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Abstract

Graphics systems use many advanced techniques that enable to model and visu-

alize a virtual scene with varying level of realism. Unfortunately, the huge collec-

tion of existing rendering algorithms significantly differ in the way how a virtual

scene is processed. Concrete implementations therefore usually lead to monolithic

solutions. In this paper we present a component-based virtual scene with unified

interface exploitable by many rendering strategies. Moreover, proposed approach

does not dictate internal implementation of the scene. One implementation can be

therefore reused by many rendering algorithms and, vice versa, the scene can be

easily replaced by another implementation, even at runtime.

1 Introduction

Nowadays, computer graphics offers a huge collection of rendering algorithms. They

differ in the speed as well as in the quality of produced images. These algorithms come

in useful in various domains. Fast but less realistic algorithms are used mainly for run-

time visualization, e.g. in computer games and virtual reality, while slow photorealistic

∗Short version of this paper has been published in the proceedings of the 16-th International Confer-

ence in Central Europe on Computer Graphics, Visualization and Computer Vision.
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algorithms are required by movie industry for instance. Unfortunately, rendering al-

gorithms differ not only in the quality and speed but also in the way how they handle

and process a virtual scene. For example, a local illumination strategies process indi-

vidual triangles vertex by vertex while photon mapping technique presents a two-stage

algorithm shooting photons and rays in the scene. This different nature of rendering

algorithms poses great difficulty in developing a unified rendering architecture, i.e. the

architecture, which is able to handle a wide variety of rendering techniques by means

of a single unified interface.

Fortunately, all the rendering algorithms share one common concept, so called scene

graph. A scene graph constitutes a tree-based skeleton of the virtual scene, which is tra-

versed and inspected continually during the rendering process. Virtual scene is there-

fore a good candidate to be the basic building block of the generic rendering architecture

with clear, general and unified interface suitable for various rendering strategies.

Our solution goes one step further. Our decomposition forms independent software

component. A software component [2] is a unit of software with high degree of en-

capsulation. Behaviour of the component is precisely defined by the set of interfaces.

Any client using the component depends only on these interfaces and thus it is possible

to exchange the component with another compatible implementation even at runtime.

Interfaces, their specification and usage therefore play the key role in the component-

based software development.

Component-based scene graph has many advantages. As mentioned above, with

the carefully selected interfaces it is possible to employ many different rendering strate-

gies, all working with the same scene. Moreover, it is possible to replace one scene

with another implementation without the impact on existing rendering algorithms.

Component-based scene graph also forms extremely useful concept for distributed en-

vironments, e.g. whenmany graphics applications collaborate on a single shared virtual

scene. Software components are highly encapsulated and thus they do not make any

difference whether they are invoked directly or through the network. The scene can be

therefore easily isolated on the separate remote computer.

To design a component-based scene graph it is necessary to define precise, yet gen-

eral interfaces, which poses serious challenge and simultaneously difficult task.
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2 Previous work

Dissimilarity of rendering algorithms usually leads to the monolithic solutions of ren-

dering systems. In spite of that, there exist several experimental generic systems, e.g.

those in [4, 12, 3, 9]. These systems attempt to integrate more illumination strategies

into a single unified system. Scene graph forms integral part of these systems.

Well-designed implementations of a scene graph can be found in [7, 8, 11, 10]. Many

of these sophisticated scene graph solutions use so called VISITOR design pattern [5, 1]

to manage traversal comfortably. Each concrete visitor represents an individual opera-

tion, which is applicable to the scene, e.g. ray-intersection detection, shading operation,

etc. It is possible to use more operations at the same time. Important advantage of visi-

tors is that it is easy to define a new operation over a scene graph without the necessity

to modify the scene graph. Second advantage is a high level of encapsulation, i.e. once

the visitor is instantiated and applied to the root node of the scene graph tree, the op-

eration is automatically propagated and applied to the whole scene. That is the visitor

performes both the tree traversal and nodes inspection within the single invocation.

On the other hand, the high level of visitors encapsulation means that they are very

tightly interconnected with the scene graph. To be able to perform an operation in the

whole scene, the visitor has to know details about the scene implementation. However,

it usually leads to changes in existing visitors whenever the scene graph implementation

is changed. Unfortunately, rendering strategies often requires special properties from

the scene graph and thus demands changes in the scene. Therefore, even a generic

rendering system that uses the visitor-based scene graph has to adapt itself instead of

adapting scene graph to its requirements. The scene graph becomes an inseparable part

of the rendering system and replacing the scene graph with another implementation is

either impossible or requires nontrivial changes in the rendering system. Moreover, the

scene graph usually has to run on the same computer just due to the high encapsulation

and interconnection. These reasons disqualify the concept of visitors from the usage in

the component-based approach.
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3 Scene Graph Component

A scene graph can be understood as a container of virtual objects. Internally, scene

graphs store objects in a tree structure. Tree structure is very practical, because it enables

to organize the scene efficiently.

Figure 1: Scene graph component

Any operation working with the scene has to perform two basic tasks. It has to

traverse the scene graph and inspect individual nodes. From the point of view of exter-

nal invoker, the visitor-based solutions do both the tasks in a single step, as discussed

above. However, if we want to propose interfaces suitable for software component, we

have to resign to the automatic application of scene operations inside the entire scene

graph container. Instead, we have to separate the traversal and nodes inspection tasks

and thus allow the invoker to gradually traverse the scene graph tree node by node and

to inspect the nodes externally.

Separating these two tasks slightly breaks the strict encapsulation of the visitor-

based solution. On the other hand, it provides the rendering strategies with sufficient

control of scene operations.

A practically usable scene has to provide a lot of another useful operations, e.g. those

related to the management of stored virtual objects, events management, etc. Because

these additional functionalities do not affect the rendering directly, they are omitted in

this paper. On the contrary, traversal and inspection interfaces are discussed in the rest

of this paper in detail.

Component diagram in Figure 1 depicts a basic scene graph component in UML

notation. It suggests discussed interfaces as well as several extra functionalities.
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4 Unified Scene Graph Traversal

The tree structure of scene graphs enables us do define a simple yet unified interface

for its traversal. A client traversing the scene stores a pointer to actual node in the tree.

Traversal interface includes methods that move the pointer in the tree, i.e. to children, to

parent etc. Moreover, the interface provides the management of stacks and pipes. The

client can instantiate various stacks and pipes, use them to store and restore position in

the tree and thus implement various traversal strategies, e.g. depth-first or breadth-first

search. Because every client has its own pointer and the set of stacks and pipes, there

can be many clients traversing the scene simultaneously.

In what follows, there is the exact definition of the traversal interface in IDL (Inter-

face Description Language, [6]), as used in our project:interfa
e ITraversal {boolean goToRoot();boolean goToChild(in long 
hild);boolean goToParent();boolean goToLeftSibling();boolean goToRightSibling();long numChildren();long a
tDepth();long newSta
k();boolean deleteSta
k(in long sta
kID);boolean 
learSta
k(in long sta
kID);boolean pushPosition(in long sta
kID);boolean popPosition(in long sta
kID);long newPipe();boolean deletePipe(in long sta
kID);boolean 
learPipe(in long sta
kID);boolean storePosition(in long pipeID);boolean restorePosition(in long pipeID);};
Meaning of individual methods is clear. This IDL description shows concrete precise

definition, which is required for implementation. In the rest of this paper we use a

graphical UML representation, which hides unnecessary details and thus keeps clear

meaning even a more complicated interfaces.
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5 Unified Inspection of Scene Graph Nodes

Scene graph nodes represent a wide range of graphical information, i.e. description of

shapes, material, transformations in space, etc. To handle all these miscellaneous prop-

erties in a uniform way it is necessary to classify them in smaller groups and to define

specific interfaces for these groups. Actually we have defined 6 groups of properties.

1. Geometrical properties define shapes of virtual objects in the form of polygonal sur-

faces, analytic surface, etc. Geometry is required for example to determine the

basic reflection directions of energy during the energy distribution process.

2. Material determines how an energy behaves when falls on a surface, i.e. howmuch

of the energy is reflected, refracted, absorbed, etc. Various illuminationmodels use

various descriptions of material.

3. Textures represent a common way for the definition of color patterns on a surface.

Textures often determine the basic appearance of surfaces.

4. Emittance is necessary to model sources of light in the scene. Several light source

models exist, they differ mainly in the way how the light is spreaded out of the

source.

5. BSDFs - Bidirectional Scattering Distribution Functions are used by photorealistic

rendering techniques. These functions determine what portion of incoming en-

ergy is reflected back to the scene with respect to incoming and outgoing direc-

tions and what portion is transmitted through translucent objects.

6. Transformations are represented by 4x4 transformation matrices and allows ma-

nipulation with groups of objects in the space, e.g. rotation, translation or scale.

Uniformmanagement of matrices is clear and well-known and thus uninteresting.

It is therefore omitted from detail discussion.

Complete inspection interface consists of two levels, as shown in Figure 2. The IIn-

spection represents the basic coarse-grained interface related to the actual node of the

scene graph. Any scene graph node has to implement this interface. The IInspection

itself is very simple. It just contains operations related to discussed categories, each

operation returns a relevant fine-grained interface of the category. An invoker selects

required inspection category first, then exploits a fine-grained interface for final inspec-

tion. If some property is not present in the node, e.g. the node has no texture defined,
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Figure 2: Inspection interface

then the fine-grained interface retrieval fails and the invoker continues with another

inspections.

5.1 Geometry

Geometry represents shape of a surface. Computer graphics uses various kinds of ge-

ometry description, e.g. analytical surfaces, triangle meshes, etc. Our aim is to not

restrict possible implementations of geometry. The unified interface therefore consists

of only a general operations, which allow to “touch” the surface in a sense and to re-

trieve the necessary information about the shape. Complete class diagram is shown in

Figure 3.

Figure 3: Geometry interface

Many geometric operations handle surface points. However, a surface point rep-

resented by a simple 3D vector is usually not sufficient for an invoker. The invoker
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typically requires additional information about that point, e.g. normal vector, distance

from the viewer, surface location, etc. The IGeometry interface therefore uses a gen-

eral concept of a surface point neighbourhood. First, the invoker specifies which kind of

information requires. However, it is not always possible to retrieve all the required in-

formation from concrete geometry. Geometric operations therefore compute as much

as possible and inform the invoker which kind of required information has been really

retrieved and which has been omitted. These requests and results form two branches of

the IPointEnv class hierarchy in Figure 3. While the sample request and result interfaces

work with the surface point and its normal vector, the “shooting” interfaces suppose

that the surface point represents point of impact and then appends information about

the distance from the “shooter”.

Having a ray, rayIntersection() operation computes point of intersection with the sur-

face. This operation accepts the IShootRequest as the input parameter and returns the

IShootResult.

mapToUV() operation transfers a surface point from the global 3D coordinates into

the local 2D coordinates of the surface. This operation is useful mainly for texture map-

ping. This operation can be implemented in many ways, i.e. direct mapping as well as

the mappings through an auxiliary surface.

randomSample() and randomDirection() return random point at the surface and ran-

dom direction from given space point towards the surface respectively. These opera-

tions accept the ISampleRequest on input and return the ISampleResult. Sampling opera-

tions are necessary for stochastic algorithms of energy distribution.

radius(), extent() and centroid() determine approximate shape, size and location of the

surface. They return radius of minimal bounding sphere, min-max extent in given direc-

tion and point of gravity. These operations are useful mainly for spatial data structures

and space searching algorithms.

separation() and distance() are used for collision detection of two surfaces. While the

separation() only checks whether two surfaces penetrate or not, the distance() method

computes their approximate distance.

Many existing graphical algorithms are based on polygonal surfaces. Any kind of

geometry should be therefore transformable to this approximate description. Themesh()

operation instantiates a triangular mesh, represented by the ITringularMesh interface

in Figure 3. ITringularMesh interface describes the mesh as a set of fragments, each

fragment composed of the stream of vertices, stream of their normals, stream of their
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local UV coordinates (e.g. mapping coordinates) and the interpretation of that streams.

Stream interpretation determines how to build triangles from these individual vertices.

Possible interpretations are individual triangles, triangle strip and triangle fan. This

unified mechanism is well-known from the OpenGL [14] for instance and allows to

reconstruct original polygons.

5.2 Material

Material characteristics are in the computer graphics expressed as a sets of real coeffi-

cients. Material coefficients are usually defined by triples, which represent properties of

individual color elements, i.e. red, green and blue (RGB) colors. But also single coeffi-

cients or general n-tuples can be used. Material coefficient directly affects shading and

visualization models.

Figure 4: Material interface

Our unified interface handles materials as a named n-tuples of real numbers. IMate-

rial interface in Figure 4 represents an n-tuple of coefficients and enables to retrieve in-

dividual values as real numbers via the value() operation. Values scaled to given range

are returned by the scaledValue(), average value of the n-tuple by the average() operation.

Because different clients and algorithms can use different names even for the same

material properties, we use the name-service concept similar to the Domain Name Ser-

vice (DNS), the well-known technology of the Internet. The IMaterialNamespace interface

provides registration of material coefficients at runtime. User can register various n-

tuples under various names and aliases. The interface translates that names into unique

IDs and vice versa. All users share this database of material names and IDs. Common

names, e.g. specular, diffuse and ambient coefficients, reflectance, transparency, etc.,

could be predefined by the implementation of the software component.
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5.3 Textures

Textures can represent various data, e.g. color texture, bump texture, mip-mapping,

etc. An invoker should have available the row data of the texture as well as the inter-

pretation information of the data. The ITexture interface in Figure 5 therefore informs

the invoker about the size, mapping properties, etc. We omit technical details here and

limit oneself to the statement that the data available to the invoker are very similar to

those available through the glGetTexParameter() and glGetTexLevelParameter() OpenGL

functions.

5.4 Emittance of Energy

Light sources pose very important but very complicated part of virtual scene. Light

source can by understood as an object emitting energy. Description of the emittance can

vary, but we can find several common principles that enable us to define emission in a

uniform way.

Figure 5: Simplified texture (left) and emittance (right) interfaces

Emittance typically consists of exact location, beam direction, and initial intensity

(color). IEmittance interface in Figure 4 contains operations for inspection of these basic

properties. The sourceLocation() operation returns 3D location of the light source, the

pureIntensity() returns pure color of the energy and the beamDirection() returns main

direction of the beam. Source location and beam direction can be undefined in some

types of light sources. For example, a point light source radiates omnidirectionally and

thus has no beam direction while a parallel energy simulating light of the Sun has no

exact location.

Another important property of a light is attenuation with respect to distance from

the source. We model attenuation by two factors. Fade distance is used to specify the

distance at which the full light intensity arrives. Attenuation beyond the fade distance
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is described by fade power, which determines the falloff rate. For example, linear or

quadratic falloff can be used by setting fade power to 1 or 2 respectively. This atten-

uation formula seems to be sufficiently general to model usual shapes of attenuation

curves. Operations fadePower() and fadeDistance() are used to inspect these parameters.

While previous operations describe the basic characteristics of a light source, the in-

tensityInPoint() and intensityInDirection()methods computes concrete amount of energy

transmitted from the light source into given space point. These two operations differ

only in the way how the space point is defined. The first version works with target

3D point while the second version with direction and distance from the energy source.

Energy is attenuated with respect to distance and attenuation characteristics of the light

source.

The stochasticEmission() operation casts a ray stochastically with respect to the prop-

erties of the light source. Stochastic emission is often used by the algorithms of photo-

realistic rendering, e.g. photon mapping.

Emission interface defined in this way supports many types of light sources includ-

ing point lights, parallel lights and spot lights. All these lights remain uniformly man-

ageable by clients.

5.5 Bidirectional Scattering Distribution Functions

BSDF, Bidirectional Scattering Distribution Function, determines what portion of in-

coming energy is reflected back to the scene from a reflective surface or what portion is

transmitted through a translucent material.

Figure 6: Difference between distribution functions

There exist three variants of BSDF. First variant is referred to as a BRDF, Bidirectional

Reflectance Distribution Function. It describes reflectance of glossy materials. Second

variant is BTDF, Bidirectional Transmittance Distribution Function, which is similar but

describes transmittance through translucent materials. Third variant is BSSRDF, Bidi-

rectional Surface Scattering Reflectance Distribution Function. While the BRDF and
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BTDF work with a single point at a surface, i.e. incoming and outgoing energy are re-

lated to the same point, BSSRDF is able to handle more natural behaviour. It takes into

consideration the fact than the energy impacts the surface at one point but radiates at

another. This model enables to handle subsurface scattering for surfaces like milk, skin

or marble. Figure 6 depicts difference between these variants.

Single virtual object can have assigned all three distribution functions. For example,

a glass object has to have defined BRDF for reflectivity as well as BTDF for transparency.

Moreover, it could have defined BSSRDF, which can be used instead of BRDF for more

precise reflection calculations. The basic coarse-grained IInspection interface therefore

contains inspection methods for these three variants of distribution functions. Never-

theless, all these variants share one fine-grained inspection interface IBSDF as shown in

Figure 7.

Figure 7: Unified interface for BSDF

The most important operation of the IBSDF interface is the energy(). It takes incom-

ing energy direction, viewer direction, point of impact and outgoing point and returns

portion of reflected/transmitted energy. BRDF and BTDF just ignore the outgoing point.

Important property of any BSDF is also an isotropy. Isotropic BSDFs are indepen-

dent on rotation of the surface around its normal, while anisotropic functions change

during the rotation, even though the incoming and outgoing vectors keep unchanged.

Anisotropic surfaces are brushed metal or compact disc, for instance. The method

isIsotropic() informs an invoker about this BSDF behaviour.

Some BRDFs do not depend on the outgoing direction but distributes the energy om-

nidirectionally. e.g. Lambertian function. They are called to be perfectly diffuse. Many

real algorithms exploit this feature to accelerate energy distribution process. The isD-

iffuse() method of the interface informs an invoker about this property. Separation of

BRDF into its diffuse and specular part is quite common and useful for many global

illumination algorithms. The IInspection interface therefore contains two separate dif-

fuseBRDF() and specularBRDF() inspection operations.
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The importanceSample() and importanceSampleInv() operations are required by

stochastic algorithms of energy distribution. The importanceSample() takes preferred out-

going direction and two generating random numbers from the range [0, 1) and returns

direction with respect to the scattering characteristics of the BSDF. The importanceSam-

pleInv() is the inverse function, i.e. it takes outgoing direction and returns its generating

“random” numbers.

6 Experimental Rendering Architecture

To confirm the results of analysis we designed two experimental libraries.

The first library implements scene graph using inspection interface as discussed in

this paper. Actually, the library does not represent real software component running

under some kind of component system, e.g. CORBA. It is a standalone C++ library

implementing discussed interfaces. This library was developed in order to ensure that

proposed concept is practical and functional. Translation of this standalone library into

the real CORBA component is in progress.

The second library implements various rendering strategies. This library is used

to check that proposed inspection interface of a scene graph is sufficient for various

types of rendering algorithms. Actually implemented rendering strategies include a

few variants of local illumination, Whitted ray tracing, Monte Carlo ray tracing and

photon mapping. Examples are show in Figure 8. These strategies cover the whole

range of rendering approaches and thus confirm validity of proposed interface.

The most important result of this project is existence of the unified component-based

scene graph. But practical usage depends mainly on the rendering speed. Although

our scene graph is not yet implemented as a real CORBA software component, we per-

formed several efficiency tests with actual standalone implementation.

Implementation of the local illumination is based on the OpenGL and is accelerated

in graphics hardware. Therefore we did not measure any significant decrease of perfor-

mance in comparison with native OpenGL applications.

The ray tracing algorithm was compared with the POV-Ray system [13]. Tests were

performed on fractal scenes that enables to change the number of primitives in the scene

easily. Both the systems had set a similar parameters of the algorithm. Figure 9 shows an

overview of tested scenes and the rendering times. Tests were performed on Pentium 4

3.0GHz, 1GB RAM, image resolution 800x600. Results of the tests show a less efficiency
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Figure 8: Wire-frame model (upper-left), local illumination (upper-right), Monte Carlo

ray tracing (lower-left) and Photon mapping (lower-right)

of our system in comparison with the POV-Ray. The reason is that the proposed unified

inspection interface does not allow direct access into the scene graph and then forbids

implementation of various acceleration tricks. Memory requirements are very similar

for both the systems.

We did not perform a serious tests for photon mapping algorithm so far, but the

preliminary experiments show an acceptable performance for this algorithm too.

7 Conclusion and Future Work

We discussed a unified interfaces of the scene traversal and inspection. These interfaces

do not restrict implementation of the scene graph, just prescribe necessary inspection

operations. On the other hand, proposed inspection operations are sufficiently general

for wide range of rendering strategies, from real-time local illumination to photorealistic

image synthesis. The interfaces therefore enable to develop a scene as an independent
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Figure 9: Fractal scenes used for efficiency tests: Mountains (left) and Sphereflake (right)

software component, which is very useful mainly in distributed and collaborative envi-

ronments.

Inspection and traversal interfaces present only a fragment of all required function-

ality. Another unified scene graph interfaces, e.g. scene creation andmaintenance, event

handling etc., have to be proposed.

Another interesting research area include development of a generic rendering ar-

chitecture, i.e. architecture enabling to handle and change wide variety of rendering

algorithms at runtime.

Although we performed some preliminary tests, is it necessary to check seriously

how much the component technology decrease performance of the rendering applica-

tions. Acceptable loss of performance have to be balanced with advantages of compo-

nent technology.
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