
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Checking Thorough Refinement on Modal
Transition Systems Is EXPTIME-Complete

by

Nikola Beneš
Jan Křetínský
Kim G. Larsen

Jiří Srba

FI MU Report Series FIMU-RS-2009-03

Copyright c© 2009, FI MU July 2009

Copyright c© 2009, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can be obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Checking Thorough Refinement on Modal
Transition Systems Is EXPTIME-Complete

Nikola Beneš∗

Jan Křetínský†

Faculty of Informatics, Masaryk University,

Botanická 68a, 60200 Brno, Czech Republic

{xbenes3,xkretins}@fi.muni.cz

Kim G. Larsen‡

Jiří Srba§

Department of Computer Science, Aalborg University,

Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

{kgl,srba}@cs.aau.dk

July 28, 2009

Abstract

Modal transition systems (MTS), a specification formalism introduced more than 20

years ago, has recently received a considerable attention in several different areas.

Many of the fundamental questions related to MTSs have already been answered.

However, the problem of the exact computational complexity of thorough refine-

ment checking between two finite MTSs remained unsolved.

We settle down this question by showing EXPTIME-completeness of thorough

refinement checking on finite MTSs. The upper-bound result relies on a novel al-

gorithm running in single exponential time providing a direct goal-oriented way to

decide thorough refinement. If the right-hand side MTS is moreover deterministic,

∗Partially supported by the Academy of Sciences of the Czech Republic, project No. 1ET408050503.
†Partially supported by the research centre ITI, project No. 1M0545.
‡Partially supported by the VKR Center of Excellence MT-LAB.
§Partially supported by Ministry of Education of the Czech Republic, project No. MSM 0021622419.

1

or has a fixed size, the running time of the algorithm becomes polynomial. The

lower-bound proof is achieved by reduction from the acceptance problem of alter-

nating linear bounded automata and the problem remains EXPTIME-hard even if

the left-hand side MTS is fixed.

1 Introduction

Modal transition systems (MTS) is a specification formalism which extends the stan-

dard labelled transition systems with two types of transitions, the may transitions that

are allowed to be present in an implementation of a given modal transition system and

must transitions that must be necessarily present in any implementation. Modal tran-

sition systems hence allow to specify both safety and liveness properties. The MTS

framework was suggested more than 20 years ago by Larsen and Thomsen [15] and has

recently brought a considerable attention due to several applications to e.g. component-

based software development [17, 6], interface theories [21, 18], modal abstractions and

program analysis [10, 13, 16] and other areas [9, 22], just to mention a few of them. A

renewed interest in tool support for modal transition systems is recently also emerg-

ing [7, 8]. A recent overview article on the theoretical foundations of MTSs and early

tool development is available in [1].

Modal transition systems were designed to support component-based system devel-

opment via a stepwise refinement process where abstract specifications are gradually re-

fined into more concrete ones until an implementation of the system (where the may and

must transitions coincide) is obtained. One of the fundamental questions is the decid-

ability of a thorough refinement relation between two specifications S and T . We say that

S thoroughly refines T iff every implementation of S is also an implementation of T .

While for a number of other problems, like the common implementation problem, a

matching complexity lower and upper bounds were given [2, 14, 3], the question of the

exact complexity of thorough refinement checking between two finite MTSs remained

unanswered.

In this paper, we prove EXPTIME-completeness of thorough refinement checking

between two finite MTSs. The hardness result is achieved by a reduction from the ac-

ceptance problem of alternating linear bounded automata, a well known EXPTIME-

complete problem, and it improves the previously established PSPACE-hardness [2].

The main reduction idea is based on the fact that the existence of a computation step

2

between two configurations of a Turing machine can be locally verified (one needs to

consider the relationships between three tape symbols in the first configuration and

the corresponding three tape symbols in the second one, see e.g. [20, Theorem 7.37]),

however, a nonstandard encoding of computations of Turing machines (which is cru-

cial for our reduction) and the addition of the alternation required a nontrivial technical

treatment. Moreover, we show that the problem remains EXPTIME-hard even if the left-

hand side MTS is of a constant size. Some proof ideas for the containment in EXPTIME

were mentioned in [2] where the authors suggest a reduction of the refinement problem

to validity checking of vectorized modal µ-calculus, which can be solved in EXPTIME—

the authors in [2] admit that such a reduction relies on an unpublished popular wisdom,

and they only sketch the main ideas hinting at the EXPTIME algorithm. In our paper,

we describe a novel technique for deciding thorough refinement in EXPTIME. The result

is achieved by a direct goal-oriented algorithm performing a least fixed-point compu-

tation, and can be easily turned into a tableau-based algorithm. As a corollary, we also

get that if the right-hand side MTS is deterministic (or of a constant size), the algorithm

for solving the problem runs in deterministic polynomial time.

Details of some technical proofs were moved into the appendix.

2 Basic Definitions

A modal transition system (MTS) over an action alphabet Σ is a triple (P, 99K,−→), where

P is a set of processes and −→ ⊆ 99K ⊆ P × Σ × P are must and may transition relations,

respectively. The class of all MTSs is denoted by MTS. Because in MTS whenever

S
a

−→ S ′ then necessarily also S
a

99K S ′, we adopt the convention of drawing only the

must transitions S a
−→ S ′ in such cases. An MTS is finite if P and Σ are finite sets.

An MTS is an implementation if 99K = −→. The class of all implementations is de-

noted iMTS and as in implementations the must and may relations coincide, we can

consider such systems as the standard labelled transition systems.

Definition 2.1. Let M1 = (P1, 99K1,−→1), M2 = (P2, 99K2,−→2) be MTSs over the same

action alphabet Σ and S ∈ P1, T ∈ P2 be processes. We say that S modally refines T , written

S ≤m T , if there is a relation R ⊆ P1 × P2 such that (S, T) ∈ R and for every (A,B) ∈ R and

every a ∈ Σ:

1. if A
a

99K1 A ′ then there is a transition B
a

99K2 B ′ s.t. (A ′, B ′) ∈ R, and

3

•
T1

app•
S a

**e _ Y •
S1

a

jj e_Y •
T

a 00

s
k e

a))SSSSSS •
U a

**e _ Y •
U1

a

jj

•
T2

Figure 1: S ≤t T but S 6≤m T , and S 6≤t U and S 6≤m U

2. if B a
−→2 B

′ then there is a transition A a
−→1 A

′ s.t. (A ′, B ′) ∈ R.

We often omit the indices in the transition relations and use symbols 99K and −→
whenever it is clear from the context what transition system we have in mind. Note

that on implementations modal refinement coincides with the classical notion of strong

bisimilarity, and on modal transition systems without any must transitions it corre-

sponds to the well-studied simulation preorder.

Example 2.2. Consider processes S and T in Fig. 1. We prove that S does not modally refine

T . Indeed, there is a may-transition S
a

99K S1 on the left-hand side which has to be matched

by entering either T1 or T2 on the right-hand side. However, in the first case there is a move

T1
a

−→ T on the right-hand side which cannot be matched from S1 as it has no must-transition

under a. In the second case there is a may-transition S1
a

99K S on the left-hand side which

cannot be matched by any may-transition from T2. Hence there cannot be any relation of modal

refinement containing the pair S and T , which means that S 6≤m T . Similarly, one can argue

that S 6≤m U.

We shall now observe that the modal refinement problem, i.e. the question whether

a given process modally refines another given process, is tractable for finite MTSs.

Theorem 2.3. The modal refinement problem for finite MTSs is P-complete.

Proof. Modal refinement can be computed in polynomial time by the standard greatest

fixed-point computation, similarly as in the case of strong bisimulation. P-hardness of

modal refinement follows from P-hardness of bisimulation [4] (see also [19]).

We proceed with the definition of thorough refinement, a relation that holds for two

modal specification S and T iff any implementation of S is also an implementation of T .

Definition 2.4. For a process S let us denote by JSK = {I ∈ iMTS | I ≤m S} the set of all

implementations of S. We say that S thoroughly refines T , written S ≤t T , if JSK ⊆ JTK.

4

Clearly, if S ≤m T then also S ≤t T because the relation≤m is transitive. The opposite

implication, however, does not hold as demonstrated by the processes S and T in Fig. 1

where one can easily argue that every implementation of S is also an implementation

of T . On the other hand, S 6≤t U because a process with just a single a-transition is an

implementation of S but not of U.

3 Thorough Refinement Is EXPTIME-Hard

In this section we prove that the thorough refinement relation≤t on finite modal transi-

tion systems is EXPTIME-hard by reduction from the acceptance problem of alternating

linear bounded automata.

3.1 Alternating Linear Bounded Automata

Definition 3.1. An alternating linear bounded automaton (ALBA) is a tupleM = (Q,Q∀,

Q∃, Σ, Γ, q0, qacc, qrej,`,a, δ) where Q is a finite set of control states partitioned into Q∀ and

Q∃, universal and existential states, respectively, Σ is a finite input alphabet, Γ ⊇ Σ is a finite

tape alphabet, q0 ∈ Q is the initial control state, qacc ∈ Q is the accepting state, qrej ∈ Q is the

rejecting state, `,a ∈ Γ are the left-end and the right-end markers that cannot be overwritten

or moved, and δ : (Q r {qacc, qrej}) × Γ → 2Q×Γ×{L,R} is a computation step function such

that for all q, p ∈ Q if δ(q,`) 3 (p, a,D) then a = `, D = R; if δ(q,a) 3 (p, a,D) then

a = a, D = L; if δ(q, a) 3 (p,`, D) then a = `; and if δ(q, a) 3 (p,a, D) then a = a.

Remark 3.2. W.l.o.g. we assume that Σ = {a, b}, Γ = {a, b,`,a}, Q ∩ Γ = ∅ and that for

each q ∈ Q∀ and a ∈ Γ it holds that δ(q, a) has exactly two elements (q1, a1, D1), (q2, a2, D2)

where moreover a1 = a2 and D1 = D2. We fix this ordering and the successor states q1 and q2
are referred to as the first and the second successor, respectively. The states qacc, qrej have no

successors.

A configuration ofM is given by the state, the position of the head and the content

of the tape. For technical reasons, we write it as a word over the alphabet Ξ = Q ∪
Γ ∪ {`,a, ∃, ∀, 1, 2, ∗} (where ∃, ∀, 1, 2, ∗ are fresh symbols) in the following way. If the

tape contains a word `w1aw2a, where w1, w2 ∈ Γ ∗ and a ∈ Γ , and the head is scanning

the symbol a in a state q, we write the configuration as `w1αβqaw2a where αβ ∈
{∃∗, ∀1, ∀2}.

5

The two symbols αβ before the control state in every configuration are nonstandard,

though important for the encoding of the computations into modal transition systems

to be checked for thorough refinement. Intuitively, if a control state q is preceded by

∀1 then it signals that the previous configuration (in a given computation) contained

a universal control state and the first successor was chosen; similarly ∀2 reflects that

the second successor was chosen. Finally, if the control state is preceded by ∃∗ then

the previous control state was existential and in this case we do not keep track of which

successor it was, hence the symbol ∗ is used instead. The initial configuration for an input

word w is by definition `∃∗q0wa.

Depending on the present control state, every configuration is called either universal,

existential, accepting or rejecting.

A step of computation is a relation → between configurations defined as follows

(where w1, w2 ∈ Γ ∗, αβ ∈ {∀1, ∀2, ∃∗}, a, b, c ∈ Γ , i ∈ {1, 2}, and w1aw2 and w1caw2
both begin with ` and end with a):

• w1αβqaw2 → w1b∀ipw2
if δ(q, a) 3 (p, b, R), q ∈ Q∀ and (p, b, R) is the i’th successor,

• w1αβqaw2 → w1b∃∗pw2
if δ(q, a) 3 (p, b, R) and q ∈ Q∃,

• w1cαβqaw2 → w1∀ipcbw2
if δ(q, a) 3 (p, b, L), q ∈ Q∀ and (p, b, L) is the i’th successor, and

• w1cαβqaw2 → w1∃∗pcbw2
if δ(q, a) 3 (p, b, L) and q ∈ Q∃.

Note that for an inputw of length n all reachable configurations are of length n+5. A

standard result is that one can efficiently compute the set Comp ⊆ Ξ10 of all compatible

10-tuples such that for each sequenceC = c1c2 · · · ck of configurations c1, c2, . . . , ck, with

the length of the first configuration being l = |c1| = n + 5, we have c1 → c2 → · · ·→ ck

iff for all i, 0 ≤ i ≤ (k− 1)l− 5,

(C(i+ 1), C(i+ 2), C(i+ 3), C(i+ 4), C(i+ 5),

C(i+ 1+ l), C(i+ 2+ l), C(i+ 3+ l), C(i+ 4+ l), C(i+ 5+ l)) ∈ Comp .

A computation tree forM on an input w ∈ Σ∗ is a tree T satisfying the following: the

root of T is (labeled by) the initial configuration, and wheneverN is a node of T labeled

by a configuration c then the following holds:

6

• if c is accepting or rejecting then N is a leaf;

• if c is existential then N has one child labeled by some d such that c → d;

• if c is universal then N has two children labelled by the first and the second suc-

cessor of c, respectively.

Without loss of generality, we shall assume from now on that any computation tree

forM on an input w is finite (see e.g. [20, page 198]) and that every accepting configu-

ration contains at least four other symbols following after the state qacc.

We say thatM accepts w iff there is a (finite) computation tree forM on w with all

leaves labelled with accepting configurations. The following fact is well known (see

e.g. [20]).

Proposition 3.3. Given an ALBA M and a word w, the problem whether M accepts w is

EXPTIME-complete.

3.2 Encoding of Configurations and Computation Trees

In this subsection we shall discuss the particular encoding techniques necessary for

showing the lower bound. For technical convenience we will consider only tree en-

codings and so we first introduce the notion of tree-thorough refinement.

Definition 3.4. Let Tree denote the class of all MTSs with their graphs being trees. We say that

a process S tree-thoroughly refines a process T , denoted by S ≤tt T , if JSK∩Tree ⊆ JTK∩Tree.

Lemma 3.5. For any two processes S and T , S ≤tt T iff S ≤t T .

Proof. The if case is trivial. For the only if case, we define an unfold U(S) of a process

S over an MTS M = (P, 99K,−→) with an alphabet Σ to be a process S over an MTS

U(M) = (P∗, 99KU,−→U) over the same alphabet and where P∗ is the set of all finite

sequences over the symbols from P. The transition relations are defined as follows:

for all a ∈ Σ, T, R ∈ P and α ∈ P∗, whenever T
a

99K R then αT
a

99KU αTR, and whenever

T
a

−→ R then αT a
−→U αTR. Since the transitions inU(S) depend only on the last symbol,

we can easily see that U(S) ≤m S and S ≤m U(S) for every process S.

Let I be now an implementation of S. Its unfold U(I) is also an implementation of

S by U(I) ≤m I ≤m S and the transitivity of ≤m. By our assumption that S ≤tt T and

the fact that U(I) is a tree, we get that U(I) is also an implementation of T . Finally, I ≤m

7

U(I) ≤m T and the transitivity of ≤m allow us to conclude that I is an implementation

of T .

LetM = (Q,Q∀, Q∃, Σ, Γ, q0, qacc, qrej,`,a, δ) be an ALBA andw ∈ Σ∗ an input word

of length n. We shall construct (in polynomial time) modal transition systems L and R

such thatM acceptsw iff L 6≤tt R. The system Lwill encode (almost) all trees beginning

with the initial configuration, while the implementations of R encode only the incorrect

or rejecting computation trees.

Configurations, i.e. sequences of letters from Ξ, are not encoded straightforwardly

as sequences of actions (the reason why this naive encoding does not work is explained

later on in Remark 3.12). Instead we have to use two auxiliary actions π a σ. The in-

tended implementations of L and Rwill alternate between the actions π and σ on a linear

path, while the symbols in the encoded configuration are present as side-branches on

the path.

Formally, a sequence a1a2a3 · · ·an ∈ Ξ∗ is encoded as

• • • •

•
begin

π
// •

σ
//

a1

OO

•
π

// •
σ

//
a2

OO

•
π

// •
σ

//
a3

OO

· · · •
π

// •
σ

//
an

OO

•
end

and denoted by code(a1a2 · · ·an).
We now describe how to transform computation trees into their corresponding im-

plementations. We simply concatenate the subsequent codes of configurations in the

computation tree such that the end node of the previous configuration is merged with

the begin node of the successor configuration. Whenever there is a (universal) branch-

ing in the tree, we do not branch in the corresponding implementation at its beginning

but we wait until we reach the occurrence of ∀. The branching happens exactly before

the symbols 1 or 2 that follow after ∀. This occurs in the same place on the tape in

both of the configurations due to the assumption that the first and the second successor

move simultaneously either to the left or to the right, and write the same symbol (see

Remark 3.2). A formal definition of the encoding of computation trees into implemen-

tations follows.

Definition 3.6 (Encoding computation trees into implementations). Let T be a (finite)

computation tree. We define its tree implementation code(T) inductively as follows:

• if T is a leaf labelled with a configuration c then code(T) = code(c);

8

•
π ��
•
σ ��

c1=` //

...
π ��
•
σ ��

cn=a //

•
π ��
•
σ ��

d1=` //

...
π ��
•
σ ��

∀ //

•
π

wwooooooo π
''OOOOOOO

•
σ ��

1 // •
σ ��

2 //

...
π ��

...
π ��

•
σ ��

d1
n=a // •

σ ��

d2
n=a //

• •

Figure 2: Comp. Tree Encoding

• if the root of T is labelled by an existential configuration c with a tree T ′ being its child,

then code(T) is rooted in the begin node of code(c), followed by code(T ′) where the end

node of code(c) and the begin node of code(T ′) are identified;

• if the root of T is labelled by a universal configuration c with two children d1 . . . ∀1 . . . d1n
and d1 . . . ∀2 . . . d2n that are roots of the subtrees T1 and T2, respectively, then code(T)

is rooted in the begin node of code(c), followed by two subtrees code(T1) and code(T2)
where the nodes in code(d1 . . . ∀) of the initial part of code(T1) are identified with the

corresponding nodes in the initial part of code(T2) (note that by Remark 3.2 this prefix is

common in both subtrees), and finally the end node of code(c) is identified with now the

common begin node of both subtrees.

Fig. 2 illustrates this definition on a part of a computation tree, where the first con-

figuration c1 . . . cn is universal and has two successor configurations d1 . . . ∀1 . . . d1n and

d1 . . . ∀2 . . . d2n.

9

3.3 The Reduction—Part 1

We now proceed with the reduction. As mentioned earlier, our aim is to construct for a

given ALBAM and a string w two modal transition systems L and R such that L 6≤tt R
iffM accepts w. Implementations of L will include all (also incorrect) possible compu-

tation trees. We only require that they start with the encoding of the initial configuration

and do not “cheat” in the universal branching (i.e. after the encoding of every symbol ∀
there must follow a branching such that at least one of the branches encodes the symbol

1 and at least another one encodes the symbol 2).

As L should capture implementations corresponding to computations starting in the

initial configuration, we set L to be the begin of code(`∃∗q0wa) and denote its end by

M. After the initial configuration has been forced, we allow all possible continuations

of the computation. This can be simply done by setting

M
π

99K Ma

Ma
σ

−→ M

Ma
a

−→ Xa

for all letters a ∈ Ξr {∀} and there are no outgoing transitions from Xa.

for all a ∈ Ξr {∀}
M•

π
++f d a _] Z XMa• a //

σ

kk
Xa•

Finally, we add a fragment of MTS into the constructed process L which will guarantee

the universal branching as mentioned above whenever the symbol ∀ occurs on a side-

branch. The complete modal transition system L is now depicted in Fig. 3.

We shall now state some simple observations regarding tree implementations of the

process L.

Proposition 3.7. Every tree implementation I of the process L satisfies that

1. every branch in I is labelled by an alternating sequence of π and σ actions, beginning with

the action π, and if the branch is finite then it ends either with the action σ or with an

actions a ∈ Ξr {∀}, and

2. every state in I with an incoming transition under the action π has at least one outgoing

transition under the action σ and at least one outgoing transition under an action a ∈ Ξ,

and

10

code of the initial configuration︸ ︷︷ ︸
• • for all a ∈ Ξr {∀}

L• π // •
`

OO

σ // π // •
a

OO

σ //M•
π

,,e c a _] [Y

π ��

G
A

Ma• a //
σ

ll •

• •2oo

σ
55

• 1 //

σ

::

• M∀• ∀ //

σyy

•

•
M ′

π
ZZ

π

dd

Figure 3: Full specification of the process L

3. whenever from any state in I there are two outgoing transitions under some a ∈ Ξ and

b ∈ Ξ then a = b, and moreover no further actions are possible after taking any transition

under a ∈ Ξ, and

4. every branch in I longer than 2(n+5) begins with the encoding of the initial configuration

`∃∗q0wa where n = |w|, and

5. every state in I with an incoming transition under σ from a state where the action ∀ is

enabled satisfies that every outgoing transition under π leads to a state where either the

action 1 or 2 is enabled (but not both at the same time), and moreover it has at least one

such transition that enables the action 1 and at least one that enables the action 2.

Of course, not every tree implementation of the process L represents a correct com-

putation tree of the given ALBA. Implementations of L can widely (even uncountably)

branch at any point and sequences of configurations they encode on some (or all) of

their branches may not be correct computations of the given ALBA. Nevertheless, the

encoding of any computation tree of the given ALBA is an implementation of the pro-

cesses L, as stated by the following lemma.

Lemma 3.8. Let T be a computation tree of an ALBAM on an input w. Then code(T) ≤m L.

Proof sketch. To show that the implementation code(T) modally refines L is rather

straightforward. The implementation code(T) surely starts with the encoding of the

initial configuration and all symbols a ∈ Ξr {∀} on the side-branches in code(T) can be

matched by entering Ma in the right-hand side process M. In case that the implemen-

tation contains a side-branch with the symbol ∀, the specification M will enter the state

11

M∀ and require that two branches with labels 1 and 2 follow, however, from definition

of code(T) this is clearly satisfied. A full proof is given in the appendix.

3.4 The Reduction—Part 2

We now proceed with the construction of the right-hand side process R. Its implemen-

tations should be the codes of all incorrect or rejecting computation trees. To cover the

notion of incorrect computation, we define a so-called bad path (see page 6 for definition

of the relation Comp).

Definition 3.9. A sequence

c1c2c3c4c5 a1a2 . . . an−6an−5︸ ︷︷ ︸
n−5 elements from Ξ

d1d2d3d4d5

is called a bad path if (c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) ∈ Ξ10 r Comp.

To cover the incorrect or rejecting computations, we loop in the process R under

all actions, including the auxiliary ones, except for qacc. For convenience we denote

Ξ ′ = Ξ ∪ {π, σ}. For any bad path, the process R can at any time nondeterministically

guess the beginning of its first quintuple, realize it, then perform n− 5 times a sequence

of π and σ, and finally realize the second quintuple. Moreover, we have to allow all

possible detours of newly created branches to end in the state U where all available

actions from Ξ ′ are always enabled and hence the continuation of any implementation is

modally refined byU. Formally, for any (c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) ∈ Ξ10rComp
we add (disjointly) the following fragment into the process R (see also Fig. 4).

R
π

99K V1

Vj
π

−→ Wj
σ

−→ Vj+1 for 1 ≤ j < n+ 5

Vj
cj

−→ Xj for 1 ≤ j ≤ 5

Vn+j

dn+j
−→ X5+j for 1 ≤ j ≤ 5

Vj
x

99K U,Wj
x

99K U,Vn+5
x

99K U for 1 ≤ j < n+ 5 and x ∈ Ξ ′

U
x

99K U for all x ∈ Ξ ′

R
x

99K R for all x ∈ Ξ ′ r {qacc}

We also add ten new states N1, . . . ,N10 and the following transitions: R
π

99K N1
Ξ ′

99K

N2
Ξ ′

99K N3
Ξ ′

99K N4
Ξ ′

99K . . .
Ξ ′

99K N10 andN1
qacc
−→ N10 where any transition labelled by Ξ ′ is

the abbreviation for a number of transitions under all actions from Ξ ′.

12

• • •

•
R

Ξ ′r{qacc}

..

L�2
π //_____ •

V1

Ξ ′

%%K
K

K
K

K
K

K
K

K
K

K
K

K
K

c1

OO

σ // •
W1

Ξ ′

!!D
D

D
D

D
D

D
D

D
D

D
π // •
V2

Ξ ′

��8
8

8
8

8
8

8
8

8

c2

OO

σ // · · · π // •
Vj

Ξ ′

�
�

�
�

�
�

σ // · · · π // •
Vn+5

Ξ ′

zzt
t

t
t

t
t

t
t

t
t

t
t

t

d5

OO

U•

Ξ ′

\\
'

_ �

Figure 4: A fragment of the system R for a bad path c1c2c3c4c5 . . . d1d2d3d4d5

Remark 3.10. We do not draw these newly added statesN1, . . . , N10 into Fig. 4 in order not to

obstruct its readability. The reason why these states are added is purely technical. It is possible

that there is an incorrect computation that ends with the last symbol qacc but it cannot be

detected by any bad path as defined in Definition 3.9 because that requires (in some situations)

that there should be present at least four other subsequent symbols. By adding these new states

into the process R, we guarantee that such situations where a branch in a computation tree ends

in qacc without at least four additional symbols will be easily matched in R by entering the

state N1.

Lemma 3.11. Let I be a tree implementation of L such that every occurrence of qacc in I is

either preceded by a code of a bad path or does not continue with the encoding of at least four

other symbols. Then I ≤m R.

Proof sketch. All branches in I that do not contain qacc can be easily matched by looping

in R and all branches that contain an error (bad path) before qacc appears on that branch

are matched by entering the corresponding state V1 and at some point ending in the

state U which now allows an arbitrary continuation of the implementation I (including

the occurrence of the state qacc). A full proof is given in the appendix.

Remark 3.12. Lemma 3.11 demonstrates the point where we need our special encoding of con-

figurations using the alternation of π and σ actions together with side-branches to represent the

symbols in the configurations. If the configurations were encoded directly as sequences of sym-

bols on a linear path, the construction would not work. Indeed, the must path of alternating σ

and π actions in the process R is necessary to ensure that the bad path entered in the left-hand

13

• •

R•

Ξ ′r{qacc}

..

L�2

π

���
�

�
�

�

π

��7
7

7
7

7 π
//______ •
V1

Ξ ′

%%K
K

K
K

K
K

K
K

K
K

K
K

K
K

c1

OO

σ
// •
W1

Ξ ′

!!D
D

D
D

D
D

D
D

D
D

D π
// · · ·

π
// •

Ξ ′

���
�
�
�
�
� σ

// · · ·
π

// •
Vn+5

Ξ ′

||y
y

y
y

y
y

y
y

y
y

y

d5

OO

•
U1

∀ //__

σ

���
�

• •
U2

∀oo_ _

σ

���
�

•

σ

88

�
�

�
�

�
y

s

1
���
�
� •πoo_ _

π
���
�
� • π //__

π
���
�
� •

σ

ff

)
-

2
8

?
E

K

2
���
�
�

U•

Ξ ′

\\
'

_ �

• •
2

���
�

�
σ

��=
=

= •
σ

���
�

�
1

��<
<

< •

• U ′•

Ξ ′

\\
'

_ �

•

Figure 5: Full specification of the process R

side implementation I is indeed realizable. This path cannot be replaced by a linear path of must

transitions containing directly the symbols of the configurations because the sequence of n − 5

symbols in the middle of the bad sequence would require exponentially large MTS to capture all

such possible sequences explicitly and the reduction would not be polynomial.

Let us now finish the definition of the process R. Note that in ALBA even rejecting

computation trees can still contain several correct computation paths ending in accept-

ing configurations. We can only assume that during any universal branching in a reject-

ing tree, at least one of the two possible successors forms a rejecting branch. The process

Rmust so have the possibility to discard the possibly correct computation branch in uni-

versal branching and it suffices to make sure that the computation will continue with

only one of the branches.

So in order to finish the construction of R we add an additional fragment to R as

depicted in Fig. 5 (it is the part below R that starts with branching to U1 and U2).

The construction of the process R is now finished (recall that the part of the construc-

tion going from R to the right is repeated for any bad path of the machineM). Because

the newly added part of the construction does not use any must transitions, it does not

restrict the set of implementations and hence Lemma 3.11 still holds. The following two

lemmas show that the added part of the construction correctly handles the universal

branching.

14

Lemma 3.13. Let I be a tree implementation of L which is not, even after removing any of its

branches, a code of any accepting computation tree ofM on the input w. Then I ≤m R.

Proof sketch. We should prove that in the universal branching in I, the specification R can

choose one of the two possible continuations and discard the checking of the other one.

This is achieved by entering either the state U1 or U2 whenever the next side-branch

in I contains the symbol ∀. From U1 the continuation under the second successor is

discarded by entering the state U ′ and symmetrically from U2 the continuation under

the first successor is discarded. We argued in Lemma 3.11 for the rest. A full proof is

given in the appendix.

Lemma 3.14. Let T be an accepting computation tree of an ALBA M on the input w. Then

code(T) 6≤m R.

Proof sketch. Indeed, in code(T) any branch ends in a configuration containing qacc and

there is no error (bad path), so the specification R clearly does not have code(T) as its

implementation. A full proof is given in the appendix.

3.5 Summary

We can now combine the facts about the constructed systems L and R in the following

theorem.

Theorem 3.15. An ALBAM accepts an input w iff L 6≤t R.

Proof. IfM accepts the input w then clearly it has an accepting computation tree T . By

Lemma 3.8 code(T) ≤m L and by Lemma 3.14 code(T) 6≤m R. This implies that L 6≤t R.

On the other hand, ifM does not accept w then none of the tree implementations of

L represents a code of an accepting computation tree ofM on w. By Lemma 3.13 this

means that any tree I such that I ≤m L satisfies that I ≤m R and hence L ≤tt R which is

by Lemma 3.5 equivalent to L ≤t R.

Corollary 3.16. The problem of checking thorough refinement on finite modal transition systems

is EXPTIME-hard.

In fact, we can strengthen the result by adapting the above described reduction to

the situation where the left-hand side system is of a fixed size.

Theorem 3.17. The problem of checking thorough refinement on finite modal transition systems

is EXPTIME-hard even if the left-hand side system is fixed.

Proof. The proof is in the appendix.

15

4 Thorough Refinement Is in EXPTIME

In this section we provide a direct algorithm for deciding thorough refinement between

MTSs in EXPTIME. Given two processes A and B over some finite-state MTSs, the al-

gorithm will decide if there exists an implementation I that implements A but not B,

i.e. I ≤m A and I 6≤m B.

For a modal transition systems B, we introduce the syntactical notation B to denote

the semantical complement of B, i.e. I ≤m B iff I 6≤m B. Our algorithm now essentially

checks for consistency (existence of a common implementation) between A and B with

the outcome that they are consistent if and only if A 6≤t B.

In general, we shall check for consistency of sets of the form {A,B1, . . . , Bk} in the

sense of existence of an implementation I such that I ≤m A but I 6≤m Bi for all i ∈
{1, . . . , k}. Before the full definition is given, let us get some intuition by considering the

case of consistency of a simple pair A,B. During the arguments, we shall use CCS-like

constructs (summation and action-prefixing) for defining implementations.

Clearly, if for some B ′ with B a
−→ B ′ and for all Ai with A a

−→ Ai we can find an im-

plementation Ii implementing Ai but not B ′ (i.e. we demonstrate consistency between

all the pairs Ai, B ′), we can claim consistency between A and B: as a common imple-

mentation I simply take H +
∑
i a.Ii, where H is some arbitrary implementation of A

with all a-derivatives removed.

We may also conclude consistency of A and B, if for some A ′ with A
a

99K A ′, we can

find an implementation I ′ of A ′, which is not an implementation of any B ′ where B
a

99K

B ′. Here a common implementation would simply be H + a.I ′ where H is an arbitrary

implementation of A. However, in this case we will need to determine consistency of

the set {A ′} ∪ {B ′ | B
a

99K B ′} which is in general not a simple pair.

Definition 4.1. Let M = (P, 99K,−→) be an MTS over the action alphabet Σ. The set of

consistent sets of the form {A,B1, . . . , Bk}, where A,B1, . . . , Bk ∈ P, is the smallest set Con

such that {A,B1, . . . , Bk} ∈ Con whenever k = 0 or for some a ∈ Σ and some J ⊆ {1, . . . , k},

where for all j ∈ J there exists B ′j such that Bj
a

−→ B ′j, we have

1. {A ′, B ′j | j ∈ J} ∈ Con for all A ′ with A a
−→ A ′, and

2. {A`, B
′
` | B`

a
99K B ′`} ∪ {B ′j | j ∈ J} ∈ Con for all ` 6∈ J and some A` with A

a
99K A`.

Lemma 4.2. Given processes A,B1, . . . , Bk of some finite MTS, there exists an implementation

I such that I ≤m A and I 6≤m Bi for all i ∈ {1, . . . , k} if and only if {A,B1, . . . , Bk} ∈ Con.

16

Computing the collection of consistent sets {A,B1, . . . , Bk} over an MTS (P, 99K,−→)

may be done as a simple (least) fixed-point computation. The running time is polyno-

mial in the number of potential sets of the form {A,B1, . . . , Bk} where A,B1, . . . , Bk ∈ P,

hence it is exponential in the number of states of the underlying MTS. This gives an

EXPTIME algorithm to check for thorough refinement.

Theorem 4.3. The problem of checking thorough refinement on finite modal transition systems

is decidable in EXPTIME.

Example 4.4. Consider S and T from Fig. 1. We have already mentioned in Section 2 that

S ≤t T . To see this, we will attempt (and fail) to demonstrate consistency of {S, T } according

to Definition 4.1, which essentially asks for a finite tableau to be constructed. Now, in order

for {S, T } to be concluded consistent, we have to establish consistency of {S1, T 1, T 2}— as T has

no must-transitions the only choice for J is J = ∅. Now, to establish consistency of {S1, T 1, T 2}

both J = ∅ and J = {1} are possibilities. However, in both cases the requirement will be that

{S, T } must be consistent. Given this cyclic dependency together with the minimal fixed-point

definition of Con it follows that {S, T } is not consistent, and hence that S ≤t T .

Example 4.5. Consider S and U from Fig. 1. Here S 6≤t U clearly with I = a.0 as a witness

implementation. Let us demonstrate consistency of {S,U}. Choosing J = ∅, this will follow from

the consistency of {S1, U1}. To conclude this, note that J = {1} will leave us with the empty

collection of sets—as S1 has no must-transitions—all of which are obviously consistent.

Note that in the case of B being deterministic, we only need to consider pairs of the

form {A,B} for determining consistency. This results in a polynomial time algorithm (see

also [5] for an alternative proof of this fact). Similarly, if the process B is of a constant

size, our algorithm runs in polynomial time as well.

Corollary 4.6. The problem of checking thorough refinement between a given finite modal tran-

sition system and a finite deterministic or fixed-size modal transition system is in P.

To conclude, by Theorem 4.3 and Corollary 3.16 we get our main result.

Theorem 4.7. The problem of checking thorough refinement on finite modal transition systems

is EXPTIME-complete.

17

5 Conclusion

We proved that the problem of checking the thorough refinement relation between two

finite-state modal transition systems is EXPTIME-complete. This result completes re-

lated complexity results achieved in [3] as the thorough refinement relations on both

modal and mixed (where the must transition relation is not necessarily included in the

may transition relation) specifications, the common implementation problems on modal

and mixed specifications, as well as the consistency problem on mixed specifications

are now all EXPTIME-complete. Our EXPTIME-hardness result is proved by reduc-

tion from the acceptance problem for alternating linear bounded automata because the

problems of consistency and common implementation mentioned above did not seem

to provide a suitable starting problem for the reduction.

The fact that the thorough refinement relation is computationally hard means that

the relation of modal refinement is more suitable for practical purposes, even though it

describes a less desirable notion of syntactic refinement. On the other hand, much of the

recent work in the area focuses to a large extend on deterministic specifications [12, 11]

and here the two notions of refinement coincide. A detailed study of computational

complexity of problems on deterministic modal transition systems is provided in [5].

References

[1] A. Antonik, M. Huth, K.G. Larsen, U. Nyman, and A. Wasowski. 20 years of modal

and mixed specifications. Bulletin of the EATCS 95, pages 94–129, 2008.

[2] A. Antonik, M. Huth, K.G. Larsen, U. Nyman, and A. Wasowski. Complexity of

decision problems for mixed and modal specifications. In Proc. of FOSSACS’08,

volume 4962 of LNCS, pages 112–126. Springer, 2008.

[3] A. Antonik, M. Huth, K.G. Larsen, U. Nyman, and A. Wasowski. EXPTIME-

complete decision problems for mixed and modal specifications. In Proc. of EX-

PRESS’08, July 2008.

[4] J. L. Balcazar, J. Gabarró, and M. Santha. Deciding bisimilarity is P-complete. For-

mal aspects of computing, 4(6 A):638–648, 1992.

[5] N. Beneš, J. Křetínský, K.G. Larsen, and J. Srba. On determinism in modal transi-

tion systems. Theoretical Computer Science, 2008. To appear.

18

[6] N. Bertrand, S. Pinchinat, and J.-B. Raclet. Refinement and consistency of timed

modal specifications. In Proc. of LATA’09, volume 5457 of LNCS, pages 152–163.

Springer, 2009.

[7] N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel. MTSA: The modal transi-

tion system analyser. In Proc. of ASE’08, pages 475–476. IEEE, 2008.

[8] N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA: Eclipse support

for modal transition systems construction, analysis and elaboration. In Proc. of

(ETX’07), pages 6–10. ACM, 2007.

[9] H. Fecher and H. Schmidt. Comparing disjunctive modal transition systems with

an one-selecting variant. J. of Logic and Alg. Program., 77(1-2):20–39, 2008.

[10] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking us-

ing modal transition systems. In Proc. CONCUR’01, volume 2154 of LNCS, pages

426–440. Springer, 2001.

[11] T. A. Henzinger and J. Sifakis. The discipline of embedded systems design. IEEE

Computer, 40(10):32–40, 2007.

[12] T.A. Henzinger and J. Sifakis. The embedded systems design challenge. In Proceed-

ings of the 14th International Symposium on Formal Methods (FM’06), volume 4085 of

LNCS, pages 1–15. Springer-Verlag, 2006.

[13] M. Huth, R. Jagadeesan, and D.A. Schmidt. Modal transition systems: A founda-

tion for three-valued program analysis. In Proc. of ESOP’01, volume 2028 of LNCS,

pages 155–169. Springer, 2001.

[14] K.G. Larsen, U. Nyman, and A. Wasowski. On modal refinement and consistency.

In Proc. of CONCUR’07, volume 4703 of LNCS, pages 105–119. Springer, 2007.

[15] K.G. Larsen and B. Thomsen. A modal process logic. In Proc. of LICS’88, pages

203–210. IEEE, 1988.

[16] S. Nanz, F. Nielson, and H.R. Nielson. Modal abstractions of concurrent behaviour.

In Proc. of SAS’08, volume 5079 of LNCS, pages 159–173. Springer, 2008.

[17] J.-B. Raclet. Residual for component specifications. In Proc. of the 4th International

Workshop on Formal Aspects of Component Software, 2007.

19

[18] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are

modalities good for interface theories? In Proc. of ACSD’09, 2009. To appear.

[19] Z. Sawa and P. Jančar. Behavioural equivalences on finite-state systems are PTIME-

hard. Computing and informatics, 24(5):513–528, 2005.

[20] M. Sipser. Introduction to the Theory of Computation. Course Technology, 2006.

[21] S. Uchitel and M. Chechik. Merging partial behavioural models. In Proc. of FSE’04,

pages 43–52. ACM, 2004.

[22] O. Wei, A. Gurfinkel, and M. Chechik. Mixed transition systems revisited. In Proc.

of VMCAI’09, volume 5403 of LNCS, pages 349–365. Springer, 2009.

20

Appendix

For convenient argumentations in this appendix we extend the standard game-theoretic

characterization of bisimilarity. to the game characterization of modal refinement. This

will be often used in the proofs of lemmas to follow.

A modal refinement game (or simply a modal game) on a pair of processes (S, T) is a two-

player game between Attacker and Defender. The game is played in rounds. In each

round the players change the current pair of processes (A,B) (initially A = S and B = T)

according to the following rule:

1. Attacker chooses an action a ∈ Σ and one of the processes A or B. If he chose A

then he performs a move A
a

99K A ′ for some A ′; if he chose B then he performs

a move B a
−→ B ′ for some B ′.

2. Defender responds by choosing a transition under a in the other process. If At-

tacker chose the move from A, Defender has to answer by a move B
a

99K B ′ for

some B ′; if Attacker chose the move from B, Defender has to answer by a move

A
a

−→ A ′ for some A ′.

3. The new current pair of processes becomes (A ′, B ′) and the game continues with

a next round.

The game is similar to standard bisimulation games with the exception that Attacker

is only allowed to attack on the left-hand side under may transitions (and Defender

answers by may transitions on the other side), while on the right-hand side Attacker

attacks under must transitions (and Defender answers by must transitions in the left-

hand side process).

Any play (of the modal game) thus corresponds to a sequence of pairs of processes

formed according to the above rule. A play (and the corresponding sequence) is finite

iff one of the players gets stuck (cannot make a move). The player who got stuck lost

the play and the other player is the winner. If the play is infinite then Defender is the

winner.

The following fact is by a standard argument in analogy with strong bisimulation

games: S ≤m T iff Defender has a winning strategy in the modal game starting with the

pair (S, T); and S 6≤m T iff Attacker has a winning strategy.

Lemma 3.8 Let T be a computation tree of an ALBAM on an input w. Then code(T) ≤m L.

21

Proof. We shall describe Defender’s winning strategy in the modal refinement game

starting from the begin node of code(T) and the process L. The tree code(T) clearly

begins with the encoding of the initial configuration and an identical part is contained

also in the beginning of the process L. Hence the game surely continues from the begin

node of the code of the next configuration(s) in T and the processM (otherwise Attacker

losses immediately, should he choose any of the side branches). Now Attacker must

attack under the action π in the left-hand side tree (no must transitions are enabled

on the right-hand side from M) and Defender is matching this move from M in two

different ways. Should the Attacker’s next state contain a branch with a label a such

that a ∈ Ξ r {∀} then Defender plays π and enters the process Ma on the right-hand

side. In order for Attacker to still have a chance to win, he must play the action σ in

either of the processes and the players return to the situation where the right-hand side

process is again in M. On the other hand if Attacker’s next state after playing π in the

left-hand side process contains a branch with the label ∀, then Defender enters under π

the stateM∀. As before, the only reasonable continuation for Attacker is to play σ in one

of the processes and the players reach a pair of states where the left-hand side process

branches under π into two different paths (due to Definition 3.6 of code(T)) and the

right-hand side process is in the stateM ′. Attacker can now choose one of the branches

in either of the processes but Defender can safely match such an attack and the players

after two rounds return to the situation where the right-hand side is again in the state

M. To sum up, Defender has a winning strategy and so code(T) ≤m L.

Lemma 3.11 Let I be a tree implementation of L such that every occurrence of qacc in I is either

preceded by a code of a bad path or does not continue with the encoding of at least four other

symbols. Then I ≤m R.

Proof. We synthesize a winning strategy for Defender starting from the root of I and the

process R in order to prove I ≤m R.

Note that as long as the right-hand side process is in the state R then Attacker can

attack only from the left-hand side processes. Defender’s strategy is as follows:

1. If Attacker attacks under a π transition leading to a subtree from which at least one

branch begins with the encoding of a bad path, Defender answers by a π transition

from R leading to a state V1 representing the fragment in the right-hand side pro-

cess corresponding to this bad path. After that, Attacker is forced to switch sides

and play under the must-transitions the whole sequence of σ and π actions until

22

reaching Vn+5; Defender will match this sequence by following the branch corre-

sponding to this bad path in the left-hand side process and finally win. Should

Attacker during this phase at any time decide to play again from the left-hand

side, Defender will “escape” immediately to the state U from which Defender has

a clear winning strategy.

2. On any other Attacker’s move, Defender simply loops in R and Attacker cannot

have played the action qacc yet (the only action disabled in R) due to the assump-

tion of the lemma. Should Attacker play a π transition enabling qacc such that

there is no continuation with at least 9 other transitions (i.e. 4 additional encoded

symbols), Defender will enter the state N1 (see Remark 3.10) and win.

The above defined strategy is winning for Defender and so I ≤m R.

Lemma 3.13 Let I be a tree implementation of L which is not, even after removing any of its

branches, a code of any accepting computation tree ofM on the input w. Then I ≤m R.

Proof. For any tree implementation I ≤m L, which cannot be pruned to a code of any

accepting computation tree, we extend the strategy for Defender from Lemma 3.11. The

first rule remains unchanged.

Otherwise, if Attacker chose a π transition leading to a state in the left-hand side

process with the action ∀ enabled, we know (from the definition of the process L, see

Proposition 3.7 part 2. and 5.) that a σ action must follow and then there are at least

two branches under π, one of them enabling the action 1 and the other one the action

2; because I is not an encoding of an accepting computation tree (not even after being

pruned out) either (i) all subtrees beginning with the action 1 are either rejecting or

incorrect or (ii) all subtrees beginning with the action 2 are either rejecting or incorrect.

In case (i) Defender responds by entering U1, in case (ii) by entering U2. After Attacker

plays the above mentioned action σ followed by one of the π actions, Defender responds

by the σ action leaving (i) U1 or (ii) U2 and then by one of the two π actions so that the

Attacker’s move on the left-hand side is correctly matched. In case (i) if Attacker plays

the πmove with a following branch under 2, or in case (ii) if Attacker plays the πmove

with the following branch under 1, Defender will aim at entering the process U ′ and

after the following σ move wins as any implementation is a refinement of U ′. Hence

Attacker is forced to choose, in case (i), some first branch and, in case (ii), some second

branch and after the necessary action σ the game continues from a configuration where

the right-hand side process is again in R.

23

Finally, if none of the previous cases applies, Defender simply mimics any Attacker’s

move by looping in R. Note that in this case Attacker cannot have played the action qacc
because we assume that the implementation I, even after removing any if its branches,

does not encode any accepting computation tree.

As the above defined strategy is winning for Defender, we conclude that I ≤m R.

Lemma 3.14 Let T be an accepting computation tree of an ALBA M on the input w. Then

code(T) 6≤m R.

Proof. Note that in T every branch ends with a configuration containing the accepting

state qacc. It is so clear that Attacker can easily win by playing repeatedly the transition

π followed by the transition σ in the tree code(T). Defender is forced to stay in the

state R because any branch in the tree is correct and hence Defender cannot “escape” by

playing the π move to the state V1 for some bad path (should Defender play like this,

Attacker would switch the sides and play the must sequence of π and σ transitions until

Defender is proven to be cheating and Attacker wins).

The only situation when Defender can play a π move going to the state U1 or U2
is when Attacker (in the left-hand side process) is inside a code of a configuration fol-

lowing a universal configuration and after he played π the next label is ∀. In case that

Defender entered U1, Attacker simply continues on the left-hand side by taking the

first successor configuration, and in case that Defender entered U2, Attacker chooses

the second successor configuration. After the sequence of one π and one σ move in the

left-hand side process, Defender is forced to return to the state R (otherwise Attacker

wins by playing the action 1 resp. 2 in the left-hand side process). Eventually, after

reaching an accepting leaf configuration in T , Attacker will play the action qacc in the

left-hand side process to which Defender has no answer from the process R. As we have

described Attacker’s winning strategy, we conclude that code(T) 6≤m R.

Theorem 3.17. The problem of checking thorough refinement on finite modal transition systems

is EXPTIME-hard even if the left-hand side system is fixed.

Proof. The size of the MTS underlying the process L in the previous construction is

clearly dependent on the size of the input ALBA. We will show that the construction

can be slightly modified in order to obtain a fixed-size system on the left-hand side of

the thorough refinement checking.

Clearly, there are two places in the system for L that are dependent on the size of

the original ALBA. First, it is the encoding of the initial configuration (the path from L

24

for all a ∈ {q0, q1, a, b,`,a,∃, ∗, 1, 2}

•
L ′ π

++f c a _] [X

π
��

F
@

9

•
Ma

a //
σ

kk •

• •2oo

σ

55

• 1 //

σ

::

• •
M∀

∀ //

σzz

•

•
M ′

π

ZZ

π

ee

Figure 6: Process L ′

to M) and second, it is the number of loops on M which is dependent on the number

of the ALBA’s states. The latter case can be dealt with in a straightforward manner, by

encoding the states with binary strings of two symbols, say q0 and q1. This changes the

compatible 10-tuples into compatible (2 · dlog2|Q|e+ 8)-tuples, but this change does not

affect the construction heavily.

The more interesting part is that of the encoding of the initial configuration. We

use a trick similar to that of the previous construction. We change the left-hand side

process so that its implementations may exhibit almost arbitrary behaviour. This new

process L ′ is depicted in Fig. 6. Clearly, L ′ has more implementations than the original

process L, namely those that have a branch which starts with something different than

the encoding of the initial configuration. Thus, we need to extend the right-hand side

process so that it also admits this kind of implementations.

The new process R ′ is built as follows. There are paths encoding the incorrect ini-

tial configurations, one for each position of the configuration, i.e. there is a path repre-

senting that an error (incorrect symbol in the initial configuration) happens in the first

symbol of the configuration, a path representing an error in the second symbol, etc.

Similarly to the previous construction we also include may transitions for escaping to

universal process, to allow for arbitrary branching in the implementations. To this we

furthermore add all transitions the original process R has, including transitions to R

itself. Note that this implies that R ≤m R ′.
Similarly to the previous construction, we need to show two things. First, that any

implementation of L ′ that is not an encoding of a correct accepting computation tree

even after pruning is an implementation of R ′, and second, that the encoding of a correct

accepting computation tree is not an implementation of R ′.

25

•

•
Ξ\{`}

OO�
�
�

σ

a \ X V S
Q

O
M

J
G

A

+

• •

•
R ′

π

@@�
�

�
�

�
�

�
�

� π //______

π

��?
?

?
?

?
?

?
?

Ξ ′\{qacc}

��

�
�

�
�

�
�

�

"

$
&

)
-

π

��

�
&

*
-

/
1

2
2

2
1

0
.

+

•
`

OO

σ //

Ξ ′
GGD O T X [] _ a c f j o z

• π //

Ξ ′
;;L

T Z _ d j
r

•
Ξ\{∃}

OO�
�
�

σ //______ • Ξ ′ee
W

�
g

... •
`

��

σ //

Ξ ′

II

n k i h g g g h j l o
�

• π //

KK

q
l k j j k l n

v
�

•
∃

��

σ //

MM

v
q

p
r

x
�

�

• π //

Ξ ′

NN

~
�

	

�
�

•
Ξ\{∗}

���
�
�

σ

]]

�
�

�

2
:

• • •

•
R

Ξ ′r{qacc}

11

r?�
π //______ •

V1

. . .

...
...

Figure 7: Process R ′

26

Regarding the first claim let us fix an implementation I of L ′ that is not a correct

accepting computation tree. Consider transitions from I lying on branches that do not

start with an encoding of the initial configuration. These are matched by the newly cre-

ated transitions from R ′ to the paths encoding the branches that begin with an error.

Let us further consider all transitions from I that lie only on branches beginning with

correct encodings of the initial configuration. The corresponding subtrees are then im-

plementations of R. But we know that R ≤m R ′, so the whole I is also an implementation

of R ′.

The second claim then easily follows from the fact that the encoding of a correct ac-

cepting computation tree is neither an implementation of R, nor can be matched by any

of the bad paths added to R ′, as it clearly has to start with a correct initial configuration.

We thus have that the input ALBA accepts the input w if and only if L ′ 6≤t R ′.

Lemma 4.2 Given processesA,B1, . . . , Bk of some finite MTS, there exists an implementation I

such that I ≤m A and I 6≤m Bi for all i ∈ {1, . . . , k} if and only if {A,B1, . . . , Bk} is consistent.

Proof. Because Con is defined as the smallest set, let by Con1,Con2,Con3, . . . denote the

nondecreasing sequence of sets according to in which round the elements (consistent

sets) where added to Con. So Con1 contains exactly all the consistent sets {A,B1, . . . , Bk}

where k = 0, Con2 contains all the consistent sets that were added to Con1 in one itera-

tion of the definition, etc.

For the if -direction we prove by induction on n that whenever {A,B1, . . . , Bk} ∈
Conn then there exists an implementation I such that I ≤m A and I 6≤m Bi for all

i ∈ {1, . . . , k}.

The base case n = 1 is trivial. For the induction step assume that {A,B1, . . . , Bk} ∈
Conn+1. Then there exists a ∈ Σ, J ⊆ {1, . . . , k} with fixed B ′j such that Bj

a
−→ B ′j for all

j ∈ J such that

1. {A ′, B ′j | j ∈ J} ∈ Conn for all A ′ with A a
−→ A ′, and

2. {A`, B
′
` | B`

a
99K B ′`} ∪ {B ′j | j ∈ J} ∈ Conn for all ` 6∈ J and some A` with A

a
99K A`.

From the first clause above, it follows from IH that for all A ′ where A a
−→ A ′, there

exists IA ′ such that IA ′ ≤m A ′ and IA ′ 6≤m B ′j. Similarly, from the second clause above,

it follows from IH that for any ` 6∈ J, there exists I` such that I` ≤m A` but I` 6≤m B ′`

whenever B`
a

99K B ′` (` 6∈ J) and I` 6≤m B ′j for all j ∈ J. Now let

I ≡ Σ
A ′.A

a
−→A ′a.IA ′ + Σ 6̀∈Ja.I` +H

27

where H is an arbitrary implementation of A with all a-transitions removed. Then it is

straightforward to prove that I ≤m A and I 6≤m Bi for all i ∈ {1, . . . , k}.

Let us first establish I ≤m A. Assume that A a
−→ A ′, then I a

−→ IA ′ will provide

the match. For I
a

99K I` then A
a

99K A` provides the match. To see that I 6≤m Bj for

j ∈ J, we note that Bj
a

−→ B ′j cannot be matched by either I a
−→ IA ′ nor I a

−→ I`. To see

that I 6≤m B` for ` 6∈ J, we note that I
a

99K I` cannot be matched by any may-transition

B`
a

99K B ′`.

For the only-if -direction we prove by induction on n that whenever there exists an im-

plementation I such that I ≤m A and I 6≤nm Bi for all i ∈ {1, . . . , k} then {A,B1, . . . , Bk} ∈
Con. Here S ≤nm T if either n = 0 or (i) whenever S

a
99K S ′ then T

a
99K T ′ and S ′ ≤n−1

m T ′

and (ii) whenever T a
−→ T ′ then S a

−→ S ′ and S ′ ≤n−1
m T ′. Hence the relation ≤nm is a

natural generalization of the classical bisimulation approximants to modal refinement,

and clearly (on finite MTS) we have that S ≤m T iff S ≤nm T for all n. Let us so proceed

with proving the only-if direction.

The base case n = 0 is trivial as in this case k = 0 and hence {A,B1, . . . , Bk} = {A} ∈
Con. For the induction step assume that I ≤m A and I 6≤n+1

m Bi for some I.

Now let J ⊆ {1, . . . , k} such that j ∈ J iff Bj
a

−→ B ′j for some B ′j such that I ′ 6≤nm B ′j

whenever I a
−→ I ′. Whenever A a

−→ A ′ then I a
−→ I ′ for some I ′ with I ′ ≤m A ′. It

follows from IH that {A ′, B ′j | j ∈ J} ∈ Con whenever A a
−→ A ′.

For ` 6∈ Jwe must have I
a

99K I` such that I` 6≤nm B ′` whenever B`
a

99K B ′`. Since I ≤m A
it follows that A

a
99K A` for some A` with I` ≤m A`. It follows that {A`, B

′
` | B`

a
99K

B ′`} ∪ {B ′j | j ∈ J} ∈ Con.

It follows that the set J provides the evidence required by the definition to conclude

that {A,B1, . . . , Bk} ∈ Con.

28

