
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

CUDA accelerated LTL Model Checking

by

Jiří Barnat, Luboš Brim, Milan Češka, and Tomáš Lamr

FI MU Report Series FIMU-RS-2009-05

Copyright c© 2009, FI MU June 2009

Copyright c© 2009, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

CUDA accelerated LTL Model Checking∗

Jiří Barnat, Luboš Brim, Milan Češka, and Tomáš Lamr

Faculty of Informatics, Masaryk University,

Botanicka 68a, 60200 Brno, Czech Republic

{xbarnat, brim, xceska, xlamr}@fi.muni.cz

Abstract

Recent technological developments made available various many-core hardware platforms. For exam-

ple, a SIMD-like hardware architecture became easily accessible for many users who have their comput-

ers equipped with modern NVIDIA GPU cards with CUDA technology. In this paper we redesign the

maximal accepting predecessors algorithm [7] for LTL model checking in terms of matrix-vector product

in order to accelerate LTL model checking on many-core GPU platforms. Our experiments demonstrate

that using the NVIDIA CUDA technology results in a significant computation speedup.

1 Introduction

Model-checking [1] is a wide-spread technique for automated formal verification. Given a

formal description of a system and desired system property, the goal of the model-checking

procedure is to analyze reachable system configurations in order to decide whether the system

satisfies the property or not. In this paper we deal with LTL model checking, which is the case

when the property to be verified is given as a formula of Linear Temporal Logic (LTL). In LTL

model checking, the question of satisfaction of the property can be reduced to the problem of

detection of an accepting cycle (cycle through at least one vertex denoted as accepting vertex)

in a directed graph.

∗This work has been supported in part by the Czech Grant Agency grants No. 201/09/P497, 201/09/1389,

102/09/H042 and the Academy of Sciences grant No. 1ET408050503.

1

All the know algorithms for accepting cycle detection can be divided into two classes. Al-

gorithms such as Nested DFS [10] or algorithms based on Tarjan’s SCC decomposition algo-

rithm [18, 17] exhibit optimal (linear) time complexity, but are incompatible with parallel pro-

cessing. This is because they strongly rely on the so called depth-first search (DFS) postorder

for computation of which no scalable parallel algorithm is known [16]. The other group of

algorithms for accepting cycle detection are algorithms such as OWCTY [12, 9] or MAP [7] that

avoid DFS postorder, but exhibit unoptimal time complexity. However, it has been demon-

strated that the unoptimality is easily outweighted by parallel processing [19, 2]. As a result,

the unoptimal algorithms are actually faster than the optimal sequential algorithms if contem-

porary parallel hardware is used.

Moreover, the graph to be analyzed tends to be very large for realistic systems and it is

handled only with difficulties by a single memory-limited machine. Consequently, optimal

utilization of resources of various hardware platforms have got much attention by the model

checking community. As most modern hardware platforms are actually parallel platforms, the

desire for full utilization of the power available rendered all sequential algorithms obsolete.

Modern graphics processing units (GPUs) have emerged as a revolutionary technological

opportunity due to their tremendous massive parallelism, floating point capability, low cost,

and ubiquitous presence in commodity computer systems. Many key computational kernels

have been redesigned to exploit the performance of this modern hardware. The key to effective

utilization of GPUs for scientific computing is the design and implementation of efficient data-

parallel algorithms that can scale to hundreds of tightly coupled processing units.

In this paper we show how one of the parallel algorithms for accepting cycle detection,

namely the MAP algorithm, can be effectively accelerated on GPU if the input data are given

in an appropriate format. We demonstrate that the GPU platform has enough potential to

significantly outperform non-GPU computation.

The rest of the paper is organized as follows. In Section 2 we briefly recall basics of automata-

theoretic approach to LTL Model Checking. Sections 3, and 6 describe how we adapted the

algorithm MAP to GPU processing and what enhancements we did to achieve good perfor-

mance. In Sections 5 we recapitulate NVIDIA CUDA hardware platform a show how our

adapted algorithm can be implemented on CUDA. Section 7 reports on an experimental eval-

uation of our approach, and finally, Section 8 summarizes achieved results and plots some

future directions.

2 LTL Model Checking

For LTL model checking purposes, the system to be analyzed has to be described in some

modeling language, ProMeLa [14] for example, and the property to be checked has to be given

as formula of Linear Temporal Logic (LTL) [1]. To answer the LTL model checking question,

tools, such as SPIN [14] or DiVinE [5], employ automata-theoretic approach to reduce the model

checking problem to the problem of non-emptiness of Büchi automata. In particular, the model

of a system S is viewed as a finite automaton AS describing all possible behaviors of the system.

The property to be checked (LTL formula ϕ) is negated and translated into Büchi automaton

A¬ϕ describing all the behaviors violating ϕ. In order to check whether the system violates

ϕ, a synchronous product AS × A¬ϕ of AS and A¬ϕ is constructed describing those behaviors

of the system that violates ϕ, i.e. L(AS × A¬ϕ) = L(As) ∩ L(A¬ϕ). The automata AS, A¬ϕ,

and AS × A¬ϕ are referred to as system, property, and product automata, respectively. System

S satisfies formula ϕ if and only if the language of the product automaton is empty, which

is if and only if there is no reachable accepting cycle in the underlying graph of the product

automaton. The LTL model checking problem is thus reduced to the problem of the detection

of an accepting cycle in the product automaton graph.

There are several parallel algorithms for accepting cycle detection. One of them is the algo-

rithm MAP [7] which we now briefly introduce in its “successor” version. Let G = (V, E, v0,A)

be the graph of the product automaton, where V is a finite set of vertices, E is a set of edges,

v0 is an initial vertex, and A is a vertex predicate indicating whether a state is accepting or

not. Let < be a linear ordering of the set of vertices, given e.g. by the vertex numbering. We

extend the ordering to the set V ∪ {⊥} (⊥/∈ V) and put ⊥< v for all v ∈ V . Furthermore, let

map :: V → V ∪ {⊥} is a function returning the maximal accepting successor of a given vertex

or ⊥ if it does not exist, i.e. map(u) = max{⊥, v | (u, v) ∈ E+ ∧A(v)}.

The idea of the algorithm to detect an accepting cycle is as follows. If a vertex u is its own

maximal accepting successor, i.e. u = map(u), the presence of an accepting cycle is guar-

anteed. If there is an accepting cycle in the graph, but for none of its vertices u = map(u),

then the maximal accepting successor of all the vertices of the cycle must be the same, must

lie outside the cycle and can thus be marked as non-accepting. The idea of the algorithm is

to process the graph in a few iterations so that each iteration computes map values for all the

vertices. If no accepting cycle is discovered, all maximal accepting successors that occur in

map(u) for some u are marked as non-accepting for all the following iterations. The algorithm

Algorithm 1 Algorithm MAP

Input: directed graph G = (V, E, v0,A) of AS×¬ϕ

linear ordering < on V

Output: true, if AS×¬ϕ contains accepting cycle

false, otherwise

1: while (∃v ∈ V : A(v) = true) do

2: COMPUTEALLMAPS(G,<)

3: if (∃u ∈ V : u = map(u)) then

4: return true

5: end if

6: A(v)← false

7: end while

8: return false

iterates until an accepting cycle is found or the set of accepting vertices becomes empty. See

the pseudo-code in Algorithm 1.

A key procedure of the algorithm is COMPUTEALLMAPS() that is responsible for computing

the values of the function map for all the vertices reachable from the initial vertex. Initially,

the values of map(u) are set to ⊥ for all u ∈ V . These values are then repeatedly updated until

a global fix-point is reached, i.e. no update can be done for any value of map(u). Suppose a

directed edge (u, v) from u to v, the new value of map(u), the so called update along the edge

(u, v), is computed using function maxacc(u, v) as follows:

maxacc(u, v) =

{
max{map(u),map(v), v} if A(v)

max{map(u),map(v)} otherwise.

Henceforward, we also refer to the iterations of the while loop of Algorithm MAP given

in Algorithm 1 as of outer iterations, and the iterations of the while loop of procedure COM-

PUTEALLMAPS given in Algorithm 2 as of inner iterations.

The practical performance of the basic algorithm may be further enhanced if the graph to be

checked for the presence of an accepting cycle is partitioned into subgraphs so that no cycle of

the original graph maps to multiple partitions. In that case the inner iterations as performed

in procedure COMPUTEALLMAPS may be prevented from propagating values of map along

Algorithm 2 COMPUTEALLMAPS(G,<)

Input: directed graph G = (V, E, v0,A)

linear ordering < on V

Output: value of map(u) for all u ∈ V

1: for all (u ∈ V) do

2: map(u) =⊥
3: end for

4: while (¬ fix-point) do

5: for all ((u, v) ∈ E) do

6: if (v ∈ A) then

7: map(u)← max{map(u),map(v), v}

8: else

9: map(u)← max{map(u),map(v)}

10: end if

11: end for

12: end while

13: return map

edges that cross partition boundaries. This brings no complexity improvement, but it generally

reduces the number of inner iterations needed to achieve the fix-point.

One technique to partition the product automaton graph is part of the algorithm itself. It

builds upon the fact that if two vertices differ in their values of map, they cannot lie on the

same cycle. Therefore, the propagation in procedure COMPUTEALLMAPS may be localized

to those edges (u, v) for which the values of map(v) and map(u) computed in the previous

outer iteration are the same. The values of map function from the previous outer iteration are

referred to as oldmap values.

3 Reformulation of MAP algorithm

In order to accelerate the MAP algorithm on CUDA we reformulate it as a matrix-vector

multiplication algorithm.

u

v0 v1 v3

v0 v1 v3 ~m ~o ~A ~m ~o ~A ~r

u


0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0

 ×

⊥ ⊥ 0

⊥ ⊥ 1

⊥ ⊥ 0

⊥ ⊥ 1

=

⊥ ⊥ 0 0

⊥ ⊥ 1 0

3 ⊥ 0 1

⊥ ⊥ 1 0

v1


0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0

 ×

⊥ ⊥ 0

⊥ ⊥ 1

3 ⊥ 0

⊥ ⊥ 1

=

⊥ ⊥ 0 0

3 ⊥ 1 1

3 ⊥ 0 0

⊥ ⊥ 1 0
0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0

 ×

⊥ ⊥ 0

3 ⊥ 1

3 ⊥ 0

⊥ ⊥ 1

=

⊥ ⊥ 0 0

3 ⊥ 1 0

3 ⊥ 0 0

⊥ ⊥ 1 0

m o A
⊥ ⊥ 0

3 ⊥ 1

3 ⊥ 0

⊥ ⊥ 1

=⇒
m o A
⊥ ⊥ 0

3 ⊥ 1

3 ⊥ 0

⊥ 3 0

=⇒
m o A
⊥ ⊥ 0

⊥ 3 1

⊥ 3 0

⊥ 3 0


0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0

 ×

⊥ ⊥ 0

⊥ 3 1

⊥ 3 0

⊥ 3 0

=

⊥ ⊥ 0 0

⊥ 3 1 1

1 3 0 0

⊥ 3 0 0


0 0 0 0

0 0 1 0

1 1 0 1

0 0 0 0

 ×

⊥ ⊥ 0

⊥ 3 1

1 3 0

⊥ 3 0

=

⊥ ⊥ 0 0

1 3 1 0

1 3 0 0

⊥ 3 0 0

Figure 1. Matrix vector computation of MAP.

Let us assume the graph G of the product automaton AS×¬ϕ is represented as an adjacency

matrix M. The matrix keeps value 1 at row u and column v for every directed edge (u, v). See

Figure 1. Additional data to be stored with every vertex of the graph are not stored directly in

the matrix, but they are rather organized in separate vectors. Namely, vector ~m of map values,

vector ~o of oldmap values, vector ~A of values of the predicate A, and an output vector ~r of

bits indicating a recent update to the value of map. Vector ~r is used to detect the fix-point of

computation of inner iterations, i.e. the situation when no update to map function occurs in

two successive inner iterations.

The algorithm proceeds as illustrated in Figure 1. Initially, all map and oldmap values are set

to ⊥, see the column vectors ~m and ~o. The algorithm repeatedly updates values of the vec-

tor ~m until a fix-point is reached (the three topmost matrix-vector product equations). Since

map(v) 6= v for all vertices v, the maximal accepting vertex v3 cannot be part of an accepting

cycle (map(v3) < v3). The algorithm resets its accepting status, copies map values to oldmap

values and sets all values of map to ⊥. Note that there are two subgraphs to be further pro-

cessed identified by the oldmap values. Vertex v3 is part of one of the subgraphs, but since it

is not accepting anymore, it cannot influence any future values of map computed for vertices

within the subgraph. Then the next outer iteration proceeds. The algorithm detects (using

two inner iterations) that map(v1) = v1 and so it terminates reporting accepting cycle through

vertex v1.

The key observation is that the vector of map values computed in each inner iteration is

computed as a matrix-vector product by substituting max for the standard + operation, and

maxacc for the standard · operation. The result, however, considers only those summands for

which oldmap values are the same as oldmap value of the updated vertex. For example, the

resulting value of ~m[u] is computed as

~m[u] = max1<i≤4 (M[u][i] · old · maxacc(i, u))

where old equals to 1 if ~o[u] = ~o[i] and equals to 0 in the other case. Also note that values of ~A
are accessed within maxacc operation and that 0 is used to encode ⊥.

4. CUDA Architecture

The Compute Unified Device Architectures (CUDA) [11], developed by NVIDIA, is paral-

lel programing model and software environment providing general purpose programming on

Graphics Processing Units. At the hardware level, GPU device is a collection of multiproces-

sors each consisting of eight scalar processor cores, instruction unit, on-chip shared memory,

and texture and constant memory caches. Every core has a large set of local 32-bit registers

but no cache. See the structure as depicted in Figure 2. The multiprocessors follow the SIMD

architecture, i.e. they concurrently execute the same program instruction on different data.

Communication among multiprocessors is realized through the shared device memory that is

accessible for every processor core.

On the software side, the CUDA programming model extends the standard C/C++ pro-

gramming language with a set of parallel programming supporting primitives. A CUDA pro-

gram consist of a host code running on a CPU and a device code running on the GPU. The

device code is structured into so called kernels. A kernel executes the same scalar sequential

program in many data independent parallel threads. Within the kernel, threads are organized into

Figure 2. CUDA hardware model

thread blocks forming a grid of one or more blocks, see Figure 3. Each thread is given a unique

index within its block threadIdx and each block is given a unique index blockIdx within the grid.

The threads of a single block are guaranteed to be executed on the same multiprocessor, thus,

they can easily access data stored in shared memory of the multiprocessor. The programmer

specifies both the number of blocks and number of threads per block to be created before a

kernel is launched. These values are available to the kernel as gridDim and blockDim values,

respectively.

Using CUDA to accelerate the computation is easily exemplified on a vector summation

problem. Suppose two vectors of length n to be summed. In the standard imperative pro-

gramming language, a programmer would use a for loop to sum individual vector elements

successively. Using CUDA, however, the vector elements can be summed concurrently in a

single kernel call populated with n threads, each responsible for summation of a single pair of

vector elements at the position given be the thread index.

Figure 3. CUDA programming model

M =


a b c 0

0 d e 0

0 0 0 0

f 0 g h



Row 0 Row 1 Row 3

Mr[8] = { a b c d e f g h }

Mc[8] = { 0 1 2 1 2 0 2 3 }

Mn[4] = { 0 3 5 8 }

Figure 4. A sparse matrix and its CSR representation.

5. CUDA Accelerated Algorithm MAP

Data structures used for CUDA accelerated computation must be designed with care. First,

they have to allow independent thread-local data processing so that the CUDA hardware can

employ massive parallelism. And second, they have to be small so that the high latency device-

memory access and limited device-memory bandwidth are not large performance bottlenecks.

As for the algorithm MAP, it is the matrix representation of the graph AS×¬ϕ to be encoded ap-

propriately at the first place. Note that uncompressed matrix or dynamically linked adjacency

lists violate the requirements and as such they are inappropriate for CUDA computing.

We decided to encode the matrix of the product automaton graph as a sparse matrix using

compressed sparse row (CSR) format. In this format a sparse matrix is encoded using three one-

dimensional arrays Mr, Mc, and Mn as follows. All the non-zero elements of a matrix M

Algorithm 3 CUDA MAP Algorithm - host code

Input: directed graph G = (V, E, v0,A) of AS×¬ϕ

Output: true, if AS×¬ϕ contains accepting cycle

false, otherwise

1: CREATE_CSR_REPRESENTATION(G, Mc,Mn, ~m)

2: acc_cycle_found← false

3: repropagate← true

4: unmarked← true

5: copy (Mc,Mn, ~m) to GPU (gMc, gMn, ~gm)

6: while unmarked ∧ ¬acc_cycle_found do

7: while repropagate ∧ ¬acc_cycle_found do

8: repropagate← false

9: map_Kernel(gMc, gMn, ~gm, acc_cycle_found)

10: check_repropagate_Kernel(~gm, repropagate)

11: end while

12: unmarked← false

13: unmark_acc_vertices_Kernel(~gm, unmarked)

14: end while

15: return acc_cycle_found

are stored in the array Mr in left-to-right and top-to-bottom order. The array Mc keeps the

corresponding column indices for every element in Mr, while the array Mn keeps positions

of first elements of rows of M in arrays Mn and Mr. See Figure 4. Note that in our case all

the non-empty elements of the matrix are the same, hence, the array Mr is redundant for our

purposes and we do not maintain it at all.

The other data structures are organized as vectors, which is compatible with CUDA process-

ing. The values of map, old map, A predicate, and repropagation bit r for vertex i are available

in the pseudo-code as m[i].map, m[i].old, m[i].acc and m[i].repropagate, respectively. Since

the values of map and oldmap are technically pointers, we were able to store the two other

bits of information into unused pointer bits reducing thus the space needed to record all the

data for one vertex to two times 4 Bytes.

Algorithm 4 device code - map_Kernel

proc map_Kernel(gMc, gMn, ~gm, acc_cycle_found)

1: row← blockIdx ∗ blockDim + threadIdx

2: if row < | ~gm| then

3: row_begin← gMn[row]

4: row_end← gMn[row + 1]

5: u← gm[row]

6: propagate← ⊥
7: u.updated← false

8: for column← row_begin to row_end − 1 do

9: v← gm[gMc[column]]

10: if u.map = v.old ∧ u.old 6= v.old then

11: u.old← v.old

12: u.map← ⊥
13: propagate← ⊥
14: u.repropagate← true

15: break

16: else if u.old = v.old then

17: propagate← max(propagate, maxacc(u, v))

18: end if

19: end for

20: if propagate = row then

21: acc_cycle_found← true

22: end if

23: if propagate > u.map then

24: u.map← propagate

25: u.repropagate← true

26: end if

27: gm[row]← u

28: end if

end

Algorithm 5 device code - check_repropagate_Kernel
proccheck_repropagate_Kernel(~gm, repropagate)

1: row← blockIdx ∗ blockDim + threadIdx

2: if row < | ~gm| then

3: u← gm[row]

4: if u.repropagate then

5: repropagate← true

6: end if

7: end if

end

Algorithm 6 device code - unmark_acc_vertices_Kernel
proc unmark_acc_vertices_Kernel(~gm, unmarked)

1: row← blockIdx ∗ blockDim + threadIdx

2: if row < | ~gm| then

3: u← gm[row]

4: if u.acc ∧ u.map < row then

5: u.map← ⊥
6: u.old← row

7: u.acc← false

8: gm[row]← u

9: unmarked← true

10: end if

11: end if

end

As explained in Section 3, the major computation part of the algorithm MAP can be formu-

lated in terms of matrix-vector product. Given CSR matrix representation and a column vector,

an efficient CUDA accelerated matrix-vector product procedure was described in [13, 6]. The

idea of the procedure is to map every row of the matrix to one thread. Since in our case the

edges of the graph are more or less uniformly spread in the matrix, this approach leads to a

satisfactory balanced load of CUDA cores.

The pseudo-code of the CUDA accelerated algorithm MAP follows. Algorithm 3 lists the

overall host code, i.e. the part that is executed on the CPU. The inner and outer while loops

listed in the pseudo-code correspond with the inner and outer iterations as introduced in Sec-

tion 2.

There are three kernel functions called from the host code. The most important one,

map_Kernel, is listed as Algorithm 4. Every call to map_Kernel performs one matrix-vector prod-

uct operation, i.e. it propagates the map values once along every edge (see lines 17 and 23-26

of Algorithm 4). Note however, that the very first call to the kernel in every outer loop does

a slightly different job. In particular, it copies map values to oldmap values to decompose

the graph according to map values from the previous outer iteration (see lines 10-15 of Al-

gorithm 4). If no accepting cycle is found and map_Kernel returns, check_repropagate_Kernel

is called to detect a fix-point. check_repropagate_Kernel is listed as Algorithm 5. If there

is no map value to be further propagated, the outer iteration is completed by a call to

unmark_acc_vertices_Kernel to unset accepting predicate for accepting states proven to be out-

side an accepting cycle. unmark_acc_vertices_Kernel is listed as Algorithm 6.

6. On-The-Fly Verification

The last not-yet-discussed but quite essential procedure of the whole verification process

is the transformation of the input data as given to the model checker into the form suitable

for CUDA accelerated computation. In the model checking process, the graph to be searched

for accepting cycles is given implicitly. Implicit definition of a graph involves a function to

enumerate initial vertices, a function to enumerate edges emanating from a given vertex, and

a function to check for accepting status of a given vertex. In order to use our CUDA accelerated

accepting cycle detection algorithm, we have to turn the implicit definition of the graph into an

explicit one. This process is generally referred to as state space generation. In addition to explicit

state space construction we also build its CSR representation.

A distinguished property of the MAP algorithm is that it can be altered to work on-the-

fly [7]. An on-the-fly algorithm can detect the presence of an accepting cycle before the state

space generation procedure completes its task. We were able to adapt our implementation to

mimic this behavior as well. In particular, we let the CPU to perform state space generation

during which we let the GPU to apply CUDA accelerated MAP algorithm on partially con-

Models Model description Inspected LTL properties

elevator the elevator controller
1: if level 1 is requested, it is served eventually

2: if level 1 is requested, it is served as soon as the cab

passes the level 1

peterson Peterson’s mutual exclusion
1: infinitely many times someone is in the critical section

algorithm 2: if process 0 is not in the critical section then it will

eventually reach it

leader leader election algorithm

based on filters

eventually leader will be elected

anderson
Anderson’s queue lock mutual

exclusion algorithm

for each process holds that if the process is active in-

finitely often then it is in the critical section infinitely

often

bakery Bakery mutual exclusion

algorithm

for each process holds that if the process is active in-

finitely often and starts wait then it waits until reaches

the critical section and eventually reaches it

phils dining philosophers problem infinitely many times someone eats

Table 1. The used experimental models.

structed graph. If the part of the graph constructed so far contains an accepting cycle, CUDA

accelerated MAP algorithm simply reveals it before the state space generation is complete.

To further accelerate CUDA computation, we employed another technique to decompose

the product automaton graph [15, 4]. The idea is to decompose the property automaton into

strongly connected components and then project this decomposition to the final graph. More-

over some parts of the product automata graph are known to be without accepting vertices in

advance and may be omitted when constructing CSR representation of the graph. This tech-

nique significantly reduced the size of the matrix as well as number of repropagations needed.

7. Experimental evaluation

We have implemented the algorithm as a part of the DiVinE-Cluster model checker version

0.8.2 [5]. We compared the performance of the CUDA implementation against the algorithms

MAP and OWCTY as provided by the model checker. To order vertices as required by the algo-

generated # stored # generated # stored accepting # MAP # kernel avg. kernel
Model states states transitions transitions cycle iterations executions time [ms]

elevator 1 5 015 528 1 722 344 63 110 616 20 483 544 N 14 539 18

leader 26 302 351 26 302 351 84 124 038 84 124 038 N 2 3 58

peterson 1 18 995 033 9 497 514 124 897 292 41 457 112 N 10 160 40

anderson 10 728 476 6 170 260 46 795 735 26 328 440 N 4 223 27

elevator 2 6 645 826 3 354 971 76 052 914 32 562 797 Y 1 42 22

phils 6 976 798 2 278 932 63 492 002 7 470 054 Y 1 1 12

peterson 2 5 797 524 2 933 213 38 297 450 12 943 640 Y 4 525 11

bakery 6 986 289 4 333 229 37 438 316 18 145 482 Y 1 1 23

Table 2. The statistic of CUDA MAP algorithm.

CUDA MAP CPU MAP CPU OWCTY

accepting CSR CUDA total 1st iter. other iter. total reachability total
Model cycle time time time time time time # iter. time time

elevator 1 N 26 7 34 44 56 100 16 24 41

leader N 87 1 90 97 600 697 17 90 297

peterson 1 N 105 6 113 175 270 445 16 110 188

anderson N 31 7 39 64 51 115 5 33 113

elevator 2 Y 33 1 35 50 – 50 1 41 177

phils Y 45 1 47 295 102 397 5 180 576

peterson 2 Y 25 5 31 173 – 173 1 114 404

bakery Y 24 1 26 240 – 240 1 219 907

Table 3. The run-times in seconds.

CUDA MAP CPU MAP CPU OWCTY

Models total time total time CUDA MAP speedup total time CUDA MAP speedup

non-accepting 276 1357 4.92 639 2.32

accepting 139 860 6.19 2064 14.87

both 415 2173 5.24 2730 6.51

Table 4. The overall run-times in seconds, and speedup of the whole model checking procedure.

rithm, we employed inverse ordering on row numbers since with this ordering the numbers of

inner iterations were very small. For the details on how the ordering influences performance

of the algorithm, see [8].

To compare the CUDA algorithm with the existing algorithms implemented in the DiVinE

Cluster model checker, we used DiVinE native models as listed in Table 1. All the experiments

were run on a Linux workstation equipped with two AMD Phenom(tm) II X4 940 Processors

@ 3MHz, 8 GB DDR2 @ 1066 MHz RAM and NVIDIA GeForce GTX 280 GPU with 1GB of

GPU memory.

Table 2 captures various statistics of our experiments. The difference between stored and

generated states illustrates how much of the state space is made of subgraphs without accept-

ing states. Note that if the graph contains an accepting cycle, the reported numbers refer to

numbers of states and transitions generated and stored before the accepting cycle was discov-

ered. #MAP iterations reports the number of outer iterations, #kernel executions gives the total

number of calls to CUDA kernels, and avg kernel time gives an average time a single call to a

CUDA kernel took.

Table 3 provides details on run-times of individual algorithm parts. As for the CUDA MAP

algorithm, the total run-time includes the initialization time (not reported in the table), CSR

construction time (CSR time), and time spent on CUDA computation (CUDA time). Note that

the first iteration of CPU MAP is actually slower than construction of the CSR representa-

tion. This is because the first iteration of the CPU MAP not only generates the state space, but

also computes first stable values of map. Also note the different number of outer iterations in

CUDA MAP (reported in Table 2) and CPU MAP. The difference is a result of employing max-

imal accepting predecessors in CPU MAP and maximal accepting successors in CUDA MAP.

The number of iterations of CUDA MAP is consistently smaller, for which we have no good

explanation yet. Algorithms MAP and OWCTY were running on a single core.

Finally, Table 4 gives a comparison of overall run-times for both valid and invalid model

checking instances. We can see that if the whole model checking procedure is considered, the

speedup is not that impressive. This is obviously due to the CSR representation preparation.

Though, the speedup is still significant.

8. Conclusions

We demonstrated successful reformulation of the LTL model checking algorithm MAP in

terms of matrix-vector product that allows for significant GPU accelerated model checking

process. The main bottleneck of the whole approach is the costly procedure of preparation of

data structures that are necessary for efficient acceleration. Though we put significant effort in

designing accelerated CSR representation computation, we did not achieve a procedure with

consistent speed-up. Therefore, we consider GPU accelerating of the data structures prepara-

tion to be the next challenge for model checking community.

We are aware of other representations that could be used for CUDA efficient matrix-vector

product, the other representations even exhibit better CUDA performance, however, their

preparation is generally more complex, hence not very suitable for our domain.

In the future we would like to accelerate slow CSR representation preparation at least by

means of multi-core processing, which we believe may bring similar speed-up as in the case

of state space generation [3]. Another problem we are aware of if the limited memory size of a

single CUDA device. We intend to overcome this limit by employing multiple CUDA devices

for which we already have some initial thoughts.

References

[1] C. Baier and J. P. Katoen. Principles of Model Checking. The MIT Press, 2008.
[2] J. Barnat, L. Brim, and P. Ročkai. Scalable Multi-core LTL Model-Checking. In Model Checking

Software (SPIN 2007), volume 4595 of LNCS, pages 187–203. Springer, 2007.
[3] J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-Checker. In Automated

Technology for Verification and Analysis, volume 5311 of LNCS, pages 234–239. Springer, 2008.
[4] J. Barnat, L. Brim, and I. Černá. Property Driven Distribution of Nested DFS. In Proceedinfs of the

3rd International Workshop on Verification and Computational Logic (VCL’02), pages 1–10. University

of Southampton, UK, Technical Report DSSE-TR-2002-5 in DSSE, 2002.

[5] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE – A Tool for Distributed

Verification (Tool Paper). In Computer Aided Verification (CAV 2006), volume 4144/2006 of LNCS,

pages 278–281. Springer, 2006.

[6] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical

Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[7] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting Predecessors are Better than Back Edges

in Distributed LTL Model-Checking. In Formal Methods in Computer-Aided Design (FMCAD’04),

volume 3312 of LNCS, pages 352–366. Springer, 2004.

[8] L. Brim, I. Černá, P. Moravec, and J. Šimša. How to Order Vertices for Distributed LTL Model-

Checking Based on Accepting Predecessors. ENTCS, 132(2):3–18, 2006.

[9] I. Černá and R. Pelánek. Distributed Explicit Fair Cycle Detection (Set Based Approach). In Model

Checking Software (SPIN’03), volume 2648 of LNCS, pages 49–73. Springer, 2003.

[10] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient Algorithms for the

Verification of Temporal Properties. Formal Methods in System Design, 1:275–288, 1992.

[11] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide Version 2.0,. http:

//www.nvidia.com/object/cuda_develop.html, June 2009.

[12] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic cycle-detection

algorithm? In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01), volume

2031 of LNCS, pages 420–434. Springer, 2001.

[13] M. Garland. Sparse Matrix Computations on Manycore GPU’s. In Proceedings of the 45th annual

conference on Design automation (DAC’08), pages 2–6. ACM, 2008.

[14] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.

[15] A. L. Lafuente. Simplified distributed LTL model checking by localizing cycles. Technical Report

00176, Institut für Informatik, University Freiburg, Germany, July 2002.

[16] J. Reif. Depth-first search is inherrently sequential. Information Processing Letters, 20(5):229–234,

1985.

[17] S. Schwoon and J. Esparza. A Note on On-The-Fly Verification Algorithms. In Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS’05), volume 3440 of LNCS, pages 174–190.

Springer, 2005.

[18] R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal on Computing, pages

146–160, Januar 1972.

[19] K. Verstoep, H. Bal, J. Barnat, and L. Brim. Efficient Large-Scale Model Checking. In 23rd IEEE

International Parallel & Distributed Processing Symposium (IPDPS 2009). IEEE, 2009.

