
}w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Quantitative Model Checking of Systems
with Degradation (Full Paper)

by

Jiří Barnat
Ivana Černá

Jana Tůmová

FI MU Report Series FIMU-RS-2009-09

Copyright c© 2009, FI MU June 2009

Copyright c© 2009, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Quantitative Model Checking of Systems
with Degradation (Full Paper)∗

Jiří Barnat, Ivana Černá, Jana Tůmová

Faculty of Informatics, Masaryk University,

Botanická 68a, 60200 Brno,

Czech Republic

{xbarnat,cerna,xtumova}@fi.muni.cz

June 10, 2009

Abstract

In this paper we describe a rather specialized quality of a system – the degradation.

We demonstrate systems that naturally incorporate degradation phenomenon and

we show how these systems can be verified by adapting the standard automata-

based approach to LTL model checking. We introduce Büchi Automata with Degra-

dation Constraints (BADCs) to specify the desired properties of systems with degra-

dation and we describe how these can be used for verification. A major obstacle in

the verification process is that the synchronous product of the system and the Büchi

automaton may be infinite, which we deal with by introducing a normal form of

the Büchi automata and normalizing procedure. We also show that the newly in-

troduced formalism can be used to distinguish MDPs indistinguishable by any LTL,

PCTL or even PCTL∗ formula.

1 Introduction

In order to reduce project design costs or to fit the tight time-to-market schedule, nu-

merous software tools including formal verification ones are used in software and hard-

ware development process. Quantitative properties of systems being developed are an

∗This work has been supported in part by the Czech Science Foundation grants No. 201/09/P497 and

201/09/1389.

1

inseparable part of the specifications in many cases. As a result, specialized software

tools were designed and are publicly available to help system designers analyze vari-

ous quantitative aspects of systems. For example, tools such as PRISM [12], LiQuor [6]

or ProbDiVinE-MC [4] are used to design and analyze systems with probabilistic ac-

tions, tools such as UPPAAL [5] or KRONOS [18] are used to verify timing constraints

of real-time systems, MRMC [14] tool analyzes Markov rewards, etc.

In this paper we introduce a rather specialized quality of a system – the degrada-

tion. The degradation phenomenon is quite common for objects that are subjects to

physics laws. For example, we can measure the degradation of electric charge in some

electronic devices, degradation of power or quality of a transmitted signal in broad-

casting network, etc. However, the phenomenon is not bound to physical objects only

and is present in many other kinds of systems including software ones. For example,

a database index degrades with every database update, memory consistency degrades

every time an allocation or deallocation of a memory block occurs (memory fragmenta-

tion), etc.

To model systems with degradation we use the following approach. Let us assume

that an attribute of the model is subject to the degradation. The idea of the degradation

is to express the consistency level (or quality) of the attribute using a real number. If

the attribute is in perfect shape the associated number equals to one, if the consistency

is degraded to 75%, the number equals to 0.75, etc. Since we do not admit negative

consistency or consistency better than 100%, the number associated with the attribute is

always a number between zero and one.

The level of degradation is manipulated by performing system actions. Every action

of the system may either further degrade the attribute, or it may leave it as it is. Hence-

forward, we assume that the amount of degradation caused by an action of a system is

associated with the action and is given as a real number again between zero and one.

So, if the current level of degradation is l and the degradation associated with an action

is d, the new level of degradation will be d · l after the action is executed.

To our best knowledge, there are no appropriate formalisms developed to properly

deal with the degradation aspects of a system. So far, the possibilities to handle the

degradation might have been twofold. The first approach would involve using a stan-

dard model checker, e.g. SPIN [13]. We can introduce a floating point variable to keep

the amount of degradation and describe how the degradation evolves by explicit ma-

nipulation with the variable. The second approach could be to use a formalism such as

2

Markov Decision Processes (MDPs) to express the degradation phenomenon by means

of probability. Unfortunately, neither of the approaches is suitable for modeling the

real degradation phenomenon in more complex systems. In particular, both approaches

lacks the general possibility to verify linear properties of runs of the system under con-

sideration. For example, the property that system designers might be interested in is

a repeated response-with-limited-degradation, such as: whenever A happens, B happens

before the degradation of A drops below certain level. This property cannot be ver-

ified using the first approach as a fresh degradation variable needs to be introduced

every time A happens. This would require a finite but unbounded number of degrada-

tion variables to be introduced in the system description, which is rather problematic

regarding the restrictions of the standard model checker input languages. The other

approach is unsuitable as well. MDPs require that a state of the system evolves into its

immediate descendants in such a way that the sum of degradations distributed among

the descendants equals to one for a given action. This is quite restrictive and also unreal-

istic for many systems. For the same reasons, a system-wide fixed degradation constant,

as suggested in [8], is inappropriate.

In this paper we demonstrate systems that naturally incorporate degradation phe-

nomenon. We introduce quantitative linear properties that relate to systems with degra-

dation and define Büchi Automata with Degradation Constraints as the standard for-

malism to express the desired degradation properties. We adapt the standard automata-

based approach to LTL model checking to perform model checking procedure for quan-

titative linear properties over systems with degradation. The problem with the adaption

is that the product automaton to be analyzed may be infinite. To avoid this, we suggest

to transform the property Büchi automaton into the so called normal form which than

guarantees finiteness of the product automaton. A separate section of the paper relates

systems with degradation to MDPs. We demonstrate that expressive power of our spec-

ification formalism differs from that of PLTL, PCTL, or PCTL∗.

2 Systems with Degradation

Example I: Signal Coverage Problem

Let us suppose, we want to get some signal from a start point S to an end point E.

Unfortunately, the points are too far from each other, so the signal cannot reach the des-

tination without unrepairable signal degradation. A possible solution to the problem is

3

to build relays in between S and E that restore the quality of the signal while the sig-

nal is still fully re-constructible. Furthermore, let us assume we have a map of possible

places where a relay may be built including pairwise signal degradation values as il-

lustrated in Figure 1. For the sake of simplicity, let us assume the signal goes through

these places. Using a system with degradation, we can easily check, whether the signal

reaches the target point in proper shape if the relays are built at the A-points. Another

example of a degradation property might be to check whether some of the A-points are

redundant.

S

.85

.89

.86

.8

.72

.88

.75

.87

.8

.9 .95

.8

A
A

E

.7
s1

t0
t1

t2

Figure 1: Signal coverage map.

Example II: Magnetic Disk

A common problem that must be dealt with in a firmware of a storage device is a pe-

riodical refreshment of data being kept. There are numerous reasons for it, but for the

sake of simplicity, let us just suppose that the data integrity are degraded by certain

amount, let us say 5%, with every read operation. On the other hand every write or re-

fresh operation restores the integrity of data to 99%. To be on a safe side, the producers

of the storage device would like to guarantee that any piece of data is refreshed before

its integrity drops below a certain level, let us say 85%. However, the device cannot

simply refresh data after every read operation as this would lead to an unacceptable

level of power consumption. Therefore, the data are refreshed periodically on a time

basis. Note that the read operations may take various amount of time depending on

the position of a reading head and the location from where the data are read, which

we model using a non-deterministic choice. To answer the question whether the device

meets the producers’ requirements, we model the device and the controller as depicted

in Figure 2. We can verify that no read action is performed if the data degradation is

below 85% and refresh actions are performed only if the data degradation is below 90%.

4

cw cr

disk

refresh?
1

s0

.95

read!
1

write!
1

.99

refresh!

1

1

read?

c0

time+ = 2
write?

controller

time ≥ 4
time = 0

time < 4

time+ = 1int time;

data
.99

restore

r

ref

w
1

1

1

1
time+ = 2
read?

Figure 2: Magnetic disk example.

Transition Systems with Degradation

Informally, systems with degradation are systems that involve an attribute whose qual-

ity degrades (e.g. the data integrity in the magnetic disk example). We formalize such

systems as Transition Systems with Degradation (TSDs). Unlike the standard transition

systems, every transition is associated with a degradation constant in a TSD. A degra-

dation constant is a rational number from interval (0, 1]. The constants may differ for

individual transitions in the system. Note that the formal definition of a TSD contains

no specification of the attribute that degrades, it only captures how much it degrades

along each transition.

A transition system with degradation is a tupleM = (S,Act,→, Sinit,AP,L), where

• S is a finite, nonempty set of states,

• Act is a finite, nonempty set of actions,

• →⊆ S×Act× (0, 1]× S is a transition relation,

• Sinit ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S→ 2AP is a labeling function; L(s) denotes the set of atomic propositions that

are true in state s.

Instead of (s1, a, d, s2) ∈→ we write s1
a,d
−−→ s2. A transition s1

a,d
−−→ s2 represents that

the model can move from state s1 to the state s2 by a (nondeterministic) choice of action

a. The degradation constant d associated with the transition gives the fraction to which

the quality is degraded if the transition is executed. So if the level of degradation at

5

state s1 is let us say l and the action is executed, the level of degradation at state s2 will

be l · d.

A path in a TSD M = (S,Act, T, Sinit,AP,L) is an infinite sequence π = s0t0s1t1 . . .

where si ∈ S and ti = (si, ai, di, si+1) ∈ T for all i ≥ 0. A trajectory corresponding to

the path π = s0t0s1t1 . . . is given by the projection of π to the state labels, trajectory(π) =

L(s0)L(s1) A trace corresponding to the path π = s0t0s1t1 . . . is given by the projec-

tion of π to the state labels and degradation rates, trace(π) = (L(s0), d0) (L(s1), d1)

Let Traces(M) denote the set of all traces of paths inM.

For instance, consider example in Figure 1 and its path St0s1t1At2 . . . with the trace

(S, 0.87), (s1, 0.7), (A, 0.72), The signal degradation between S and A is 0.87 · 0.7 =

0.609. This means the quality of the signal in Awill be 60.9% of the quality in S.

3 Quantitative Linear Properties and Büchi Automata

with Degradation Constraints

One way to express a desired behavior of a system is to give restrictions on individ-

ual runs of the system, i.e. paths in its model. Properties specified by path restrictions

are called linear and are defined on trajectories, i.e. sequences of atomic propositions

holding true along a path. However, for systems with degradation, we might be inter-

ested not only in sequences of atomic propositions, but also in quantitative aspects, the

amount of quality degradation in particular. Formally, we want to analyze traces rather

than trajectories.

Consider a TSD M = (S,Act,→, Sinit,AP,L) and a path π = s0t0s1t1s2t2 . . . in M.

The amount of degradation along π between states si and sj, i ≤ j, is defined as

D
j
i =

j−1∏
k=i

dk.

In case i = j the amount of degradation is equal to 1.

Quantitative linear properties are linear properties involving constraints on trajecto-

ries. These are expressed by specifying boundaries on the amount of degradation along

a path between two states. Let us recall the signal coverage example. The question

whether the signal reaches the target point in a proper shape is an example of quantita-

tive linear property. In other words, we ask whether there exists a path from the sender

to the receiver along which the amount of degradation of the signal does not drop be-

low a given bound provided the signal is fully reconstructed in every relay (A-points).

6

Another interesting quantitative linear question might be whether there are redundant

relays on the way. A relay is redundant if the signal can reach properly its destination

without being refreshed at the relay.

Regarding the magnetic disk example the question whether a piece of data is read

when its degradation is below 85% or a piece of data is refreshed when its integrity is

not below 90% is an example of quantitative linear property as well.

Büchi Automata with Degradation Constraints

To express the quantitative linear properties of systems with degradation we introduce

a modification of Büchi automata, the so called Büchi Automata with Degradation Con-

straints (BADC). The standard automata are enriched with a set of bounded variables

allowing us to express the amount of degradation.

Let D be a finite set of degradation variables ranging over the rational numbers in

between (0, 1]. A degradation constraint over D is of form ϕ ::= x ./ d | ϕ ∧ ϕ, where

./∈ {<,≤, >,≥}, x ∈ D, and d is a rational number in (0, 1]. Note that degradation

constraints exclude disjunction as it can be expressed using two different transitions

of a BADC. DC(D) denotes the set of degradation constraints over D. A degradation

valuation is a function ν : D → (0, 1]. The set of all possible degradation valuations is

Eval(D).

A Büchi Automaton with Degradation Constraints (BADC) is a tuple A =

(L, Σ,D, T, linit, F), where

• L is a finite nonempty set of states (locations),

• Σ is a finite alphabet,

• D is a finite set of degradation variables,

• T ⊆ L× Σ×DC(D)× 2D × L is a set of transitions,

• linit ∈ L is an initial location,

• F ⊆ L is a finite set of locations (Büchi accepting condition).

A 5-tuple t = (l, α,ϕ, R, l ′) ∈ T represents the transition from location l to l ′ labeled

with α that is enabled if constraint ϕ is satisfied. R is a set of degradation variables

which are reset to 1 when executing the transition. For the transition t = (l, α,ϕ, R, l ′)

we denote label(t) = α, constraint(t) = ϕ and reset(t) = R.

7

A path in a BADC A = (L, Σ,D, T, linit, F) originating at location l0 (or simply from

l0) is an infinite sequence of locations and transitions π = l0t0l1t1 . . ., where li ∈ L and

ti = (li, α,ϕ, R, li+1) ∈ T for all i ≥ 0.
A finite path from l0 to ln is a finite prefix πlnl0 = l0t0l1 . . . ln−1tn−1ln of a path from l0.

A finite path πlnl0 is simple if ∀0 ≤ i, j ≤ n − 1, i 6= j implies ti 6= tj. A simple path πlnl0
forms an elementary cycle if l0 = ln and ∀0 ≤ i, j ≤ n− 1, i 6= j implies li 6= lj.

The semantics of a BADC A = (L, Σ,D, T, linit, F) is given by an infinite labeled tran-

sition systemMA = (S, Σ ′,→, Sinit), where

• S = L× Eval(D)

• Σ ′ = Σ× (0, 1]

• → ⊆ S× Σ ′ × S
(l1, ν1)

α,d
−−→ (l2, ν2) whenever there is a transition (l1, α,ϕ, R, l2) ∈ T such that

o ν1 |= ϕ

o ν2(x) =

{
d, if x ∈ R
ν1(x) · d otherwise

• Sinit = {(linit, νinit) | νinit(x) = 1 for all x ∈ D}

A run for a word σ = (α0, d0)(α1, d1) . . . ∈ (Σ × (0, 1])ω is an infinite sequence ρ =

(l0, ν0)(l1, ν1) . . . such that (l0, ν0) ∈ Sinit and (li, νi)
αi,di−−−→ (li+1, νi+1) for all i ≥ 0. A run

ρ = (l0, ν0)(l1, ν1) . . . is accepting if li ∈ F for infinitely many indices i. Lω(A) = {σ ∈
(Σ× (0, 1])ω | there exists an accepting run for σ in A}.

Figures 3.a and 3.b depict the “redundant A-point” quantitative linear property for

the signal coverage example and the property of the magnetic disc example, respec-

tively.

4 Model Checking Algorithm

Model checking is a technique that for a given finite state model and a temporal prop-

erty decides whether the model satisfies the property. In our case we are given a TSD

model of a system with degradation and a BADC automaton specifying prohibited

quantitative linear behaviors. In this section we develop an algorithm deciding whether

a given TSD model exhibits a forbidden behavior. Our model checking algorithm fol-

lows the automata-based approach to LTL model checking [17]. First, we define a prod-

uct automaton and prove that this automaton accepts exactly the intersection of the

8

x > 0.85 w
R = {x}

R = {x}

refb.
x < 0.9

r
x ≤ 0.85

x ≥ 0.9
ref

s0

r

S∨A
R = {x} A

A
x ≥ d

E
x ≥ d

E

a.

Figure 3: Quantitative properties of Sender/Receiver example (a) and Magnetic disc

example (b).

BADC language and the language of TSD traces. Next, we demonstrate that checking

non-emptiness of the product automaton is equivalent to finding an accepting cycle in

the product automaton graph and can be tested effectively by a number of known tech-

niques like the Nested Depth First Search [7] or OWCTY [10].

Product Automaton

Product automaton of a TSD M = (S,Act,→, Sinit,AP,L) and a BADC A =

(L, 2AP, D, T, linit, F) is an automatonM⊗A = (Q,Act, δ,Qinit, QF), where

• Q = S× L× Eval(D)

• δ : Q×Act→ 2Q

(s ′, l ′, ν ′) ∈ δ((s, l, ν), a) whenever

o ∃m = (s, a, d, s ′) ∈→
o ∃ t = (l,L(s), ϕ, R, l ′) ∈ T, such that ν |= ϕ and ∀ x ∈ D :

ν ′(x) =

{
d if x ∈ R
ν(x) · d otherwise

• Qinit = {(sinit, linit, νinit) | sinit ∈ Sinit, and νinit(x) = 1 for all x ∈ D}

• QF = {(s, l, ν) | l ∈ F}

9

The product automatonM⊗A can be viewed as an oriented graph GM⊗A = (Q,E).

Vertices of GM⊗A are the states of the product automaton and there is an edge from the

vertex (s, l, ν) to the vertex (s ′, l ′, ν ′) if ∃a ∈ Act : (s ′, l ′, ν ′) ∈ δ((s, l, ν), a). Accepting

cycle in the product automaton graph GM⊗A is a cycle containing an accepting state.

Henceforward, we consider only the subgraph of GM⊗A reachable from the set of initial

vertices Qinit, i.e. whenever we mention the product automaton graph, we implicitly

mean its reachable subgraph.

We say that a product automatonM⊗A is finite if its graph is finite.

Lemma 4.1. If a product automatonM⊗A is finite then there is an accepting run ofM⊗A
if and only if the graph GM⊗A contains an accepting cycle. [2]

The main obstacle in the verification process is that the product automaton graph

may be infinite. An example of such a situation is depicted in Figure 4. Here, the infinity

is caused by decreasing value of the variable x always meeting the constraint x ≤ 0.5.

����������

s0, l1, 0.5

s0, l1, 0.25

α
1

s1

0.5
α

s0

α
0.5

R = ∅
x ≤ 0.5
∅

R = ∅
{a}

s0, l0, 1

s1, l1, 0.5 s0, l0, 0.5

s1, l1, 0.25

M⊗A

M A

{a} ∅ l0 l1

Figure 4: Infinite product.

The key observation allowing for model checking of BADC properties of systems

with degradation is that for a special type of BADC automata, the so called normalized

BADC, it is guaranteed that the product graph is finite. In what follows we give the

definition of a normalized BADC and prove that the product automaton of a TSD and

a normalized BADC is finite. In the next section we provide an algorithm which trans-

forms any BADC to an equivalent normalized BADC.

10

Let us consider a BADC A = (L, Σ,D, T, linit, F). A degradation variable x ∈ D is in

normal form (or normalized, for short) in A if for each elementary cycle

πl0l0 = l0t0l1t1 . . . ln−1tn−1l0

from l0 to l0 in A there is a transition ti, 0 ≤ i ≤ n − 1, such that at least one of the

following two conditions holds:

• constraint(ti) = x ./ d or x ./ d∧ψ, where d ∈ (0, 1], ./ ∈ {≥, >}, and ψ ∈ DC(D)

• x ∈ reset(ti)

A is in normal form (or normalized, for short) if each degradation variable x ∈ D is in

normal form in A.

Lemma 4.2. The product automaton of a TSDM = (S,Act,→, Sinit,AP,L) and a normalized

BADC A = (L, 2AP, D, T, linit, F) is finite.

Proof. To prove the finiteness of the graph GM⊗A we have to demonstrate the finite-

ness of its set of states Q ⊆ S × L × Eval(D). As S and L are both finite (from the

definition of TSD and BADC) it is enough to prove that every constraint variable x ∈ D
attains only finitely many different values in GM⊗A.

Let ρ = (s0, l0, ν0), (s1, l1, ν1) . . . (sk, lk, νk) be a finite path such that the degra-

dation variable x is reset only in states (s0, l0, ν0) and (sk, lk, νk). Formally, every

edge (si, li, νi) → (si+1, li+1, νi+1) of ρ can be projected to the corresponding transi-

tion mi = (si, ai, di, si+1) of M and the transition ti = (li,L(si), ϕi, Ri, li+1) of A. The

variable is reset in a state (si, li, νi) iff x ∈ Ri. The initial value of x on ρ is d0 and along

the path is changed to
∏1
i=0 di,

∏2
i=0 di, . . . ,

∏k−1
i=0 di, dk. This sequence of x-values is

non-increasing (with the possible exception of the last value dk). We are to prove that

there is a bound B (depending only onM and A) such that the value of x is decreased

on ρ at most B times. The existence of the bound B, together with the fact that there are

only finitely many different degradation constants d in transitions ofM, assure that x

attains only a finite number of different values along a path in GM⊗A.

We define constants CM, CA, and LA distinguishing extremal values in M and A.

For the BADCAwe define CA as the minimal value such that there is a transition twith

constraint(t) = x ./ CA or x ./ CA ∧ ψ, where ./ ∈ {≥, >}, d ∈ (0, 1] and ψ ∈ DC(D).

For the TSDM we define CM as the minimal number such that the product of any CM
degradation constants d from transitions ofM is less than CA. LA is the length of the

longest elementary cycle in A.

11

Let us suppose the value of x is decreased on ρ more than CM+ LA times. After

the first CM decreases the value of x is less than CA. The length of the suffix ρ ′ of ρ,

starting in the state where the value of x decreased below CA for the first time, is greater

than LA. The variable x is normalized in A and thus there is a transition (si, li, νi) →
(si+1, li+1, νi+1) of ρ ′ such that constraint(ti) = x ./ d or x ./ d ∧ ψ, where ./ ∈ {≥, >
}, d ∈ (0, 1] and ψ ∈ DC(D). However, this constraint cannot be satisfied as the value

νi(x) < CA ≤ d. This contradicts the assumption about ρ.

Lemma 4.3. Lω(A) ∩ Traces(M) 6= ∅ ⇐⇒ GM⊗A contains an accepting cycle.

Synchronizing the path π = s0a0s1a1 . . . and the run ρ ′ = (l0, ν0)(l1, ν1) . . .we obtain

a run ρ = (s0, l0, ν0)(s1, l1, ν1)(s2, l2, ν2) . . . in the productM⊗A with infinitely many

indices i, such that (si, li, νi) ∈ QF, i.e. GM⊗A contains an accepting cycle.

The number of states of the product is O(|S| · |L| · Πd∈DN
logstep min(d)), where |S| is

the number of states of a TSD, |L| is the number of locations in an BADC before normal-

ization, DN is the set of degradation variables after normalization, step is the maximal

degradation constant different from 1 occurring in the TSD, and min(d) is the minimal

threshold connected with degradation variable d occurring in the BADC.

An optional way to construct the product automaton without normalization is to

modify the procedure of construction of the product automaton as follows. As soon

as the value of a degradation variable drops below the minimal threshold occurring

in the BADC, the value is tagged with a special flag denoting below minimal threshold

and it is not manipulated in succeeding states anymore. This approach leads to a finite

product automaton with O(|S| · |L| · (logstep min)|D|) states, where |S|, |L|, and step are as

in the previous case, |D| is the number of degradation variables, and min is the overall

minimal threshold occurring in the BADC.

The reason, why we have introduced normalization is that it helps to rapidly reduce

the size of the product automaton in many cases. It is basically a heuristic to minimize

the number of different values each degradation variable may get. Figure 5 illustrates

an original BADC, its normalized form and a transition system. The product of the

original BADC and the TSD has 239 states, whereas in the case of the normalized BADC

the product has only 46 states. The normalization procedure adds resets of variables

whenever it is possible. See, e.g., the self-loop on state l1.

12

{b}
l0

{a, b}

l1
{b}
x > 0.1

l1

0.8

a b

0.9TSD

BADC

l̂0 {b}

{a}

R = {x}

{a}
x > 0.1

x > 0.1

x > 0.1
x > 0.1

{a}
normalized BADC {a, b}

1

...
l 0

Figure 5: BADC, normalized BADC and TSD.

5 Normalization of BADC

In this section, we describe how to transform a BADC into an equivalent BADC in the

normal form.

Let us say that a degradation variable x is bounded in degradation constraint ϕ ∈
DC(D) if ϕ = x ./ d or ϕ = x ./ d ∧ ψ, ψ ∈ DC(D). More precisely, x is n-bounded in

constraintϕ ∈ DC(D) ifϕ = x ./1 d1∧ . . .∧x ./n dn orϕ = x ./1 d1∧ . . .∧x ./n dn∧ψ,

where x is not bounded in ψ. x is (n-)bounded in transition t if x is (n-)bounded in

constraint(t).

The transformation algorithm (see Algorithm 1) works in several stages.

In the initial stage (see Procedure ONECONSTRAINTONVARIABLE), the given BADC

is transformed into a BADC in which every degradation variable x is bounded by at

most one inequality x ./ dx. This is accomplished by introducing new degradation

variables into the BADC. In the next stage, we iteratively pick a degradation variable

x ∈ DC and transform the BADC so that x becomes normalized while preserving the

normal form of the already processed degradation variables.

Normalization of the degradation variable x involves two procedures. The first pro-

cedure (see Procedure RESETWHEREPOSSIBLE) identifies those transitions where the

variable x can be safely reset. To this end it computes the set Π of all simple paths π

satisfying three conditions: π starts in the initial location or in a location immediately

after reset of x, no reset of x occurs along π, and π ends in a location from which there

is a transition with a bound on x. Now we can split all the transitions into two disjoint

sets: those which occur on a path fromΠ (the set TP) and those which do not (the set TN).

13

Algorithm 1 Normalization of BADC

Input: BADC A0 = (L0, Σ,D0, T0, l0init, F
0)

Output: BADC A = (L, Σ,D, T, linit, F) in normal form

1: A := A0

2: ONECONSTRAINTONVARIABLE

3: Done := ∅
4: while Done 6= D do

5: pick x ∈ D \ Done

6: (LR, LP, Lx) := RESETWHEREPOSSIBLE(x)

7: SPLITINTOLAYERS(x)

8: Done := Done ∪ {x}

9: Assert: Each x ∈ Done is normalized in A
10: end while

11: Assert: A is in normal form

12: Assert: Lω(A0) = Lω(A)

Algorithm 2 Procedure ONECONSTRAINTONVARIABLE

1: for all x ∈ D0 do

2: A ′ := A
3: Tx := {ti ∈ T | x is bounded in ti}

4: for all ti ∈ Tx do

5: mi := n such that x is n-bounded in ti
6: D := (D \ {x}) ∪ {xi1 . . . , ximi

| xi1, . . . , ximi
are new, unique degradation variables}

7: replace constraint(ti) = x ./1 d1 ∧ . . .∧x ./mi
dmi

∧ϕwith xi1 ./1 d1 ∧ . . .∧ximi
./mi

dmi
∧ϕ

8: end for

9: for all t ∈ T do

10: if x ∈ reset(t) then

11: reset(t) := (reset(t) \ {x}) ∪ {xi1, . . . , ximi
| ti ∈ Tx}

12: end if

13: end for

14: Assert: Lω(A ′) = Lω(A)

15: end for

16: Assert: ∀x ∈ D : ∃!t ∈ T with bounded x

17: Assert: ∀x ∈ D : ∃!t ∈ T with 1-bounded x

18: Assert: Lω(A0) = Lω(A)

We can reset the variable x on the transitions from TN without changing the language

of the BADC. Simultaneously, three other sets of locations, namely LR, LP, and Lx, are

computed. LR is the set of locations in which a path π ∈ Π originates. LP are locations

14

Algorithm 3 Procedure RESETWHEREPOSSIBLE(x)

1: Tx := {tx ∈ T | x is bounded in tx}

2: Lx := {lx ∈ L | ∃ transition tx ∈ Tx from location lx}

3: Π := {π | π is a simple path l0t0l1 . . . lntnlx in A, l0 = linit or ∃ transition t ∈ T to l0 with x ∈ reset(t),
∀ 0 ≤ i ≤ n : x 6∈ reset(ti), and lx ∈ Lx}

4: LR := {l0 | ∃ π ∈ Π originating at l0}

5: LP := {li, lx | ∃ π = l0t0 . . . lntnlx ∈ Π, 0 ≤ i ≤ n}

6: TP := {ti | ∃ π = l0t0 . . . lntnlx ∈ Π, 0 ≤ i ≤ n}

7: TN := T \ TP

8: for all t ∈ TN do

9: reset(t) := reset(t) ∪ {x}

10: end for

11: return (LR, LP, Lx)

12: Assert: Lω(A0) = Lω(A)

occurring along a path π ∈ Π, and finally Lx are locations in which a path π ∈ Π ends.

Note that LR, Lx ⊆ LP.

Procedure SPLITINTOLAYERS finishes the normalization of the variable x. It manip-

ulates the rest of the transitions that may cause that x is not normalized, namely those

from the set TP. The modification of the BADC is a bit more involved here and requires

a replication of locations. Each replica of the location bears a specific information about

the actual value of x. We replace each location l ∈ LP with two new locations l̆ and l̂.

Moreover, if l ∈ LR, we introduce a new location
...
l . The information associated with the

replicas is intuitively characterized as follows:

•
...
l -locations: Whenever the location l ∈ LR is entered via a transition with reset of x

from location k in the original BADC, the location
...
l is entered in the transformed

one from location k if k 6∈ LP or from any replica of k if k ∈ LP. The value ν(x) is

the same in
...
l and in the corresponding l in the original BADC.

• l̆-locations: Let x ./ dx be the only degradation constraint which bounds x in A.

Let us define a lower bound lb(x) as lb(x) = x ./ dx if ./∈ {<,≤} and lb(x) =

¬(x ./ dx) otherwise. Whenever the location l ∈ LP is entered from a location k

in which ν(x) |= lb(x) via a transition without reset of x in the original BADC,

the location l̆ is entered in the transformed one from any replica of k (necessarily,

k ∈ LP). Due to the monotonicity of degradation, starting from the state k the

value of x remains less or less-or-equal than dx until a reset of x. Therefore, we

do not need to keep the value ν(x) in l̆ the same as in l (it suffices to know that

15

Algorithm 4 Procedure SPLITINTOLAYERS(x)
1: Let x ./ d be the constraint on x

2: lb(x) := ./∈ {<,≤} ? x ./ d : ¬(x ./ d)

3: L := L ∪ {̂l, l̆ | l ∈ LP, l̂, l̆ are new, unique locations} ∪ {
...
l | l ∈ LR,

...
l is a new, unique location}

4: linit :=
...
l init if linit ∈ LR

5: F := (F \ LP) ∪ {̂l, l̆ | l ∈ LP ∩ F} ∪ {
...
l | l ∈ LR ∩ F}

6: for all t = (l1, a,ϕ, R, l2) 6∈ Tx do

7: case l1 6∈ LP, x ∈ R, and l2 ∈ LR: replace twith (l1, a,ϕ, R,
...
l 2)

8: case l1 ∈ LP, x ∈ R, and l2 ∈ LR: replace twith (l̂1, a,ϕ, R,
...
l 2), and (l̆, a,ϕ, R,

...
l R)

9: case l1 ∈ LR, x ∈ R, and l2 ∈ LR: add transition (
...
l 1, a,ϕ, R,

...
l 2)

10: case l1 ∈ LP, x 6∈ R, and l2 ∈ LP: replace twith (̂l1, a,ϕ∧¬lb(x), R, l̂2), (̂l1, a,ϕ∧ lb(x), R∪ {x}, l̆2),

and (l̆1, a,ϕ, R ∪ {x}, l̆2)

11: case l1 ∈ LR, x 6∈ R, and l2 ∈ LP: add transitions (
...
l 1, a,ϕ∧¬lb(x), R, l̂2), and (

...
l 1, a,ϕ∧ lb(x), R∪

{x}, l̆2)

12: case l1 ∈ LP, and l2 6∈ LP: replace twith (̂l1, a,ϕ∧, R ∪ {x}, l2), and (l̆1, a,ϕ, R ∪ {x}, l2)

13: case l1 ∈ LR, and l2 6∈ LP: add (
...
l 1, a,ϕ, R ∪ {x}, l2)

14: end for

15: for all tx = (lx, a,ϕ, R, l2) ∈ Tx do

16: if ./∈ {<,≤} then

17: l̄2 := l2 6∈ LP ? l2 : (x ∈ R ?
...
l 2 : l̆2)

18: replace tx with (̂lx, a,ϕ ∧ lb(x), R ∪ {x}, l̄2), (l̆x, a,ϕ, R ∪ {x}, l̄2), and if lx ∈ LR add (
...
l x, a,ϕ ∧

lb(x), R ∪ {x}, l̄)

19: else

20: l̄2 := l2 6∈ LP ? l2 : (x ∈ R ?
...
l 2 : l̂2)

21: replace tx with (̂lx, a,ϕ∧ ¬lb(x), R, l̄2), and if lx ∈ LR add (
...
l x, a,ϕ∧ ¬lb(x), R, l̄)

22: end if

23: end for

24: Assert: Lω(A0) = Lω(A)

ν(x) remains below dx). Thus we can add reset of x on each transition entering the

l̆-location.

• l̂-locations: l̂-locations are dual to l̆-locations. Whenever the location l ∈ LP is

entered from a location k in which ν(x) 6|= lb(x) via a transition without reset of x

in the original BADC, the location l̂ is entered in the transformed one from k̂ and in

case k ∈ LR also from
...
k . It cannot be entered from k̆ as we know that ν(x) |= lb(x)

in k̆. The value ν(x) is the same in l̂-location and in the corresponding l-location

in the original BADC. Note that any transition leading to a l̂-location contains a

bound of form x > dx or x ≥ dx.

16

Transitions entering l are naturally replaced by transitions entering
...
l , l̆ or l̂ keeping the

above characteristics. Normal form is guaranteed by the fact that for every degradation

variable S every transition in the resulting BADC either resets the value of x or contain

a constraint of the form x > dx or x ≥ dx.
For an illustrative example of the transformation see Figures 6, 7, and 8.

l2l0 l3

l3l2

TN = {t0, t4, t5}

TP = {t1, t2, t3}

LR = {l1}

Lx = {l2}

LP = {l1, l2, l3}

l2 l3l0

l1

l4

t0 : a t1 : b t2 : b

t5 : a

t3 : a

t4 : b

l0

l4

t0 : a t2 : b
l1

t5 : a

t1 : b

t4 : b

t3 : a

After procedure RESETWHEREPOSSIBLE(x11)

BADC

After procedure ONECONSTRAINTONVARIABLE

ϕ = x ≥ 0.4∧ x ≤ 0.6

l1

l4

t0 : a t2 : b

t5 : a

t1 : b

t3 : a

t4 : b

ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6

ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6

R = {x11}

R = {x11}

R = {x11, x12}

R = {x}

R = {x11, x12}

Figure 6: Example of Normalization I.

17

ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6

l4

b

a

ϕ = x11 < 0.4
l0

b

R = {x11, x12}
a

b

b

b
ϕ = x11 ≥ 0.4
a

ϕ = x11 < 0.4

a

R = {x11}

R = {x11}

R = {x11}

R = {x11}

a

ϕ = x11 ≥ 0.4

R = {x11}

l0

b

ϕ = x11 ≥ 0.4
a

b

a

a

a

ϕ = x11 < 0.4

b

b

l4

a

b
ϕ = x11 < 0.4

R = {x12} R = {x11, x12}

R = {x11, x12}

R = {x11, x12}

R = {x11, x12}

R = {x11, x12}

ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6

ϕ = x11 ≥ 0.4

R = {x11, x12}

After procedure RESETWHEREPOSSIBLE(x12)

After procedure SPLITINTOLAYERS(x11)

l̂3Lx = {̂l2}

l̂2

l̂2

l̆3

l̂3

l̆2
...
l 1

...
l 1 l̆2 l̆3

LR = {
...
l 1}

LP = {
...
l 1, l̂2, l̂3}

Figure 7: Example of Normalization II.

18

After removing locations unreachable from the initial location and incident transitions

l0
a

l0
a

a

R = {x11, x12}

l4

a

R = {x11, x12}

R = {x11, x12}
b

ϕ = x11 ≥ 0.4∧ x12 > 0.6

a

b
ϕ = x11 ≥ 0.4

a

R = {x11, x12}
ϕ = x11 < 0.4

b

ϕ = x11 < 0.4

R = {x12}

R = {x11, x12}
b

b

b

b

R = {x11, x12}

ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6
a

R = {x12}

R = {x12}

a
ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6
R = {x12}

b

R = {x11, x12}

ϕ = x11 ≥ 0.4∧ x12 > 0.6

ϕ = x11 ≥ 0.4
R = {x12}

l4

a

R = {x11, x12}

R = {x11, x12}
b

b
ϕ = x11 ≥ 0.4

a

R = {x11, x12}
ϕ = x11 < 0.4

b

ϕ = x11 < 0.4

R = {x12}

R = {x11, x12}
b

b

b
ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6

b

R = {x11, x12}

R = {x12}

R = {x12}

a
ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6
R = {x12}

b

R = {x11, x12}

ϕ = x11 ≥ 0.4∧ x12 > 0.6

ϕ = x11 ≥ 0.4
R = {x12}

After procedure SPLITINOTLAYERS(x12)

ϕ = x11 ≥ 0.4∧ x12 ≤ 0.6

̂̂
l2

̂̂
l2

̂̂
l3

˘̂
l3

˘̂
l2

l̆2 l̆3

l̆2

˘̂
l2

˘̂
l3

......
l 1

......
l 1

Figure 8: Example of Normalization III.

19

Correctness of Normalization

In this subsection we prove the correctness of the construction.

Lemma 5.1. Assertions on lines 16, 17 in Algorithm 2 hold.

Proof. Follows directly from lines 6 and 7.

Lemma 5.2. Assertion on line 13 in Algorithm 2 holds.

Proof. Consider the automata A ′ = (L, Σ,D ′, T ′, linit, F) and A = (L, Σ,D, T, linit, F) on

line 14. Let x ∈ D0 and x11, . . . , x1m1
, . . . , xn1, . . . , xnmn be the new counters added to D

on line 6 during the iteration of cycle 1-14 for variable x.

We prove that for each run ρ ′ = (l0, ν
′
0)(l1, ν

′
1) . . . for word σ = (α0, d0)(α1, d1) . . . in

the modelM ′
A there is a run ρ = (l0, ν0)(l1, ν1) . . . for σ inMA and vice versa.

First, we show that for each i ≥ 0 such that νi(x11) = . . . = νi(x1m1
) = . . . =

νi(xn1) = . . . νi(xnmn) = ν ′i(x) it holds

• (li, ν
′
i)

αi,di−−−→ (li+1, ν
′
i+1) inM ′

A ⇔ (li, νi)
αi,di−−−→ (li+1, νi+1) inMA

• νi+1(x11) = . . . = νi+1(xnmn) = ν ′i+1(x).

Obviously, ν0(x11) = . . . = ν0(xnmn) = ν ′0(x) = 1.

Let us assume that νi(x11) = . . . = νi(xnmn) = ν ′i(x) for each i ≥ 0 and let

(li, ν
′
i)

αi,di−−−→ (li+1, ν
′
i+1) in M ′

A via transition t ′i = (li, αi, ϕ
′, R ′, li+1) ∈ T ′. It holds

that t ′i ∈ T on line 2. Let ti = (li, αi, ϕ, R, li+1) ∈ T be the transition t ′i on line 14, i.e.

after ϕ ′ is possibly changed on line 7 into ϕ and R ′ is possibly changed on line 11 into

R. Note that ν ′i |= ϕ ′ ⇔ νi |= ϕ, and moreover x ∈ R ′ ⇔ {x11, . . . , xnmn} ∈ R. Thus

(li, νi)
αi,di−−−→ (li+1, νi+1) inMA via ti and νi+1(x11) = . . . = νi+1(xnmn) = ν ′i+1(x).

Dually, let us assume that for i ≥ 0 it holds νi(x11) = . . . νi(xnmn) = ν ′i(x) and

let (li, νi)
αi,di−−−→ (li+1, νi+1) in MA via transition ti = (li, αi, ϕ, R, li+1) ∈ T . Let t ′i =

(li, αi, ϕ
′, R ′, li+1) ∈ T ′ be the transition ti beforeϕ is possibly changed on line 7 and R is

possibly changed on line 11. Because ν ′i |= ϕ ′ ⇔ νi |= ϕ, and x ∈ R ′ ⇔ {x11, . . . , xnmn} ∈
R, (li, ν

′
i)

αi,di−−−→ (li+1, ν
′
i+1) inM ′

A via t ′i and νi+1(x11) = . . . = νi+1(xnmn) = ν ′i+1(x).

Altogether for each run ρ ′ = (l0, ν
′
0)(l1, ν

′
1) . . . for word σ = (α0, d0)(α1, d1) . . . in

M ′
A there exists a run ρ = (l0, ν0)(l1, ν1) . . . for σ inMA and vice versa. Furthermore, if

ρ ′ is an accepting run then ρ is an accepting run as well.

Lemma 5.3. Assertion on line 18 in Algorithm 2 holds.

20

Proof. Follows directly from Lemma 5.2.

Consider a BADC A = (L, Σ,D, T, linit, F). An extended run for σ = (α0, d0)(α1, d1) . . .

in MA is an infinite sequence ρE = (l0, ν0)t0(l1, ν1)t1 . . ., such that l0 = linit, ν0(x) = 1

for each x ∈ D, and for each i ≥ 0 it holds that (li, νi)
αi,di−−−→ (li+1, νi+1) via transition

ti, i.e such that ti = (li, αi, ϕi, Ri, li+1), νi |= ϕi, and νi+1(x) = di if x ∈ Ri, and νi.di
otherwise.

Lemma 5.4. Assertion on line 12 in Algorithm 3 holds.

Proof. Let us consider BADC A = (L, Σ,D, T, linit, F) before the procedure 3 is applied,

denoted A ′ = (L, Σ,D, T ′, linit, F) and let us assume that Lω(A ′) = Lω(A0).
Let ρ ′ = (l0, ν

′
0)t
′
0(l1, ν

′
1)t
′
1 . . . be an extended run for word σ = (α0, d0)(α1, d1) . . . in

M ′
A. We show that there exists an extended run ρ = (l0, ν0)t0(l1, ν1)t1 . . . for σ in MA

(and vice versa).

Note that if li = lx ∈ Lx for some i ≥ 0 and t ′i is with bounded x, then, according

to the definitions of LR, LP and TP, there exists lk ∈ LR, k ≤ i, such that k = 0 or x ∈
reset(t ′k−1) and ∀m ∈ {k, . . . i} : t ′m ∈ TP.

Let t ′i = (li, αi, ϕ, R, li+1). We put

ti =

{
t ′i, if ti ∈ TP
(li, αi, ϕ, R ∪ {x}, li+1) if ti ∈ TN

First of all, ν ′0(y) = ν0(y) for each y ∈ D.

Let ν ′i(y) = νi(y) for each y 6= x ∈ D and (li, ν
′
i)

αi,di−−−→ (li+1, ν
′
i+1) via t ′i and each t ′k,

k ≤ i is without bounded x inA ′. Then (li, νi)
αi,di−−−→ (li+1, νi+1) via ti inA and ν ′i+1(y) =

νi+1(y) for each y 6= x ∈ D. Furthermore, if x ∈ reset(t ′i), then ν ′i+1(x) = νi+1(x). If in

addition ν ′i(x) = νi(x) and t ′i ∈ TP we have ν ′i+1(x) = νi+1(x).

Let t ′i be the very first occurrence of transition with bounded x on ρ ′. Then neces-

sarily there exists lk ∈ LR, k ≤ i, such that k = 0 or x ∈ reset(t ′k−1) and ∀m ∈ {k, . . . i} :

t ′i ∈ TP. According to the previous, ν ′k(y) = νk(y) and inductively ν ′i(y) = νi(y) for

all y ∈ D, especially for ν ′i(x) = νi(x). Because constraint(t ′i) = constraint(ti), we

have (li, νi)
αi,di−−−→ (li+1, νi+1) via ti in MA. Furthermore, ν ′i+1(y) = νi+1(y) for each

y 6= x ∈ D. Moreover, if x ∈ reset(t ′i), then ν ′i+1(x) = νi+1(x). If in addition t ′i ∈ TP we

have ν ′i+1(x) = νi+1(x).

Inductively, let ν ′i(y) = νi(y) for each y 6= x ∈ D and (li, ν
′
i)

αi,di−−−→ (li+1, ν
′
i+1)

via t ′i. If t ′i is without bounded x in A ′, then (li, νi)
αi,di−−−→ (li+1, νi+1) via ti in A

21

and ν ′i+1(y) = νi+1(y) for each y 6= x ∈ D. Furthermore, if x ∈ reset(t ′i), then

ν ′i+1(x) = νi+1(x). If in addition ν ′i(x) = νi(x) and t ′i ∈ TP we have ν ′i+1(x) = νi+1(x). If

t ′i is with bounded x inA ′, then necessarily ν ′i(x) = νi(x) and (li, νi)
αi,di−−−→ (li+1, νi+1) via

ti inMA. Furthermore, ν ′i+1(y) = νi+1(y) for each y 6= x ∈ D. Moreover, if x ∈ reset(t ′i),
then ν ′i+1(x) = νi+1(x). If in addition t ′i ∈ TP we have ν ′i+1(x) = νi+1(x).

All in all, if ρ ′ = (l0, ν
′
0)t
′
0(l1, ν

′
1)t
′
1 . . . is an extended run in M ′

A for σ then there

exists a run ρ = (l0, ν0)t0(l1, ν1)t1 . . . inMA for σ.

Obviously, if ρ ′ is an accepting run in A ′, then ρ is an accepting run in A.

Dually, let ρ = (l0, ν0)t0(l1, ν1)t1 . . . be an extended accepting run for word σ =

(α0, d0)(α1, d1)(α2, d2) . . . inMA. We show that there exists an extended accepting run

ρ ′ = (l0, ν
′
0)t
′
0(l1, ν

′
1)t
′
1 . . . for σ inM ′

A. Let

t ′i =


ti, if ti = (li, αi, ϕ, R, li+1)

ti ∈ TP
(li, αi, ϕ, R, li+1), if ti = (li, αi, ϕ, R ∪ {x}, li+1)

ti ∈ TN

The proof is analogous as for the first part.

Lemma 5.5. Assertion on line 24 in Algorithm 4 holds.

Proof. Let us consider BADCA = (Loc, Σ,D, T, linit, F) before the procedure 4 is applied,

denoted A ′ = (Loc ′, Σ,D, T ′, l ′init, F
′) and let us assume Lω(A ′) = Lω(A0).

Let ρ ′ = (l ′0, ν
′
0)t
′
0(l
′
1, ν

′
1)t
′
1 . . . be an extended run for word σ = (α0, d0)(α1, d1) . . . in

M ′
A. We show that there exists an extended run ρ = (l0, ν0)t0(l1, ν1)t1 . . . for σ inMA

(and vice versa). Throughout the proof we assume that νi(y) = ν ′i(y) for all y 6= x ∈ D,

which is obvious. Let

li =



l ′i if l ′i 6∈ LP

l̆ ′i if l ′i ∈ LP and x 6∈ reset(t ′i−1), i 6= 0

and ν ′i−1(x) |= lb(x)

l̂ ′i if l ′i ∈ LP and x 6∈ reset(t ′i−1), i 6= 0

and ν ′i−1(x) 6|= lb(x). Then also ν ′i(x) = νi(x).

...
l ′i if l ′i ∈ LP and x ∈ reset(t ′i−1) or i = 0.

22

Note that l ′i belongs to exactly one of the categories described above, i.e. we define

li unambiguously for each possible l ′i.

First of all, l0 =
...
l ′0 if l ′0 ∈ LP and l0 = l ′0 otherwise. Let (l ′i, ν

′
i)

αi,di−−−→ (l ′i+1, ν
′
i+1)

via t ′i = (l ′i, α,ϕ
′, R ′, l ′i+1). We show that (li, νi)

αi,di−−−→ (li+1, νi+1) via transition ti =

(li, α,ϕ, R, li+1). Particularly, we show case by case that such ti exists.

1. Let l ′i 6∈ LP, i.e. li = l ′i:

a) l ′i+1 6∈ LP. Then ti = t ′i and li+1 = l ′i+1.

b) l ′i+1 ∈ LP. That means necessarily that x ∈ reset(t ′i) and t ′i 6= tx, according to the

definition of LP. Then li+1 =
...
l
′
i+1 and ti = (l ′i, α,ϕ, R,

...
l
′
i+1) (line 7).

2. Let l ′i ∈ LP and x 6∈ reset(ti−1 ′), i 6= 0 and ν ′i−1(x) |= lb(x), i.e. li = l̆ ′i:

a) l ′i+1 6∈ LP. Then li+1 = l ′i+1. If ti 6= tx then ti = t ′i (line 12). If ti = tx then

ν ′i(x) |= lb(x), thus ./∈ {<,≤}. ti = (l̆ ′i, α,ϕ, R ∪ {x}, l ′i+1) (line 18).

b) l ′i+1 ∈ LP, x 6∈ reset(t ′i) and νi(x) ′ |= lb(x). Then li+1 = l̆ ′i+1. If t ′i 6= tx then

ti = (l̆ ′i, α,ϕ, R∪ {x}, l̆ ′i+1) (line 10). If t ′i = tx then ti = (l̆ ′i, α,ϕ, R∪ {x}, l̆ ′i+1) (line 18).

c) l ′i+1 ∈ LP, x ∈ reset(t ′i) and νi(x) ′ 6|= lb(x). This situation cannot happen, because

νi−1(x) |= lb(x) and x 6∈ reset(tx−1), thus νi(x) |= lb(x).

d) l ′i+1 ∈ LP, x ∈ reset(t ′i). Then li+1 =
...
l
′
i+1. If t ′i 6= tx then ti = (l̆ ′i, α,ϕ, R,

...
l ′
′
i+1)

(line 8). If t ′i = tx then νi(x) |= lb(x), because νi−1(x) |= lb(x) and x 6∈ reset(tx−1).
Thus ./∈ {<,≤}. Altogether ti = (l̆ ′i, α,ϕ, R ∪ {x},

...
l
′
i+1) (line 18).

3. Let l ′i ∈ LP and x 6∈ reset(ti−1), i 6= 0 and ν ′i−1(x) 6|= lb(x) and also ν ′i(x) = νi(x), i.e.

li = l̂ ′i

a) l ′i+1 6∈ LP. Then li+1 = l ′i+1. If ti 6= tx then ti = (̂l ′i, α,ϕ, R, l
′
i+1) (line 12). If

ti = tx ∧ ν ′i(x) |= lb(x) then ./∈ {<,≤}. ν ′i(x) = νi(x), therefore νi(x) |= lb(x).

ti = (̂l ′i, α,ϕ∧ lb(x), R∪ {x}, l ′i+1) (line 18). If ti = tx∧ν ′i(x) 6|= lb(x) then ./∈ {>,≥}.

ν ′i(x) = νi(x), therefore νi(x) 6|= lb(x). ti = (̂l ′i, α,ϕ∧ ¬lb(x), R, l ′i+1) (line 21).

b) l ′i+1 ∈ LP, x 6∈ reset(t ′i) and νi(x) ′ |= lb(x). Then li+1 = l̆ ′i+1. If t ′i 6= tx then ti =

(̂l ′i, α,ϕ∧lb(x), R∪{x}, l̆ ′i+1) (line 10). If t ′i = tx then ti = (̂l ′i, α,ϕ∧lb(x), R∪{x}, l̆ ′i+1)

(line 18).

c) l ′i+1 ∈ LP, x ∈ reset(t ′i) and νi(x) ′ 6|= lb(x), i.e. li+1 = l̂ ′i+1. Note that because

x 6∈ reset(t ′i) and νi(x) = νi(x)
′, then also νi+1(x) = νi+1(x)

′. If t ′i 6= tx then

23

ti = (̂l ′i, α,ϕ∧¬lb(x), R, l̂ ′i+1) (line 10). If t ′i = tx then ti = (̂l ′i, α,ϕ∧¬lb(x), R, l̂ ′i+1)

(line 21).

d) l ′i+1 ∈ LP, x ∈ reset(t ′i), i.e. li+1 =
...
l
′
i+1. If t ′i 6= tx then ti = (̂l ′i, α,ϕ, R,

...
l
′
i+1) (line 8).

If t ′i = tx and νi(x) ′ |= lb(x) then ti = (̂l ′i, α,ϕ ∧ lb(x), R ∪ {x},
...
l
′
i+1) (line 18). If

t ′i = tx and νi(x) ′ 6|= lb(x) then ti = (̂l ′i, α,ϕ∧ ¬lb(x), R,
...
l
′
i+1) (line 21).

4. x ∈ reset(ti−1) or i = 0, i.e. li =
...
l
′
i. In such case, also νi(x) = νi(x)

′.

a) l ′i+1 6∈ LP. Then li+1 = l ′i+1 If ti 6= tx then ti = (
...
l
′
i, a,ϕ, R, l

′
i+1) (line 13). If ti =

tx ∧ ν ′i(x) |= lb(x) implies ./∈ {<,≤}. ν ′i(x) = νi(x), therefore νi(x) |= lb(x).

ti = (
...
l
′
i, α,ϕ ∧ lb(x), R ∪ {x}, l ′i+1) (line 18). If ti = tx ∧ ν ′i(x) 6|= lb(x) implies

./∈ {>,≥}. ν ′i(x) = νi(x), therefore νi(x) 6|= lb(x). ti = (
...
l
′
i, α,ϕ ∧ ¬lb(x), R, l ′i+1)

(line 21).

b) l ′i+1 ∈ LP, x 6∈ reset(t ′i) and νi(x) ′ |= lb(x). Then li+1 = l̆ ′i+1. If t ′i 6= tx then ti =

(
...
l
′
i, α,ϕ∧lb(x), R∪{x}, l̆ ′i+1) (line 11). If t ′i = tx then ti = (

...
l
′
i, α,ϕ∧g(x), R∪{x}, l̆ ′i+1)

(line 18).

c) l ′i+1 ∈ LP, x ∈ reset(t ′i) and νi(x) ′ 6|= lb(x), i.e. li+1 = l̂ ′i+1. Note that because

x 6∈ reset(t ′i) and νi(x) = νi(x)
′, then also νi+1(x) = νi+1(x)

′. If t ′i 6= tx then

ti = (
...
l
′
i, α,ϕ∧¬lb(x), R, l̂ ′i+1) (line 10). If t ′i = tx then ti = (

...
l
′
i, α,ϕ∧¬lb(x), R, l̂ ′i+1)

(line 21).

d) l ′i+1 ∈ LP, x ∈ reset(t ′i), i.e. li+1 =
...
l
′
i+1. If t ′i 6= tx then ti = (

...
l
′
i, α,ϕ, R,

...
l
′
i+1)

(line 9). If t ′i = tx and νi(x) ′ |= lb(x) then ti = (
...
l
′
i, α,ϕ ∧ lb(x), R ∪ {x},

...
l
′
i+1)

(line 18). If t ′i = tx and νi(x) ′ 6|= lb(x) then ti = (
...
l
′
i, α,ϕ∧ ¬lb(x), R,

...
l
′
i+1) (line 21).

Altogether if (l ′i, ν
′
i)

αi,di−−−→ (l ′i+1, ν
′
i+1) via transition t ′i = (l ′i, α,ϕ

′, R ′, l ′i+1) then (li, νi)
αi,di−−−→ (li+1, νi+1) via ti = (li, α,ϕ, R, li+1) for any i ≥ 0, i.e. for each extended run ρ ′ =

(l ′0, ν
′
0)t
′
0(l
′
1, ν

′
1)t
′
1 . . . for word σ = (α0, d0)(α1, d1) . . . in MA ′ there exists an extended

run ρ = (l0, ν0)t0(l1, ν1)t1 . . . for σ inMA. Obviously, if ρ ′ is accepting, ρ is accepting as

well.

Let, the other way around, ρ = (l0, ν0)t0(l1, ν1)t1 . . . be an extended run for

σ = (α0, d0)(α1, d1) . . . in MA We show that there exists an extended run ρ ′ =

(l ′0, ν
′
0)t
′
0(l
′
1, ν

′
1)t
′
1 . . . for σ inMA ′ .

Let l ′i = l if li ∈ {l,
...
l , l̆, l̂}, and assume that

• If li = l, then l 6∈ LP

24

• If li =
...
l , then l ∈ LP, x ∈ reset(t ′i−1) or i = 0. Then also νi(x) = ν ′i(x).

• If li = l̆, then l ∈ LP, x 6∈ reset(t ′i−1), i 6= 0 and ν ′i−1(x) |= lb(x).

• If li = l̂, then l ∈ LP, x 6∈ reset(t ′i−1), i 6= 0 and ν ′i−1(x) 6|= lb(x). Then also

νi(x) = ν ′i(x).

First of all, l0 =
...
l init in case l0 ∈ LP, and l0 = linit otherwise. Anyway, ν ′0(x) =

ν0(x). Let (li, νi)
αi,di−−−→ (li+1, νi+1) via ti = (li, α,ϕ, R, li+1). We show that (l ′i, ν

′
i)

αi,di−−−→
(l ′i+1, ν

′
i+1) via t ′i = (l ′i, α,ϕ

′, R ′, l ′i+1) case by case:

1. Let li = l1 and l1 6∈ LP.

a) li+1 =
...
l 2. Then ti is added to T on line 7.

ti = (l1, α,ϕ, R,
...
l 2). Transition t ′i is (l1, α,ϕ, R, l2), where l2 ∈ LP, x ∈ reset(t ′i) and

νi+1(x) = ν ′i+1(x).

b) li+1 = l2. Then l2 6∈ LP. ti = t ′i = (l1, α,ϕ, R, l2).

c) li+1 cannot be l̂2 or l̆2 for any l2.

2. Let li =
...
l 1, i = 0 or l1 ∈ LP, x ∈ reset(t ′i−1) and νi(x) = ν ′i(x).

a) li+1 = l2. Then ti is to T on line 13, 18 or 21. In all three cases l2 6∈ LP and t ′i =

(l1, α,ϕ, R, l2).

b) li+1 =
...
l 2. Then ti is added to T on line 9,18 or 21.

If ti = (
...
l 1, α,ϕ, R,

...
l 2) is a transition added to T on line 9, then l2 ∈ LP and x ∈ R

and t ′i = (l1, α,ϕ, R, l2).

If added on line 18, ti = (
...
l 1, α,ϕ ∧ lb(x), R ∪ {x},

...
l 2). Therefore νi(x) = ν ′i(x) |=

lb(x). Then ν ′i(x) |= ϕ because ./∈ {<,≤} and t ′i is tx = (l1, α,ϕ, R, l2).

If added on line 21, ti = (
...
l 1, α,ϕ∧ ¬lb(x), R,

...
l 2). Therefore νi(x) = ν ′i(x) 6|= lb(x).

Then ν ′i(x) |= ϕ because ./∈ {>,≥} and t ′i is tx = (l1, α,ϕ, R, l2).

Together, in all the three cases l2 ∈ LP, x ∈ reset(t ′i), νi+1(x) = ν ′i+1(x) and t ′i =

(l1, α,ϕ, R, l2).

c) li+1 = l̆2. Then ti is added to T on line 11 or 18.

If ti = (
...
l 1, α,ϕ∧ lb(x), R∪ {x}, l2) is a transition added to T on line 11, then l2 ∈ LP

and x 6∈ R. Transition t ′i is (l1, α,ϕ, R, l2). Also νi(x) = ν ′i(x) |= lb(x).

If ti = (
...
l 1, α,ϕ ∧ lb(x), R ∪ {x}, l2) is added on line 18, l2 ∈ LP and x 6∈ R. νi(x) =

ν ′i(x) |= lb(x). Then ν ′i(x) |= ϕ because ./∈ {<,≤} and t ′i is tx = (l1, α,ϕ, R, l2).

25

Together, in both cases l2 ∈ LP, x 6∈ reset(t ′i), ν ′i(x) |= lb(x) and t ′i = (l1, α,ϕ, R, l2).

d) li+1 = l̂2. Then ti is added to T on line 11 or 21.

If ti = (
...
l 1, α,ϕ ∧ ¬lb(x), R, l̂2) is a transition added to T on line 11, then l2 ∈ LP

and x 6∈ R. Transition t ′i is (l1, α,ϕ, R, l2). νi(x) = ν ′i(x) |= ¬lb(x). Also νi+1(x) =

ν ′i+1(x).

If ti = (
...
l 1, α,ϕ ∧ ¬lb(x), R, l2) is added on line 21, l2 ∈ LP and x 6∈ R. νi(x) =

ν ′i(x) |= ¬lb(x). Then ν ′i(x) |= ϕ because ./∈ {>,≥} and t ′i is tx = (l1, α,ϕ, R, l2).

Also νi+1(x) = ν ′i+1(x).

Together, in both cases l2 ∈ LP, x 6∈ R, ν ′i(x)¬ |= lb(x), νi+1(x) = ν ′i+1(x) and t ′i =

(l1, α,ϕ, R, l2)

3. Let li = l̆1, i 6= 0, l1 ∈ LP, x 6∈ reset(t ′i−1) and ν ′i−1(x) |= lb(x).

a) li+1 = l2. Then ti is added to T on line 12 or 18. In both cases l2 6∈ LP and t ′i =

(l1, α,ϕ, R, l2).

b) li+1 =
...
l 2. Then ti is added to T on line 8 or 18.

If ti = (l1, α,ϕ, R,
...
l 2) is a transition added to T on line 8, transition t ′i is

(l1, α,ϕ, R, l2) 6= tx, where l2 ∈ LP, x ∈ reset(t ′i) and νi+1(x) = νi+1(x)
′.

If added on line 18, ti = (l1, α,ϕ, R ∪ {x},
...
l 2), then l2 ∈ LP, and x ∈ R. Because

ν ′i−1(x) |= lb(x) and x 6∈ reset(ti−1), then also ν ′i(x) |= lb(x) and ν ′i(x) |= ϕ because

./∈ {<,≤}. Transition t ′i is tx = (l1, α,ϕ, R, l2).

Together, in both cases x ∈ reset(t ′i), l2 ∈ LP, νi+1(x) = ν ′i+1(x) and t ′i =

(l1, α,ϕ, R, l2).

c) li+1 = l̆2. Then ti is added to T on line 10 or 18.

If ti = (l1, α,ϕ, R ∪ {x}, l2) is a transition added to T on line 10, then l2 ∈ LP and

x 6∈ R. Transition t ′i is (l1, α,ϕ, R, l2). ν ′i(x) |= lb(x), because ν ′i−1(x) |= lb(x) and

x 6∈ reset(t ′i−1).

If ti is added on line 18, l2 6∈ LP or x 6∈ R. Because ν ′i−1(x) |= lb(x) and x 6∈
reset(t ′i−1), then also ν ′i(x) |= lb(x) and ν ′i(x) |= ϕ because ./∈ {<,≤}. Then t ′i is

tx(l1, α,ϕ, R, l2).

Together, in both cases l2 ∈ LP, x 6∈ reset(t ′i), ν ′i(x) |= lb(x) and t ′i = (l1, α,ϕ, R, l2).

d) li+1 cannot be l̂2 for any l2.

4. Let li = l̂1, i 6= 0, l1 ∈ LP, x 6∈ reset(t ′i−1), ν ′i−1(x) 6|= lb(x) and νi(x) = νi(x)
′.

26

a) li+1 = l2. Then ti is added to T on line 12,18 or 21. In all three cases l2 6∈ LP,

t ′i = (l1, α,ϕ, R, l2)..

b) li+1 =
...
l 2. Then ti is added to T on line 8, 18 or 21.

If ti = (̂l1, α,ϕ, R,
...
l 2) is a transition added to T on line 8, then l2 ∈ LP and x ∈

reset(t ′i). Transition t ′i is (l1, α,ϕ, R, l2) 6= tx and νi+1(x) = νi+1(x)
′.

If added on line 18, then ti = (̂l1, α,ϕ∧ lb(x), R∪ {x},
...
l 2), l2 ∈ LP and x ∈ reset(t ′i).

νi(x) = νi(x)
′ |= lb(x) and ν ′i(x) |= ϕ because ./∈ {<,≤}. Transition t ′i is tx =

(l1, α,ϕ, R, l2).

If added on line 21, then ti = (̂l1, α,ϕ ∧ ¬lb(x), R,
...
l 2), l2 ∈ LP and x ∈ R.

νi(x) = νi(x)
′ |= ¬lb(x) and ν ′i(x) |= ϕ because ./∈ {>,≥}. Transition t ′i is

tx = (l1, α,ϕ, R, l2).

Together, in all the three cases x ∈ reset(t ′i), l2 ∈ LP, νi+1(x) = ν ′i+1(x) and t ′i =

(l1, α,ϕ, R, l2).

c) li+1 = l̆2. Then ti is added to T on line 10 or 18.

If ti = (̂l1, α,ϕ∧ lb(x), R ∪ {x}, l2) is a transition added to T on line 10, then l2 ∈ LP
and x 6∈ R. Transition t ′i is (l1, α,ϕ, R, l2). νi(x) = ν ′i(x) |= lb(x).

If ti = (̂l1, α,ϕ ∧ lb(x), R ∪ {x}, l2) is added on line 18, l2 ∈ LP and x 6∈ R.

νi(x) = ν ′i(x) |= lb(x). Then also ν ′i(x) |= ϕ because ./∈ {<,≤} and transition t ′i
is (l1, α,ϕ, R, l2) 6= tx.

Together, in both cases l2 ∈ LP, x 6∈ reset(t ′i), ν ′i(x) |= lb(x) and t ′i = (l1, α,ϕ, R, l2).

d) li+1 = l̂2. Then ti is added to T on line 10 or 21.

If ti = (̂l1, α,ϕ ∧ ¬lb(x), R, l̂2) is a transition added to T on line 10, then l2 ∈ LP
and x 6∈ R. νi(x) = ν ′i(x) |= ¬lb(x). Transition t ′i is (l1, α,ϕ, R, l2) 6= tx. Also

νi+1(x) = ν ′i+1(x).

If ti = (̂l1, α,ϕ ∧ ¬lb(x), R, l̂2) is added on line 21, l2 ∈ LP and x 6∈ R. νi(x) =

ν ′i(x) |= ¬lb(x). Then also ν ′i(x) |= ϕ because ./∈ {>,≥} and transit on t ′i is tx =

(l1, α,ϕ, R, l2). Also νi+1(x) = ν ′i+1(x).

Together, in both cases l2 ∈ LP, x 6∈ R, ν ′i(x)¬ |= lb(x), νi+1(x) = ν ′i+1(x) and t ′i =

(l1, α,ϕ, R, l2).

Altogether, we have shown that for each extended run ρ ′ = (l ′0, ν
′
0)t
′
0(l
′
1, ν

′
1)t
′
1 . . .

for σ in M ′
A there exists an extended run ρ = (l0, ν0)t0(l1, ν1)t1 . . . for σ in MA and

27

vice versa. Obviously, if ρ ′ is accepting, then ρ is accepting as well and the other way

around.

Lemma 5.6. Assertion on line 11 in Algorithm 1 holds.

Proof. Follows directly from lemmas 5.2, 5.3, 5.4.

Lemma 5.7. Assertion on line 9 in Algorithm 1 holds.

Proof. Inductively. For Done = ∅ holds trivially. Let us consider the iteration of the

cycle 4-9 in Algorithm 1 for the variable x. For each tN ∈ TN we have x ∈ reset(tN).

Furthermore, each transition tP ∈ TP is processed in procedure SPLITINTOCASES(x)

such that it is replaced with transitions of form t ′P, x ∈ reset(t ′P) or constraint(t ′P)

contains bound x ./ c, where ./∈ {>,≥}. This means that for each transition t ∈ T on

line 9 in Algorithm 1 it holds that constraint(t) contains bound of form x ./ c, where

./∈ {>,≥}, or x ∈ reset(t). The iteration of the cycle 4-9 in 1 for the counter x does not

change any resets or constrains of counter y 6= x ∈ D. Hence, each counter x ∈ Done is

in A in normal form.

Lemma 5.8. Assertion on line 12 in Algorithm 1 holds.

Proof. Follows directly from Lemma 5.7.

Complexity of Normalization

The time complexity of the procedure ONECONSTRAINTONVARIABLE is O(|T | · n),

where |T | is the number of transitions, and n denotes the overall number of occurrences

of all degradation variables in the input BADC (i.e. Σd∈D Σt∈T m, where D is the set of

degradation variables, and d is m-bounded in t). The number of iterations of the cycle

4-9 of the algorithm 1 is n. Both procedures RESETWHEREPOSSIBLE(X) and SPLITINTO-

LAYERS(X) take O(|L ′| + |T ′|) time, where |L ′| is the number of locations and |T ′| is the

number of transitions in the modified BADC just before the procedures are performed.

During the procedures, each location is replaced with at most 4 new ones and each tran-

sition is replaced with at most 4 new ones. Altogether the worst-time complexity of the

transformation is

O(|T | · n) +O(

n∑
i=0

4i · (|T | + |L|)) = O(22n · (|L| + |T |)),

where |L| is the number of locations in the input BADC, and |T |, and n are defined as

above.

28

6 Quantitative Linear Properties of MDPs

This section raises the question about the parallel between the systems with degradation

and the Markov decision processes (MDPs) [2, 9, 16] as well as about the relationship

between probabilistic logic PLTL, PCTL, PCTL∗ and the quantitative linear properties

formalized via BADCs. It is easy to see that an MDP is just a special case of a system with

degradation. However, Büchi automata with degradation constraints can distinguish

otherwise indistinguishable MDPs.

Current model checking of MDPs aims particularly on properties expressed in LTL

(Linear Temporal Logic) [15], PCTL (Probabilistic Computation Tree Logic) [11] and

PCTL∗ [1]. The problem of quantitative LTL model checking of an MDP is to determine

minimal and/or maximal probability (w.r.t. all possible schedulers) of a set of paths in

the MDP that satisfy the LTL formula. PCTL and PCTL∗ verification gives an answer to

the question whether a given MDP satisfies a PCTL (or PCTL∗) state formula.

MDPs as Transition Systems with Degradation

Let us consider a transition system with degradationM = (S,Act,→, Sinit,AP,L) and

extend it with the following restrictions on the transition relation→:

• for all s1, s2 ∈ S, a ∈ Act there is at most one d such that (s1, a, d, s2) ∈→
• for all s1 ∈ S, a ∈ Act :

∑
(s1,a,d,s2)∈→ d = 1 or 0.

We may think of the probability as a quality of the system that degrades in time. If prob-

abilities are interpreted as degradations, the restricted transition systems with degrada-

tion are syntactically equivalent to Markov decision processes.

MDPs and Temporal Properties

In this subsection we demonstrate two MDPs which cannot be distinguished by any

LTL, PCTL or even PCTL∗ formulas.

First, let us consider the MDPM = (S = {s, t}, Act = {α,β}, P, s, {a},L) as illustrated

in Figure 9.a.

We show that the minimal and the maximal probability of a set of paths originating

at a particular state and satisfying a linear temporal property is always either 0 or 1.

Observation 6.1. Let η be an arbitrary scheduler forM. Then the Markov chain induced by η

isMη = (S+, Pη, sinit,AP,Lη), where

29

1

α
1

∅

α

0.5
b.M ′Ma.

0.5 1 1

∅

1

1α

1 1

α

β

β β

β

{a} γ {a}

Figure 9: MDPs indistinguishable by any LTL, PCTL, or PCTL∗ formula.

Pη(s0 . . . sn, s0 . . . snsn+1) = P(sn, η(s0 . . . sn), sn+1)

=


1 if sn = sn+1 and η(s0 . . . sn) = α or

if sn 6= sn+1 and η(s0 . . . sn) = β

0 otherwise

and Lη(s0 . . . sn) = L(sn).

Note that for each state s0 . . . sn in Mη there is exactly one state s0 . . . snsn+1 such

that Pη(s0 . . . sn, s0 . . . snsn+1) > 0. In other words, there is exactly one path π =

(s0)(s0s1)(s0s1s2) . . . inMη originating at s0. The set of all paths originating at s0 inMη is

{π} and its probability is 1. Similarly, there is exactly one path π = (s0s1)(s0s1s2)(s0s1s2s3) . . .

in Mη originating at s0s1 and the probability of the set of all paths {π} originating at s0s1 is

equal to 1.

Let us consider the language L of words over the alphabet 2{a} representing a linear

temporal property. For each symbol γ ∈ 2{a} we distinguish three possible cases:

1. there is no word in L starting with γ,

2. L contains all words starting with γ, or

3. ∃ σ1 = γ(2{a})ω ∈ L and ∃ σ2 = γ(2{a})ω 6∈ L

To simplify the following discussion we denote by symbol u the state s ofM in case

of γ = {a} and the state t otherwise (i.e. if γ = ∅).

Lemma 6.2. Suppose there is no word in L starting with the symbol γ. Then the minimal and

the maximal probability of the set of paths ofM originating at u with trajectories in L is 0.

Proof. Directly from the fact that there is no path π = uα0s1α1s2α2 . . . in M with the

trajectory L(u)L(s1)L(s2) . . . ∈ L.

30

Lemma 6.3. Suppose L contains all words starting with γ. Then the minimal and the maximal

probability of the set of paths ofM originating at u with trajectories in L is 1.

Proof. For each path π = uα0s1α1s2α2 . . . in M originating at u it holds that the cor-

responding trajectory L(u)L(s1)L(s2) . . . = γL(s1)L(s2) . . . is present in L. Thus the

probability of the set of paths originating at u with trajectories in L is 1 for any possible

scheduler η inM.

Lemma 6.4. Let us suppose there are σ1 = γ(2{a})ω ∈ L and σ2 = γ(2{a})ω 6∈ L. Then the

maximal probability of the set of paths ofM originating at u with trajectories in L is 1 and the

minimal probability is 0.

Proof. We define schedulers η1 and η2 forM such that the trajectory of the paths origi-

nating at u in the induced Markov chainMη1
andMη2

are σ1 and σ2, respectively.

Let σ1 = γA1A2 The scheduler η1 is defined by the prescription (s0 = u)

η1(s0 . . . sn) =

{
α if L(s0 . . . sn) = An+1

β if L(s0 . . . sn) 6= An+1.

The scheduler η1 unambiguously determines the only path inMη1
and the trajectory

of this path is σ1. This fact together with the Observation 6.1 implies that the maximal

probability of the set of paths ofM originating at uwith trajectories in L is 1.

For the minimal probability and the scheduler η2 the arguments are similar.

probability of the set of paths with trajectories in L

L originating at s originating at t

min max min max

{a}(2{a})ω ∩ L = ∅ 0 0 – –

{a}(2{a})ω ⊆ L 1 1 – –

{a}(2{a})ω ∩ L ∩ co− L 6= ∅ 0 1 – –

∅(2{a})ω ∩ L = ∅ – – 0 0

∅(2{a})ω ⊆ L – – 1 1

∅(2{a})ω ∩ L ∩ co− L 6= ∅ – – 0 1

Table 1: Summary of results, Lemma 6.2 - 6.4

We summarize results given by Lemmas 6.2 - 6.4 in Table 1. The symbol ’–’ indicates

that we cannot say anything about the probability bound. Note that any language L

satisfies exactly one of the three cases given on the first three lines of the table and

31

exactly one of the three cases given on the second three lines of the table. Therefore,

given an arbitrary linear temporal property L, the minimal and the maximal probability

for the systemM can be completely determined using just the table.

Let us now consider an MDPM ′ in Figure 9.b. Using similar arguments as for the

MDPM we obtain the very same results about probability bounds for linear temporal

properties forM ′, for the summary see Table 1.

The minimal and the maximal probabilities of the set of paths originating at the

initial states s and s ′ with trajectories in L are the same for the MDPM and the MDP

M ′, respectively. The same observation holds for the states t and t ′. Thus there is a one-

to-one correspondence between the states s and s ′ and also between the states t and t ′.

Therefore MDPsM andM ′ cannot be distinguished neither by qualitative verification

nor by quantitative verification with any LTL formula.

Furthermore, if ϕ is a CTL path formula then both the minimal and the maximal

probability of the set of paths satisfying ϕ is always either 0 or 1 for all the states both

inM andM ′. Hence, for any PCTL or PCTL∗ formula P./pϕ it holds thatM |= P./pϕ⇔
M ′ |= P./pϕ. As a result, the difference betweenM andM ′ cannot be captured by any

PCTL or PCTL∗ formula.

MDPs and Quantitative Linear Properties

Now we are to define a quantitative linear property which allows us to distinguish

the Markov decision processesM andM ′. The property is specified by the BADC in

Figure 10. The property captures the existence of a path with the trajectory {a}∅ω such

that the amount of degradation (probability) between the state s (s ′) and the first next

occurrence of the state t (t ′, respectively) is at most 0.7. This property is false for M
(there is only one path with the trajectory {a}∅ω and the amount of degradation is 1),

but is true forM ′ (there is a path where the amount of degradation is 0.5).

x ≤ 0.7
∅{a}

reset = {x}

∅

Figure 10: BADC distinguishing the two MDPs.

Using BADCs for expressing properties of MDPs brings us a new possibility to check

for the presence of a specific path with a certain probability contribution. See for exam-

ple the MDP as depicted in Figure 11. The probability of reaching s1 from s0 is 1 for all

32

0.7

0.3s0 s1

Figure 11: MDP demonstrating interesting BADC property.

(there is only 1) schedulers. Every finite path from s0 to s1 (there are infinitely many of

them) contribute to the resulting probability measure with some portion. With BADC

approach we can, for example, verify that the mentioned portion exceeds 0.2 for some

paths, but is at most 0.3 for all paths.

7 Conclusions

Degradation phenomenon as presented in this paper is important from two different

points of view. First, it allows system designers to capture and analyze new kind of

qualities of their systems, which itself is quite interesting. A second aspect is that

the new degradation approach provides a new theoretical way to describe and ana-

lyze quantitative linear properties for probabilistic systems, such as MDPs. A limited-

degradation-response property is a nice example of a property evaluated over a single

run, hence a property that cannot be expressed in any formalism built upon some proba-

bility measures. Linear properties and LTL model checking in particular, are well estab-

lished and used-in-practice formalism. A sort of linear property verification approach

for probabilistic systems has been missing so far.

We stress that the degradation cannot be easily modeled using other well known

formalisms. Many of other formalisms are either too restrictive to express and check a

limited-degradation-response properties, e.g. the standard non-deterministic systems

or MDPs. Other formalisms are so rich that a general model checking procedure is un-

decidable, which is the case of e.g. general hybrid systems, other formalism are simply

focused to other quantitative aspects of systems like, e.g. real-time model checking, or

model checking rewards.

A straightforward extension is to define a sort of extended linear temporal logic that

would allow us to express the desired degradation properties as formulas. For example,

the limited-degradation-response property could be stated in an LTL like formalism

as follows: G(A =⇒ F≤0.8B)). An inseparable part of this task is also to design a

transformation procedure that would for a given formula produce the corresponding

33

normalized BADC. Finally, let us mention that we have implemented a prototype model

checker that is able to verify MDPs against properties given as normalized BADCs on

top of our verification tool set DiVinE [3] allowing thus to employ parallel architectures

to verify large-scale systems. The models to be verified by DiVinE model checker are

given as networks of asynchronously communicating extended finite automata. For

the purpose of verification of systems with degradation, we only extended individual

automata with the possibility of specification of individual degradation constants.

References

[1] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert K. Brayton, and Alberto L.

Sangiovanni-Vincentelli. It usually works: The temporal logic of stochastic sys-

tems. In Proceedings of the 7th International Conference on Computer Aided Verification,

pages 155–165, London, UK, 1995. Springer-Verlag.

[2] Christel Baier and Joost P. Katoen. Principles of Model Checking. The MIT Press,

2008.

[3] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE – A Tool

for Distributed Verification (Tool Paper). In Computer Aided Verification, volume

4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

[4] J. Barnat, L. Brim, I. Černá, M. Češka, and J. Tůmová. Probdivine-mc: Multi-core ltl

model checker for probabilistic systems. In QEST ’08: Proceedings of the 2008 Fifth

International Conference on Quantitative Evaluation of Systems, pages 77–78, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[5] Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Möller, Paul Pettersson,

and Wang Yi. UPPAAL - present and future. In Proc. of 40th IEEE Conference on

Decision and Control. IEEE Computer Society Press, 2001.

[6] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and Quantitative Linear

Time analysis of Reactive Systems. In Proc. of QEST’06, pages 131–132. IEEE Com-

puter Society, 2006.

[7] Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis.

Memory-efficient algorithms for the verification of temporal properties. Formal

Methods in System Design, 1(2/3):275–288, 1992.

34

[8] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mar-

iëlle Stoelinga. Model checking discounted temporal properties. Theor. Comput.

Sci., 345(1):139–170, 2005.

[9] C. Derman. Finite State Markovian Decision Processes. Academic Press, Inc., Orlando,

FL, USA, 1970.

[10] Kathi Fisler, Ranan Fraer, Gila Kamhi, Moshe Y. Vardi, and Zijiang. Is there a best

symbolic cycle-detection algorithm. In In Proc. Tools and Algorithms for Construction

and Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer, 2001.

[11] Hans Hansson and Bengt Jonsson. A Framework for Reasoning about Time and

Reliability. In IEEE Real-Time Systems Symposium, pages 102–111, 1989.

[12] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for auto-

matic verification of probabilistic systems. In Proc. of TACAS’06, volume 3920 of

LNCS, pages 441–444. Springer, 2006.

[13] Gerard J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,

1997.

[14] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In

Quantitative Evaluation of Systems (QEST), pages 243–244. IEEE Computer Society,

2005.

[15] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sym-

posium on the Foundations of Computer Science, pages 46–57. IEEE Computer Society

Press, 1977.

[16] M. L. Puterman. Markov Decision Processes-Discrete Stochastic Dynamic Programming.

John Wiley &Sons, New York, 1994.

[17] M.Y. Vardi and P. Wolper. Reasoning about infinite computation paths. Proceedings

of 24th IEEE Symposium on Foundation of Computer Science, Tuscan, pages 185–194,

1983.

[18] Sergio Yovine. Kronos: A verification tool for real-time systems. International Jour-

nal on Software Tools for Technology Transfer, 1:123–133, 1997.

35

	Introduction
	Systems with Degradation
	Quantitative Linear Properties and Büchi Automata with Degradation Constraints
	Model Checking Algorithm
	Normalization of BADC
	Quantitative Linear Properties of MDPs
	Conclusions

