) ∈ E ∧ u ∼ v do
15: reach.f [u] = true

16: end for
17: end if
18: end if

• UPDATE_O updates not eliminated vertices of [i] to be processed by the next

phase (B).

15

• UPDATE_B checks whether the reached part of [i] is rooted. If so, range of vertices

in the reached part is set to a common unique value and the part is eliminated as a

SCC. If the reached part was not rooted, we select a pivot and a execute a forward

closure to get a rooted subgraph. The phase of the rest of vertices in [i] is set back

to O. We also set reach.o[v] for every vertex v that is a successor of a reached

vertex in [i].

• UPDATE_F selects a pivot from the not reached part of [i] to start a new forward

reachability there. Simultaneously the phase is set to O for the reached vertices

and the pivot of [i] is the only one set to reached. Finally, the two parts (reached

and not reached) are separated (within ∼) by setting the range of the reached ver-

tices to a new unique value.

Procedure UPDATE merely checks whether all the vertices were eliminated (either by

OWCTY or when found to be in a rooted subgraph by the UPDATE_B) and sets the

terminate variable accordingly.

It is clear to see that the OBF-KERNEL forces the individual threads to perform dif-

ferent task if their vertices fall into different sets. Which is in the opposition to one of

the principles of CUDA programming since all threads within any half-warp must at one

time perform the same instruction. This is of little problem when the sets O, B, F (con-

taining vertices in the respective phases) are large and consist of consecutive vertices

(meaning they are stored in an uninterrupted row in the adjacency matrix representa-

tion), but as they grow smaller or less compact it might entail considerable slowdown.

We have tried to at least partially eliminate this problem by opting out certain ver-

tices (SCC-closed subsets of one of O, B, F respecting ∼) of this process later to finish their

decomposition using COLORING algorithm. The sets are chosen if they have less than

certain threshold of vertices. Hence we have to compute the sizes and when the regular

OBF algorithm ends we also have to finish the decomposition. Despite the inevitable

overhead adding this computation is often boosting the algorithm as a whole, as ob-

servable from the experiments. Furthermore, we can augment the OBF by prepending

one call of trimming to it, in order to skip the costly OBF computation on some trivial

components.

16

5 Experimental evaluation

We compare the performance of the described CUDA algorithms with the CPU imple-

mentation of the Tarjan’s algorithm that is considered to be the best sequential algorithm

for SCC decomposition. For this purpose we have implemented our own highly opti-

mized version of Tarjan’s algorithm using identical representation of adjacency list as

the one used for CUDA computation. Our implementation of the Tarjan’s algorithm

outperforms (2 times) the Boost [10] implementation.

We have also implemented multi-core versions of the algorithms for the standard

parallel shared-memory platforms. To that end we have experimented with two imple-

mentations. In the first variant, we basically let CPU cores perform the CUDA version

of each algorithm without employing CUDA device. In the second version, we took the

approach of parallel distributed-memory graph traversal procedures, see e.g. [8], and

we applied it to shared-memory environment. For the shared-memory message pass-

ing we used lock-free FIFO data structures, as suggested in [4]. Unfortunately, none of

our implementations were able to outperform Tarjan algorithm using quad-core archi-

tecture, which can be explain by extremely cache-efficient representation of the graph

used for Tarjan algorithm that was used on relatively small graphs (we have experi-

mented with graphs of which representation fitted 1 GB of RAM of our CUDA GPU

card). All the experiments were run on a Linux workstation with an AMD Phenom(tm)

II X4 940 Processor @ 3GHz, 8 GB DDR2 @ 1066 MHz RAM and NVIDIA GeForce GTX

280 GPU with 1GB of GPU memory.

To evaluate the algorithms we used input graphs as generated by Georgia Tech.

graph generator (GTgraph) [3] containing: Scalable Synthetic Compact Applications

(SSCA) benchmark suite [2], Recursive Matrix (R-MAT) generator [11], Erdös-Rényi

random graph generator; and graphs as produced by enumerative model checker Di-

VinE [6].

We provide comparison of performance of the following algorithms: serial CPU-

based forward reachability, CUDA-based forward reachability, Tarjan’s algorithm,

CUDA-based FB algorithm (+ trimming), CUDA-based COLORING algorithm, and

CUDA-based OBF algorithm (+ trimming, + coloring, + trimming and coloring). Ta-

ble 1 lists run-times of the algorithms if executed on three types of synthetic graphs

with average degree set to twelve and scaled up by the number of vertices. The run-

times are also plotted in Figures 2, 3 and 4 using the best time available among versions

17

Graph
Algorithm

Number of vertices in milions, average degree 12 (Number of SCC components)
Total

type 1M (16) 2M (31) 3M (30) 4M (48) 5M (61) 6M (72) 7M (97) 8M (106)

Random

CPU BFS 446 1135 1915 2712 3563 4440 5331 6479 26021
GPU REACH 39 80 122 163 205 247 289 356 1501

Tarjan’s 957 2825 3722 5195 6822 8443 10265 12169 50398
FB 80 180 301 387 511 686 873 962 3980

FB + Trim 74 156 238 320 402 484 566 648 2888
Coloring 136 282 427 574 720 866 1041 1159 5205

OBF 117 269 393 559 723 911 1149 1356 5447
OBF + Col 124 278 427 620 815 1007 1367 1636 6274

OBF + Trim 175 309 500 631 793 954 1116 1276 5754
OBF + Col + Trim 149 312 475 638 802 966 1129 1292 5763

1M (0.48M) 2M (0.97M) 3M (0.97M) 4M (1.9M) 5M (1.0M) 6M (2.0M) 7M (2.9M) 8M (3.9M)

R-MAT

CPU BFS 280 744 1484 1910 3060 3504 3921 4428 14903
GPU REACH 47 97 124 201 222 254 298 408 1651

Tarjan’s 785 1851 3230 4332 6171 7365 8529 9738 42001
FB - - - - - - - - -

FB + Trim 87 206 288 390 524 605 664 814 3578
Coloring 206 425 527 876 1072 1283 1304 1803 7496

OBF - - - - - - - - -
OBF + Col - - - - - - - - -

OBF + Trim 172 408 545 845 948 1118 1323 1761 7120
OBF + Col + Trim 175 415 562 851 965 1129 1343 1750 7190

1M (576) 2M (1.1K) 3M (1.7K) 4M (2.2K) 5M (2.8K) 6M (3.4K) 7M (4.0K) 8M (4.4K)

SSCA#2

CPU BFS 350 790 1274 1794 2319 2866 3451 4141 16985
GPU REACH 72 166 307 368 580 671 767 992 3923

Tarjan’s 601 1313 2116 2973 3721 4565 5513 6377 27179
FB 396 1704 3234 6626 10402 13709 18811 24010 78892

FB + Trim 195 369 749 901 1446 1666 2073 2846 10245
Coloring 2344 4970 9300 13354 19908 22055 24735 38337 135003

OBF 525 1623 3544 5473 8606 12030 16143 20096 68040
OBF + Col 690 2324 5185 8128 12832 18193 24679 30515 102546

OBF + Trim 288 660 1246 1512 2118 2652 3593 4556 16625
OBF + Col + Trim 269 614 1064 1470 1931 2387 3331 4120 15186

Table 1: Run-times for synthetic graphs in milliseconds.

of individual parallel algorithms. Table 2 gives run-times of particular algorithms for

graphs corresponding to model checking problems, (also plotted in Figure 5). Note that

run-times reported exhibit similar values to the values reported in [18] and [19].

We have observed that the performance of CUDA-based algorithms deeply depend

on the average degree of the vertices in the graph. Simple reachability procedure (for-

ward closure) performs in linear time with respect to the radius of the graph, which

tends to expand as the average degree decreases. For graphs with low degree, the per-

formance of reachability procedure may be improved using our heuristics to reduce the

number of memory loads, see Subsection 4.1. Generally, we observe that the scalabil-

ity and efficiency of the parallel reachability procedure effectively limits scalability and

18

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

T
im

e
(m

se
c.

)

CPU BFS
GPU REACH

Tarjan’s
FB

Coloring
OBF

Figure 2: Run-times for Random graphs in milliseconds.

Model Algorithm

(n, m, Number of SCC components)
CPU GPU

Tarjan’s FB
FB

Coloring OBF
OBF OBF OBF

BFS REACH + Trim + Col + Trim + Col + Trim

leader-2 (0.7M, 3.8M, 0.7M) 23 13 197 971 85 6 33 34 56 56

phils (0.7M, 6.0M, 59K) 29 8 287 40520 66 104 96 67 97 68

fisher (2.5M, 13.8M, 81K) 84 19 597 34370 128 202 328 177 284 127

anderson-2 (3.1M, 13.4M, 1.6M) 100 43 774 - 171 909 229 256 177 181

leader-1 (3.6M, 26.6M, 3.6M) 129 61 582 21891 627 41 598 149 618 833

elevator-2 (6.4M, 83.3M, 1) 323 84 2437 379 380 5266 485 494 563 570

anderson-1 (8.9M, 47.7M, 4.3M) 325 119 2738 - 1802 3867 915 957 776 866

peterson (9.5M, 42.0M, 18K) 387 79 2740 21891 358 2797 455 511 565 622

elevator-1 (8.6M, 89.4M, 2.0M) 400 100 2933 - 1571 9960 1465 1506 1208 1232

Total 1800 526 13285 - 5188 23152 4604 4151 4344 4555

Table 2: Run-times for model checking graphs in milliseconds.

efficiency of SCC decomposition algorithms. We can conclusively state that in most

experiments our algorithms were able to reach this limit.

Other observations are as follows. For Random graphs, where most of the vertices

have similar degree, all algorithms significantly outperform (17 times) the Tarjan’s al-

gorithm as they can effectively exploit the parallelism. R-MAT graphs have uneven

degree distribution with most vertices of rather a small degree. These graphs expand

slowly in each iteration and exhibit uneven load balancing and thus the performance

of algorithms based on the computation of forward reachability is very poor. However,

adding the trimming phase drastically improves their performance and leads to over-

19

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

T
im

e
(m

se
c.

)

CPU BFS
GPU REACH

Tarjan’s
FB

Coloring
OBF

Figure 3: Run-times for R-MAT graphs in milliseconds.

all twelvefold speedup. SSCA graphs exhibit similar degree distribution to the R-MAT

graphs, but they typically contain large number of small non-trivial components, which

limits the efficiency of the trimming procedure (overall threefold speedup). For model

checking graphs, the average degree of a vertex is rather small compared to the syn-

thetic graphs, therefore the run-times are not as good as in the case of synthetic graphs

(overall threefold speedup).

For synthetic graphs, FB algorithm with trimming has the best times. This is because

the graphs usually contain small number of large components and large number of triv-

ial or very small components. Such a structure of a graph causes the whole decomposi-

tion process to boil down to a few invocations of the forward and backward reachability

interleaved with the trimming procedure. On the other hand model-checking graphs

contain in general bigger number of large components. For graphs with such a struc-

ture the OBF algorithm significantly outperforms the other ones. Finally, we observe

that the COLORING algorithm exhibits rather unstable performance. While thriving on

highly disconnected graphs or graphs with many small components, its performance

degrades as the size of the components in the graph grows.

20

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

T
im

e
(m

se
c.

)

CPU BFS
GPU REACH

Tarjan’s
FB

Coloring
OBF

Figure 4: Run-times for SCCA#2 graphs in milliseconds.

6 Conclusions

We have demonstrated successful redesign of several parallel algorithms for SCC de-

composition. The redesigned versions allow for computation acceleration on massively

parallel hardware platforms such as CUDA. In particular, we have designed a new

CUDA-aware procedure for pivot selection and reformulated the parallel SCC decom-

position algorithms in order to outperform the optimal but inherently sequential Tar-

jan’s algorithm.

We have also done an extensive experimental evaluation of known algorithms on

several types of graphs proving that with single GTX 280 GPU card we can easily out-

perform the optimal serial algorithm. However, there is no clear winner among the

particular parallel algorithms. While both the COLORING and FB algorithms have the

upper hand on some types of graphs, the OBF algorithm seems to fall behind. This is

because the random graph generators as used in our study fail to provide graphs with

significant amount of nontrivial and large components. Whether this is the case of all

application domains is, however, questionable.

In the future we would like to implement parallel algorithms on multiple CUDA

devices, for which we already have some initial thoughts, and possibly improve run-

21

 1

 10

 100

 1000

 10000

leader-2

phils
fisher

anderson-2

leader-1

elevator-prop2

anderson-1

peterson

elevator-1

T
im

e
(m

se
c.

)

CPU BFS
GPU REACH

Tarjan’s
FB

Coloring
OBF

Figure 5: Run-times for model checking graphs in milliseconds.

time by employing the new hierarchical memory of the upcoming generation of CUDA

cards [14].

References

[1] N. Amato. Improved Processor Bounds for Parallel Algorithms for Weighted Di-

rected Graphs. Information Processing Letters, 45(3):147–152, 1993.

[2] D.A. Bader and K. Madduri. Design and Implementation of the HPCS Graph Anal-

ysis Benchmark on Symmetric Multiprocessors . In HiPC, volume 3769 of LNCS,

pages 465–476. Springer, 2005.

[3] D.A. Bader and K. Madduri. GTgraph: A Synthetic Graph Generator Suite. Tech-

nical Report GA 30332, Georgia Institute of Technology, Atlanta, 2006.

[4] J. Barnat, L. Brim, and P. Ročkai. Scalable Multi-core LTL Model-Checking. In SPIN

’07: Model Checking Software, volume 4595 of LNCS, pages 187–203. Springer, 2007.

22

[5] J. Barnat, L. Brim, and I. Černá. Cluster-Based LTL Model Checking of Large Sys-

tems. In FMCO, volume 4111 of LNCS, pages 259–279. Springer, 2005.

[6] J. Barnat, L. Brim, L. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE – A Tool

for Distributed Verification (Tool Paper). In CAV ’06: Computer Aided Verification,

volume 4144/2006 of LNCS, pages 278–281. Springer, 2006.

[7] J. Barnat, J. Chaloupka, and J. C. van de Pol. Improved Distributed Algorithms for

SCC Decomposition. In PDMC, pages 65–80. CTIT, University of Twente, 2007.

[8] J. Barnat, J. Chaloupka, and J. C. van de Pol. Distributed Algorithms for SCC De-

composition. To appear in Journal of Logic and Computation, 2010.

[9] J. Barnat and P. Moravec. Parallel Algorithms for Finding SCCs in Implicitly Given

Graphs. In Formal Methods: Applications and Technology, volume 4346 of LNCS,

pages 316–330. Springer, 2006.

[10] Boost: C++ libraries. http://www.boost.org/, March 2010.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model for Graph

Mining. In SDM, pages 442–446. SIAM, 2004.

[12] R. Cole and U. Vishkin. Faster Optimal Parallel Prefix Sums and List Ranking.

Information and Computation, 81(3):334–352, 1989.

[13] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide Ver-

sion 2.0,. http://www.nvidia.com/object/cuda_develop.html, March 2010.

[14] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. http://www.

nvidia.co.uk/object/fermi_architecture_uk.html, March 2010.

[15] L. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is There a Best Symbolic

Cycle-Detection Algorithm? In TACAS, volume 2031 of LNCS, pages 420–434.

Springer, 2001.

[16] L. K. Fleischer, B. Hendrickson, and A. Pinar. On Identifying Strongly Connected

Components in Parallel. In Parallel and Distributed Processing, volume 1800 of LNCS,

pages 505–511. Springer, 2000.

[17] H. Gazit and G. L. Miller. An Improved Parallel Algorithm That Computes the BFS

Numbering of a Directed Graph. Information Processing Letters, 28(2):61–65, 1988.

23

[18] P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU

Using CUDA. In HiPC, volume 4873 of LNCS, pages 197–208. Springer, 2007.

[19] P. Harish, V. Vineet, and P. J. Narayanan. Large Graph Algorithms for Massively

Multithreaded Architectures. Technical Report IIIT/TR/2009/74, Center for Visual

Information Technology, International Institute of Information Technology Hyder-

abad, INDIA, 2009.

[20] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger. Finding

Strongly Connected Components in Distributed Graphs. Journal of Parallel and Dis-

tributed Computing, 65(8):901–910, 2005.

[21] S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis, Free Uni-

versity of Amsterdam, 2004.

[22] J. H. Reif. Depth-First Search is Inherrently Sequential. Information Processing Let-

ters, 20(5):229–234, 1985.

[23] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Com-

puting, 1(2):146–160, 1972.

[24] S. Warren. Finding Strongly Connected Components in Parallel Using O(log2n)

Reachability Queries. In SPAA, pages 146–151. ACM, 2008.

24

