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Abstract

Software systems assembled from a large number of autonomous components be-

come an interesting target for formal verification due to the issue of correct interplay

in component interaction. State/event LTL [6, 5] incorporates both states and events

to express important properties of component-based software systems.

The main contribution of the paper is a partial order reduction technique for ver-

ification of state/event LTL properties. The core of the partial order reduction is a

novel notion of stuttering equivalence which we call state/event stuttering equiva-

lence. The positive attribute of the equivalence is that it can be resolved with exist-

ing methods for partial order reduction. State/event LTL properties are, in general,

not preserved under state/event stuttering equivalence. To this end we define a new

logic, called weak state/event LTL, which is invariant under the new equivalence.

1 Introduction

Increasing complexity in software development stimulates application of new tech-

niques that help to deliver systems in shorter time and with lower costs. One of such

techniques is the component-based development, that builds software systems out of

∗The author has been supported by grant no. 1ET408050503.
†The author has been supported by grant no. 1ET400300504.
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prefabricated autonomous components, often developed with no knowledge of their

deployment context. Under such conditions, interaction among components in the sys-

tem becomes a crucial issue in the system correctness.

Verification of component-based systems. Similarly to communicating processes, in-

teraction of components can be formalized in terms of labelled transition systems, repre-

senting communicational behaviour of the components, and correctness of the systems

in a temporal logic. In practice, real systems are composed of a large number of compo-

nents which are often independent on each other and run concurrently. In such cases,

automated verification becomes challenging due to their size and complexity. This mo-

tivates the search of component-specific attributes, which can be exploited in order to

make the verification feasible.

Correctness attributes. One of the crucial observations in verification of component

interaction in component-based systems is that the correctness attributes often high-

light interaction among specific components which form only a small part of the system.

Even if the rest of the system is also important as it may coordinate these components,

with appropriate reduction techniques a large portion of its complexity could be ab-

stracted away during verification.

Partial-order reduction technique. One of the techniques successfully employed to

state-space reduction is the partial order reduction. This technique is able to identify re-

dundancies in the model during the verification process, commonly caused by inter-

leaving of independent actions. This allows the technique to omit generation of some

of them while at least one representative of each equivalence class remains part of the

actually verified model.

State/event temporal logic. In component-based systems, as in any modular pro-

grams in general, communication among components proceeds via events, which rep-

resent message passing, service calls, delivery of return values, etc. At the same time,

components preserve also persistent state information about current values of their at-

tributes. The adequate logic formalizing properties of these systems hence should be

able to express both state-based and action-based properties, as well as their combi-

nations. Research conducted on this topic resulted in the state/event LTL [6, 5]. For
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the logic, however, there is no partial order reduction method known at the time. The

situation is complicated for its fragment, the action-based LTL, as well.

Contribution. The main contribution of this paper is a partial order reduction method

for state/event LTL, and for action-based LTL as its special case. The whole framework

is moreover defined in a way that it can be turned at no additional cost into the standard

partial order reduction problem for state-based LTL at the end. Hence, it can be resolved

with known and widely implemented techniques.

For the reduction to have required effect one needs to identify an equivalence of two

runs. The equivalence should allow for considerable level of reduction, while preserv-

ing temporal properties that reflect meaningful correctness attributes for the studied

systems. We define an equivalence relation, state/event stuttering equivalence, driven by

the correctness attributes of component-based systems, highlighting only the interest-

ing interaction of components as discussed above, and characterize the state/event LTL

properties preserved by the equivalence in terms of a new logic named weak state/event

LTL.

Outline of the paper. After a brief review of related work in Section 2, we define

basic terms and structures in Section 3. The equivalence and the corresponding logic

are introduced in Section 5, which is preceded by thorough motivation underlying their

definition in Section 4. Finally, the partial order reduction technique is presented in

Section 6, which is followed by conclusion and future directions in Section 7.

2 Related Work

A combination of state-based and action-based linear temporal logic, named

state/event LTL, has been studied in [6, 5]. The authors argue that formalisms in-

cluding both states and actions are suited for modelling of modular systems, including

component-based systems, better than pure state-based or action-based approaches. It

is also shown that the automata-based verification method for state-based LTL [10] can

be modified to a verification method for state/event LTL in a straightforward way and

at no additional cost of time and space. As noted by the authors, the results indicate

the importance of further research in reduction techniques. The partial order reduction
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is suggested as a future direction. Its need was also discovered in our recent work on

verification of component-based systems [18, 2].

The partial order reduction method was originally introduced in three independent

works [17, 14, 11]. The approach has been further developed, but in connection with

linear temporal properties, state-based LTL has always been assumed. The reason for

leaving action-based and state/event LTL behind is most likely because the correctness

of the partial order reduction method is based on the concept of stuttering invariance

of properties [16]. To the best of our knowledge, the stuttering concept has currently no

convenient analogue for neither state/event nor action-based LTL.

An approach that relates actions and stuttering equivalence is the temporal logic

of actions [12], where the formulae are constructed in a way that they are stuttering

invariant. However, the actions are formulated in terms of changes of state propositions

and/or variables, not allowing an arbitrary concept of actions. In our approach, we

adopt a more general attitude to actions, as we consider arbitrary actions not tied to the

properties of states.

3 Basic Definitions

As a general modelling formalism for state/event systems we use labelled Kripke

structures. Many automata-based approaches, such as Component-Interaction Au-

tomata [2, 18], Interface Automata [9] and I/O automata [13], can be easily translated to

labelled Kripke structures.

Definition 3.1 (LKS). A labelled Kripke structure (LKS) is a 6-tuple (S,Act, ∆,

sinit, Ap,L) where S is a nonempty set of states,Act is a finite set of actions, ∆ ⊆ S×Act×S
is a transition relation, sinit ∈ S is an initial state, Ap is a finite set of atomic propositions

and L : S → 2Ap is a state-labelling function. Instead of (s, a, s ′) ∈ ∆, we also write s a
−→ s ′.

A run π of an LKS is an infinite alternating sequence of states and actions π =

s0, a0, s1, a1, . . . such that ∀i : si
ai−→ si+1. We call a run initial if s0 = sinit. Given a run

π, we also define: the ith subrun of π as πi = si, ai, si+1, ai+1, . . ., the ith state of π as π(i) = si

and the ith action of π as `(π, i) = ai.

Other kinds of transition systems can be naturally translated into LKSs. The most

commonly used are the Kripke structures, which correspond to LKSs without transi-

tion labels (i.e. actions), and the labelled transition systems, which correspond to LKSs

without atomic propositions and state labelling.
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Figure 1: Models of the Controller, Updater and Logger components
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Figure 2: Model of the Photo gallery system
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Example 3.2. Consider a component-based system implementing a simple photo gallery, mod-

elled as an LKS in Figure 2. The system consists of three components: Controller, Updater

and Logger, with behavioural descriptions in Figure 1. The interface of the system is formed by

Controller, which inserts photos with captions into the gallery. When provided with a picture

and its caption (in any order), Controller asks Updater to update information in the gallery

via action Update, which synchronizes with a corresponding action in Updater. In the model

of the system in Figure 2, Updater gains focus and starts the update. It saves the changes first

and then asks Logger to log the information. Logger responds to the Log call via Log and

then completes the operation. Concurrently with the MakeLog operation of Logger, Updater

returns response to Controller, which afterall takes all the components (and hence the system)

to the initial setting.

To make the LKS model of this system in Figure 2 complete, we need to add the set Ap

of atomic propositions and the state labelling function L. In this case we choose the atomic

propositions reflecting action enabledness. That is, Ap = {E(a) | a ∈ Act} where each E(a)

represents a state proposition with the meaning “action a is enabled in this state”. The labelling

function is then given as L(s) = {E(a) | ∃s ′ : s a
−→ s ′} associating with each state the actions

enabled in that state. For example L(A) = {E(Picture), E(Caption)}.

We continue with defining the linear temporal logic that encompasses both state

propositions and actions. This definition is equivalent to the definition in [6], it only

slightly differs in notation.

Definition 3.3 (SE-LTL). Let Act be a set of actions, Ap a set of atomic propositions. The

syntax of the state/event LTL (SE-LTL for short) formulae is defined inductively as:

ϕ ::= P(a) | p | ¬ϕ | ϕ1 ∧ϕ2 | ϕ1 Uϕ2 | Xϕ

where a ranges over Act and p ranges over Ap.

Let π be a run of an LKS, the semantics of SE-LTL for runs is defined as:

π |= P(a) ⇐⇒ `(π, 0) = a

π |= p ⇐⇒ p ∈ L(π(0))

π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= ϕ∧ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕUψ ⇐⇒ ∃k ≥ 0 : πk |= ψ and ∀j < k : πj |= ϕ

π |= Xϕ ⇐⇒ π1 |= ϕ
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Further, we say that an LKS M satisfies ϕ, written as M |= ϕ if for all initial runs π of M,

π |= ϕ.

Example 3.4. Consider the LKS from Example 3.2 in Figure 2. Let Fϕ stand for true U ϕ

and Gϕ stand for ¬ F ¬ϕ. The property reflecting that an arbitrary number of pictures can be

inserted into the album, can be stated in SE-LTL as G FP(Picture). An example of a property

using the state atomic propositions could be “whenever the action Picture becomes enabled, it

is eventually executed”, which is expressible as G (E(Picture) ⇒ FP(Picture)).

It has been demonstrated in [6] that the automata-based approach for state-based

LTL verification (see e.g. [10]) can be straightforwardly transformed into an automata-

based verification method for SE-LTL with no extra cost.

4 Motivation

As mentioned in the introduction, to cope with the enormous size of real system models

consisting of a large number of components it is necessary to employ reduction meth-

ods. The aim of such methods is to generate a reduced state space instead of the com-

plete one while ensuring preservation of all required properties. One of such methods,

the partial order reduction method, exploits the redundancies in the system caused by

concurrent interleaving. When dealing with state-based LTL properties, the partial or-

der reduction technique is built on the concept of stuttering equivalence [16]. Two runs

of a system are considered to be stuttering equivalent if the only difference between

them lies in sequential repetitions of states with identical labelling. The partial order re-

duction method then ensures that for each run of the system there is a stuttering equiv-

alent run in the reduced state space. The subset of LTL properties that are preserved

by this equivalence can be characterized syntactically: they are exactly those properties

that can be written without the X operator.

To apply the partial order reduction method to SE-LTL, we need first to find a suit-

able concept that would play the role of stuttering equivalence for the state/event case.

The above mentioned stuttering equivalence cannot be employed, as it considers state

labelling only.

The first idea is to transfer the stuttering concept to actions. In the stuttering equiva-

lence, consecutive states labelled with the same atomic propositions are ignored. Let us

therefore consider an equivalence that ignores consecutive transitions labelled with the
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Figure 3: A typical situation for partial order reduction

same action and let us call this equivalence action stuttering. It implies that, for instance,

two runs of the form s0, a, s1, a, s2, b, s3, c, s4, c, . . . and q0, a, q1, b, q2, b, q3, b, q4, c, . . .

are action-stuttering equivalent. The advantage of this straightforward approach is that

all formulae of action-based LTL not using the X operator are preserved by this equiva-

lence. However, there is a number of arguments against this choice.

It is obvious that the partial order reduction method does not preserve this action-

stuttering equivalence. Figure 3 shows a typical situation. If the transitions labelled

with a and b are independent and one of them is invisible, the partial order reduction

method traverses just one of the two runs ab . . . and ba . . .However, those two runs are

not action-stuttering equivalent.

The problem is more fundamental. Consider a component-based system consisting

of two components whose interaction is to be verified. Suppose we extend the system

with an additional component that does not influence the communication of the original

ones. A suitable substitution for stuttering equivalence should consider every run corre-

sponding to the interaction behaviour of the original components equivalent regardless

of interleaving with the third component. It is clear that the proposed action-stuttering

equivalence does not satisfy this reasonable property.

We define a new equivalence, which, while still retaining the stuttering concept with

respect to the state propositions, employs a different approach towards the transition

labels (actions). This new equivalence enjoys the property that it is preserved by the

partial order reduction method, thus allowing all the advantages of it. This comes at

a cost. Contrary to state-based LTL, we do not have any syntactic characterization of

SE-LTL formulae that are preserved by the new equivalence. However, we show that

they can be elegantly described in terms of an adjusted weak version of SE-LTL.

5 State/Event Stuttering Equivalence

The main idea of the equivalence is that some of the actions are regarded as interest-

ing. Transitions with noninteresting actions are then overlooked by the equivalence.
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As we want to consider both actions and states, this idea is combined with the stutter-

ing principle for state propositions, i.e. transitions which change state propositions we

are interested in cannot be overlooked. In order to define the equivalence formally, we

introduce the notions of a projection and a signature.

Definition 5.1 (projection, signature). Let π = s0, a0, s1, a1, . . . be a run of LKS

(S,Act, ∆, sinit, Ap,L), let Act ′ ⊆ Act and Ap ′ ⊆ Ap. Let τ be a new symbol, τ 6∈ Act.

A projection of π onto Act ′and Ap ′ is defined as

prAp ′

Act ′(π) = E0, b0, E1, b1, . . .

where Ei = L(si) ∩Ap ′, bi is equal to τ whenever ai 6∈ Act ′and bi = ai otherwise.

Furthermore, a signature of π with respect to Act ′ and Ap ′, denoted as sigAp ′

Act ′(π) is

defined as the (finite or infinite) alternating sequence of sets of atomic propositions and actions

that arises from the projection of π onto Act ′ and Ap ′ by replacing every maximal subsequence

of the form Ei, τ, Ei+1, τ, . . ., where Ei = Ei+1 = · · · , with just Ei.

We also define a tail of π with respect to Act ′and Ap ′, denoted as tailAp ′

Act ′(π), as the maximal

subrun πk of π such that sigAp ′

Act ′(π) = E0, α, sigAp ′

Act ′(πk) for some E0 ⊆ Ap ′and α ∈ Act ′∪ {τ}.

Note that the tail is undefined for runs whose signature is of the form E0.

Example 5.2. Let π = A, Caption, B, Picture, D, Update, E, MakeSave, F, . . . and let Act ′ =

{Update} and Ap ′ = {E(Picture)}. Then the projection of π onto Act ′ and Ap ′

is prAp ′

Act ′(π) = {E(Picture)}, τ, {E(Picture)}, τ, ∅, Update, ∅, τ, ∅, . . . and its signature is

sigAp ′

Act ′(π) = {E(Picture)}, τ, ∅, Update, ∅, . . .

Definition 5.3 (state/event stuttering equivalence). Let π and σ be two runs, let Act ′ be

a set of actions, Ap ′ a set of atomic propositions. We say that π and σ are state/event stut-

tering equivalent with respect to Act ′ and Ap ′, denoted as π ≡Ap ′

Act ′ σ, if they have the same

signatures, i.e. sigAp ′

Act ′(π) = sigAp ′

Act ′(σ).

Two LKSs are said to be state/event stuttering equivalent with respect to Act ′and Ap ′, if for

each run of one LKS there is a state/event stuttering equivalent run of the other and vice versa.
Stuttering equivalence is a special case of state/event stuttering equivalence for

Act ′= ∅.

Definition 5.4 (weak SE-LTL). Let Act be a set of actions, Ap a set of atomic propositions

and let Act ′⊆ Act. We define the weak state/event LTL with respect to Act ′, wSE-LTL for

short, as follows. The syntax of the formulae is defined inductively as:

ϕ ::= P̃(a) | p | ¬ϕ | ϕ1 ∧ϕ2 | ϕ1 Uϕ2 | X̃ϕ | ϕ1 Ua ϕ2
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where a ranges over Act ′and p ranges over Ap.

Let π be a run of an LKS. The semantics for runs is defined inductively as

π |= P̃(a) ⇐⇒ ∃k ≥ 0 : `(π, k) = a and ∀j < k : `(π, j) 6∈ Act ′

π |= p ⇐⇒ p ∈ L(π(0))

π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= ϕ∧ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕUψ ⇐⇒ ∃k ≥ 0 : πk |= ψ and ∀j < k : πj |= ϕ

π |= X̃ϕ ⇐⇒ ∃k ≥ 0 : `(π, k) ∈ Act ′,∀j < k : `(π, j) 6∈ Act ′and πk+1 |= ϕ

π |= ϕUa ψ ⇐⇒ ∃k ≥ 0 : `(π, k) = a, πk+1 |= ψ and ∀j < k+ 1 : πj |= ϕ

The main difference between SE-LTL and wSE-LTL is in the semantics of the next

and action operators. While P(a) states that “the first action is a”, P̃(a) states that “the

first interesting action is a”. The formula Xϕ states that “in the next step,ϕ holds”, while

the formula X̃ϕ states that “after the next interesting action, ϕ holds”. Here, interesting

means “from Act ′”. Note that the semantics of wSE-LTL depends on the choice of Act ′

and different runs may satisfy a formula of wSE-LTL depending on this choice. When

specifying properties in wSE-LTL, it is therefore assumed that a pair (ϕ,Act ′) is given

instead of just the formula.

Actually, the definition of X̃ϕ is of the form “there is a next interesting action and

after this action,ϕ holds”. We could also sometimes be interested in stating the property

that “if there is a next interesting action, then after this action, ϕ holds”. Nevertheless,

this alternative X̂ϕ operator can be defined as a derived operator: X̂ϕ := ¬ X̃ ¬ϕ.

Additionally, wSE-LTL has a new operator Ua. The motivation is to express prop-

erties like “atomic proposition p holds until action a happens”. In SE-LTL, this can be

expressed with p U (p ∧ P(a)). In wSE-LTL this is no longer possible as the semantics

of P̃(a) is different and the intuitive solution p U (p ∧ P̃(a)) holds even for runs that

do not satisfy the original property, e.g. a run with signature {p}, τ, {¬p}, a, . . . Thanks

to the Ua operator, this property is expressible as p Ua true. The Ua operator is not

needed in the action-based fragment of wSE-LTL. The reader may verify that every for-

mula ϕUaψ, where ϕ and ψ both do not use state atomic propositions, is equivalent to

ϕU (P̃(a) ∧ϕ∧ X̃ψ).

We are now ready to present the main result of this section, namely that the proper-

ties expressible in weak SE-LTL are preserved by the state/event stuttering equivalence.
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Lemma 5.5 (equivalence of subruns). Let π and σ be two runs such that π ≡Ap ′

Act ′ σ. Then

there is a nondecreasing function f : N0 → N0 such that f(0) = 0 and for each i ≥ 0, πi ≡Ap ′

Act ′

σf(i). Moreover, for each i, the following holds:

σf(i) ≡Ap ′

Act ′ σ
f(i)+1 ≡Ap ′

Act ′ · · · ≡Ap ′

Act ′ σ
f(i+1)−1

Proof. We define the function f inductively as follows:

• f(0) = 0. Obviously π0 = π ≡Ap ′

Act ′ σ = σ0.

• Let f be defined for 0, . . . , n and we want to define f(n+ 1). There are two cases:

– `(π,n) 6∈ Act ′and L(π(n)) ∩ Ap ′ = L(π(n + 1)) ∩ Ap ′. Then f(n + 1) = f(n).

It is clear that πn+1 ≡Ap ′

Act ′ πn ≡Ap ′

Act ′ σf(n) = σf(n+1).

– `(π,n) ∈ Act ′or L(π(n)) ∩Ap ′ 6= L(π(n+ 1)) ∩Ap ′. Then πn+1 = tailAp ′

Act ′(πn).

We define f(n + 1) such that σf(n+1) = tailAp ′

Act ′(σf(n)). It is easily seen that if

two runs are state/event stuttering equivalent, their tails also are, therefore

πn+1 = tailAp ′

Act ′(πn) ≡Ap ′

Act ′ tailAp ′

Act ′(σf(n)) = σf(n+1).

It should be clear that the function f is nondecreasing. It remains to show that

σf(i) ≡Ap ′

Act ′ σ
f(i)+1 ≡Ap ′

Act ′ · · · ≡Ap ′

Act ′ σ
f(i+1)−1

for all i. If this condition were violated then both the signature of σf(i) and the signature

of its tail would differ from the signature of σf(i+1). Clearly, from the construction of f

this is not possible.

Theorem 5.6 (equivalence preserves properties). Let Act ′ be a set of actions, Ap ′ a set of

atomic propositions, and let π and σ be two runs such that π ≡Ap ′

Act ′ σ. Then for each formula ϕ

of wSE-LTL with respect toAct ′such that it only contains atomic propositions fromAp ′, π |= ϕ

if and only if σ |= ϕ.

Proof. Let sigAp ′

Act ′(π) = sigAp ′

Act ′(σ). The proof follows by induction on the formula. We

only show three interesting cases and only one direction, i.e. that π |= ϕ implies σ |= ϕ.

The other cases are evident and the other direction follows from the symmetry of the

equivalence.

• π |= ψ1 U ψ2. Then there is some k such that πk |= ψ2 and for each j < k, πj |= ψ1.

But then Lemma 5.5 together with the induction hypothesis implies that σf(k) |= ψ2

and for each i < f(k), σi |= ψ1, that is σ |= ψ1 Uψ2.

11



• π |= Xψ. Then there is some k such that `(π, k) is the first interesting action on π

and πk+1 |= ψ. From the state/event stuttering equivalence, there has to be some j

such that `(σ, j) is the first interesting action on σ and sigAp ′

Act ′(σj+1) = sigAp ′

Act ′(πk+1)

is the part of the original signature that start after the first interesting action. Thus

σ |= Xψ.

• π |= ψ1 Ua ψ2. Then there is some k such that `(π, k) = a, πk+1 |= ψ2 and for all

j < k+ 1, πj |= ψ1. As in the case of U, it follows from Lemma 5.5 that σf(k+1) |= ψ2

and σi |= ψ1 for all i < f(k + 1). We need to show that `(σ, f(k + 1) − 1) = a.

However, we know that sigAp ′

Act ′(πk) = E, a, sigAp ′

Act ′(πk+1) for some E and we know

from Lemma 5.5 that σf(k+1)−1 ≡Ap ′

Act ′ σf(k) ≡Ap ′

Act ′ πk. Therefore, sigAp ′

Act ′(σf(k+1)−1)) =

E, a, sigAp ′

Act ′(σf(k+1)) and thus `(σ, f(k+ 1) − 1) = a and σ |= ψ1 Ua ψ2.

What remains is to show that wSE-LTL is indeed a weak version of SE-LTL, i.e. that

all properties expressible in wSE-LTL are also expressible in SE-LTL. The following the-

orem states that every formula of wSE-LTL can be translated in linear time to an equiv-

alent formula of SE-LTL. This way the verification problem for wSE-LTL can be reduced

to the verification problem for SE-LTL, which is solvable in a way similar to the standard

LTL verification as described in [6].

Theorem 5.7 (embedding of wSE-LTL into SE-LTL). Every formulaϕ of weak SE-LTL with

respect toAct ′can be translated to a formula T(ϕ) of SE-LTL such that for each π, π |= ϕ if and

only if π |= T(ϕ).

Proof. We define an auxiliary formula ξ :=
∧

a∈Act ′ ¬P(a). The translation is defined

inductively as follows:

T(p) := p

T(P̃(a)) := ξU P(a)

T(X̃ϕ) := ξU (¬ξ∧ X T(ϕ))

T(ϕUψ) := T(ϕ) U T(ψ)

T(ϕUa ψ) := T(ϕ) U (P(a) ∧ T(ϕ) ∧ X T(ψ))

T(ϕ∧ψ) := T(ϕ) ∧ T(ψ)

T(¬ϕ) := ¬T(ϕ)

12



The correctness of the construction is proved by induction. The interesting cases are

P̃ , X̃ and Ua.

π |= P̃(a) ⇐⇒ ∃k ≥ 0 : `(π, k) = a and ∀j < k : `(π, j) 6∈ Act ′

⇐⇒ ∃k ≥ 0 : πk |= P(a) and ∀j < k : πj |= ξ

⇐⇒ π |= ξU P(a)

π |= X̃ϕ ⇐⇒ ∃k ≥ 0 : `(π, k) ∈ Act ′,∀j < k : `(π, j) 6∈ Act ′and πk+1 |= ϕ

⇐⇒ ∃k ≥ 0 : πk |= ¬ξ,∀j < k : πj |= ξ and πk+1 |= T(ϕ)

⇐⇒ ∃k ≥ 0 : πk |= ¬ξ∧ X T(ϕ) and ∀j < k : πj |= ξ

⇐⇒ π |= ξU (¬ξ∧ X T(ϕ))

π |= ϕUa ψ ⇐⇒ ∃k ≥ 0 : `(π, k) = a, πk+1 |= ψ and ∀j < k+ 1 : πj |= ϕ

⇐⇒ ∃k ≥ 0 : πk |= P(a), πk+1 |= T(ψ)

and ∀j < k+ 1 : πj |= T(ϕ)

⇐⇒ ∃k ≥ 0 : πk |= P(a), πk |= X T(ψ), πk |= T(ϕ)

and ∀j < k : πj |= T(ϕ)

⇐⇒ π |= T(ϕ) U (P(a) ∧ X T(ψ) ∧ T(ϕ))

The remaining cases are straightforward.

5.1 Characterization of invariant SE-LTL properties

We have shown that wSE-LTL is preserved by state/event stuttering equivalence and

can be embedded into SE-LTL. Thus, wSE-LTL can be seen as a characterization of some

SE-LTL properties that are preserved by state/event stuttering equivalence (we use the

term state/event stutter-invariant for such properties in the following). We now show that

this characterization is exact, i.e. that all state/event stutter-invariant SE-LTL properties

are expressible in wSE-LTL. The proof follows the method of [16].

Definition 5.8. A run π is state/event stutter-free, if for each i ≥ 0 one of the following

holds:

• `(π, i) ∈ Act ′ (ith transition is labelled by interesting action)

• L(π(i)) ∩Ap ′ 6= L(π(i+ 1)) ∩Ap ′ (ith transition changes the state labelling)

• `(π, j) 6∈ Act ′ and L(π(j)) ∩ Ap ′ = L(π(j + 1)) ∩ Ap ′ for all j ≥ i (nothing interesting

ever happens from ith position onwards)

13



It is clear that a state/event stutter-free run is a unique representant of its state/event stutter-

ing equivalence class. Note that an arbitrary subrun of a state/event stutter-free run is also

state/event stutter-free.

In the following, we assume that Ap ′= {p1, . . . , pn} and letN be the set of all subsets

of Ap ′, i.e. N = 2Ap ′
. For each ν ∈ N, let βν be the formula α1 ∧ · · · ∧ αn where αj = pj

if pj ∈ ν and αj = ¬pj otherwise. If Ap ′= ∅ then N = {∅} and βν = true. Thus, βν holds

in precisely those states whose valuation is equal to ν.

Lemma 5.9. Let π be a state/event stutter-free run. Then `(π, 0) ∈ Act ′ if and only if π |=∨
ν∈N

(∨
a∈Act ′ (βν Ua true)

)
.

Proof. If π = s0, a, . . . where a ∈ Act ′ then clearly π |= βν Ua true where ν is the set of

all state propositions true at s0.

The other direction is proved by contradiction. Suppose that `(π, 0) 6∈ Act ′and that π

satisfies the formula in the lemma. Then, there is some ν and a such that π |= βν Ua true.

Therefore, prAp ′

Act ′(π) has to be of the form E0, τ, E1, . . . , Ei, a, Ei+1, . . . where both E0 and

E1 are equal to ν. But then, π is not state/event stutter-free, which is a contradiction.

Theorem 5.10. Every state/event stutter-invariant property expressible in SE-LTL is express-

ible in wSE-LTL.

Proof. We will show that for every SE-LTL formula ϕ there exists a wSE-LTL formula

τ(ϕ) that agrees with ϕ on all state/event stutter-free runs. Clearly this implies the

theorem.

The formula τ(ϕ) is defined inductively as follows. The straightforward parts are

τ(p) = p for p ∈ Ap ′, τ(¬ϕ) = ¬τ(ϕ), τ(ϕ∧ψ) = τ(ϕ)∧τ(ψ) and τ(ϕUψ) = τ(ϕ)Uτ(ψ).

These choices are obviously correct. The more difficult parts are that of P(a) and Xϕ.

They are dealt with as follows:

τ(P(a)) := P̃(a) ∧
∨
ν∈N

βν Ua true

τ(Xϕ) := ψ1 ∨ψ2 ∨ψ3

14



where

ψ1 :=
∨
ν∈N

(
Gβν ∧ ¬ X̃ true ∧ τ(ϕ)

)
ψ2 :=

∨
ν∈N

∨
a∈Act ′

(
βν Ua true ∧ X̃ τ(ϕ)

)
ψ3 := ¬

∨
ν∈N

∨
a∈Act ′

(βν Ua true) ∧
∨
ν∈N

∨
ν ′∈Nr{ν}

(βν ∧ (βν U (βν ′ ∧ τ(ϕ))))

What remains is to prove the correctness of this choice. The choice of τ(P(a)) is

evidently correct by an argument similar to that of Lemma 5.9.

Let us now suppose that π |= Xϕ. We want to show that then π |= τ(Xϕ). It follows

from the induction hypothesis that π1 |= τ(ϕ). As π is state/event stutter-free run, it has

to be of one of the following three forms:

(i) prAp ′

Act ′(π) = E0, τ, E1, τ, E2, τ, . . ., where E0 = E1 = E2 = . . ., i.e. nothing interesting

ever happens on π. In this case it is obvious that π |= Gβν where ν = E0 and

π |= ¬ X̃ true. As prAp ′

Act ′(π) = prAp ′

Act ′(π1) , we also know that π |= τ(ϕ). Thus π |= ψ1

and therefore π |= τ(Xϕ).

(ii) prAp ′

Act ′(π) = E0, a, E1, . . ., where a ∈ Act ′, i.e. first transition of π has interesting

label. Then, it follows from Lemma 5.9 that π |= βν Ua true for some ν and a. From

the definition of X̃ and the fact that π1 |= τ(ϕ) it then follows that π |= X̃ τ(ϕ). Thus

π |= ψ2 and therefore π |= τ(Xϕ).

(iii) prAp ′

Act ′(π) = E0, τ, E1, . . ., where E0 6= E1, i.e. first transition of π has noninteresting

label but changes state labelling. In this case π |= βν ∧ (βν U (βν ′ ∧ τ(ϕ))), where

ν = E0 and ν ′ = E1. That π |= ¬(βν Ua true) for every value of ν and a follows

from Lemma 5.9. Thus π |= ψ3 and therefore π |= τ(Xϕ).

For the other direction of the proof, suppose that π |= τ(Xϕ). We want to show

that π |= Xϕ. The induction hypothesis is that whenever a state/event stutter-free run

satisfies τ(ϕ), it also satisfies ϕ. There are three cases:

(a) π |= ψ1. As π |= Gβν and π |= ¬ X̃ true, the run π has to be of the form (i). As

π |= τ(ϕ) and π = π1 then clearly π1 |= ϕ and thus π |= Xϕ.

(b) π |= ψ2. By Lemma 5.9, π has to be of the form (ii), i.e. its first transition has to be

labelled by an interesting action. But then π |= X̃ τ(ϕ) implies π1 |= τ(ϕ) and thus

π |= Xϕ.
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(c) π |= ψ3. By Lemma 5.9, π has to be of either the form (i) or (iii). As π |= βν ∧

(βν U (βν ′ ∧ τ(ϕ))) for some ν and ν ′ such that ν 6= ν ′, it cannot be of the form (i).

Thus, it has to be that prAp ′

Act ′(π) = E0, τ, E1, . . . where E0 6= E1. Then clearly ν = E0

and π1 |= βν ′ ∧ τ(ϕ) as it cannot be the case that π1 |= βν because π is state/event

stutter-free. But then π1 |= ϕ and π |= Xϕ. This completes the proof.

Although the construction in the above proof is exponential in worst case, the main

significance of this result is that using weak SE-LTL comes without loss of expressive-

ness over SE-LTL if we want to use state/event stutter-invariant properties. Moreover,

the construction justifies the choice of wSE-LTL operators, namely the P̃ , X̃ and Ua op-

erators, which made the construction possible. Note that if any of these were excluded

from the logic, it would be less expressive and the above result would not hold.

6 Partial Order Reduction

The goal of this section is to show that the partial order reduction method can be applied

to LKSs so that the reduced LKS remains state/event stuttering equivalent. At first,

we summarize the basics of the partial order reduction method. While presenting the

method we follow the explication from [7]. Consequently, we explain how the method

can be applied to SE-LTL.

Definition 6.1 (state transition system). A state transition system is a triple (S, T, sinit)

where S is a set of states, sinit is an initial state and T is a set of transitions such that for each

α ∈ T , α ⊆ S × S. Further, for each α ∈ T and for each state s ∈ S there is at most one s ′ ∈ S
such that (s, s ′) ∈ α.

An initial transition path of a state transition system is an infinite sequence α0α1 . . . such

that there are states s0, s1, . . . satisfying s0 = sinit and for all i, (si, si+1) ∈ αi.

The idea of the ample set method [14, 15] is to construct a reduced state space by

choosing a smaller set of successors at each state. Instead of exploring all successors

from a given state, denoted as enabled(s), we explore only successors from ample(s) ⊆
enabled(s).

Theorem 6.2. [7] Let M be a state transition system and let V ⊆ T be an arbitrary set of

visible transitions. Let M ′ be the reduced system constructed using the ample set partial order

algorithm. Then for each initial transition path π fromM there is an initial transition path σ in

M ′ such that π and σ have the same sequence of visible transitions.
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Proof. The theorem follows from the proof of Theorem 12 in [7].

Now we present a transformation of an LKS to a state transition system. From now

on, we fix the LKS K = (S,Act, ∆, sinit, Ap,L), and two sets, Act ′⊆ Act and Ap ′⊆ Ap
of interesting actions and interesting atomic propositions respectively. We need the

notions of invisibility and proper transition partition first.

Definition 6.3 (invisibility). A transition (q, a, r) ∈ ∆ is called invisible if a 6∈ Act ′ and

L(q) ∩Ap ′= L(r) ∩Ap ′. A transition is called visible if it is not invisible.

Definition 6.4 (proper transition partition). An indexed set P = {∆i | i ∈ I} is called

a proper transition partition if the following holds:

• P is a partition of ∆, i.e.
⋃

i∈I∆i = ∆ and ∆i ∩ ∆j = ∅ for all i 6= j.

• P preserves actions, i.e. ∀i ∈ I .∃a ∈ Act : ∆i ⊆ S× {a}× S.

• P preserves invisibility, i.e. for all i either all transitions from ∆i are invisible or none is.

• P is deterministic, i.e. for all i and for all s ∈ S, there is at most one s ′ ∈ S such that

(s, a, s ′) ∈ ∆i.

We now present a transformation of LKS K = (S,Act, ∆, sinit, Ap,L) with a proper

transition partition P into a state transition system M = (S, T, sinit). Let T = {αi | i ∈ I}
and αi = {(s, s ′) | (s, a, s ′) ∈ ∆i}. The set of visible transitions V ⊆ T is defined as V =

{αi | transitions in ∆i are visible}. We denote ∆(αi) = ∆i the underlying partition set for

αi. Let α = α0α1 . . . be an initial transition path of the state transition system (S, T, sinit).

We assign to α an initial run s0, a0, s1, a1, . . . where s0 = sinit, (si, ai, si+1) ∈ ∆(αi) for

i ≥ 0. Clearly, the assigned initial run is a unique initial run of the LKS due to the nature

of the proper transition partition.

Theorem 6.5. Let α = α0α1 . . . and β = β0β1 . . . be two initial transition paths of the state

transition system (S, T, sinit). Let π and σ be the initial runs assigned to α and β, respectively.

Then α and β have the same sequence of visible transitions if and only if π ≡Ap ′

Act ′ σ.

Proof. Invisible transitions of the state transition system represent transitions of the orig-

inal LKS such that they do not contribute to the runs’ signatures and vice versa.

Corollary 6.6. Let M be an LKS and let Act ′ ⊆ Act and Ap ′ ⊆ Ap. Let M ′ be the reduced

system constructed using the ample set partial order algorithm on the state transition system

that is created as discussed above. Then for each initial run π of M there is an initial run σ of

M ′ such that π ≡Ap ′

Act ′ σ.
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Three things have to be supplied to the partial order reduction algorithm along with

the LKS to be verified in order for the method to work. They are the proper transition

partition, the set of interesting atomic propositionsAp ′and the set of interesting actions

Act ′.

A proper transition partition can be constructed automatically from some additional

information of the structure of the LKS in question. Take for instance that the LKS

represents a component-based system made from a number of smaller components such

as the LKS in Example 3.2. A proper transition partition can be constructed in such

a way that all transitions of the system that correspond with one transition of a smaller

component constitute exactly one set of the partition.

A set of interesting atomic propositions is acquired from the verified formula. It

is constructed as the set of all atomic propositions present in the formula. A set of

interesting actions, however, has to be supplied by the user by hand. This set has to be

a part of the property specification, as noted in Section 5, nonetheless. The cardinality of

this set can affect the effectivity of the reduction method. It is thus desirable to specify

as small set of interesting actions as possible, bearing in mind the intended semantics of

the verified formula.

The partial order reduction itself can then be done on the fly during the automata-

based verification process. Known methods and implementations can be used for this

purpose, see e.g. [3].

Example 6.7. Consider the LKS from Example 3.2. If we choose Ap ′ to be an arbitrary subset

of Ap and Act ′ to be an arbitrary subset of Act such that MakeLog 6∈ Act ′ then the state space

of the reduced LKS will look as depicted in Figure 6. In this case ample(s) = enabled(s) for all

states except H and ample(H) = {I}.

7 Conclusion and Future Work

The paper introduces a partial order reduction technique for state/event LTL. The tech-

nique is based on a new stuttering equivalence, which is able to reflect both state and

transition labels while regarding both with a different principle to closely fit their na-

ture. On the level of states, the stuttering concentrates on changes in assigned atomic

propositions along a run, whereas in the case of actions, the interesting events are ob-

served at every single occurrence of an action representing interesting behaviour of the

system, which is stated explicitly with respect to the verified property for instance. The
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Figure 4: Example from Figure 2 after partial order reduction

paper moreover gives the characterization of the state/event LTL properties preserved

by the equivalence, and summarizes the attributes into the definition of its fragment,

called weak state/event LTL. This fragment is preserved by the equivalence while stay-

ing strong enough to reflect interesting component-specific properties, discussed at the

beginning of this paper.

After introducing both the equivalence and the corresponding logic fragment, we

discuss the partial order reduction technique. We show that the partial order reduction

task for the state/event case can be translated into the state-based case via providing

existing algorithms with a modified definition of transition invisibility reflecting the

discussed specifics. The advantage of such translation is that known algorithms may be

used for solving the problem. Moreover, as the efficiency of the partial order reduction

method has been experimentally verified on a number of case studies, our approach can

be expected to be efficient as well.

Future work. Our ongoing and future aims are connected to the employment of the

technique into our framework for formal verification of component-based systems [8]

based upon the formalism of Component-Interaction automata [18, 4]. The framework,

in connection with the model checking tool DiVinE [1], recently helped us to perform
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an extensive verification case study [2], which uncovered the need of a partial order

reduction method for state/event systems not found elsewhere. Currently we work

on the implementation and plan to perform a detailed experimental case study using

our framework and Component-Interaction automata as an underlying formalism. The

technique, however, is general and independent on the application we aim it for.
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