
} w��������
��Æ������������ !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Model Checking of Control-User

Component-Based Parametrised Systems

by

Pavlína Vařeková
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Abstract

Many real component-based systems, so called Control-User systems, are composed

of a stable part (control component) and a number of dynamic components of the

same type (user components). Models of these systems are parametrised by the num-

ber of user components and thus potentially infinite. Model checking techniques

can be used to verify only specific instances of the systems. This paper presents

an algorithmic technique for verification of safety interaction properties of Control-

User systems. The core of our verification method is a computation of a cutoff. If

the system is proved to be correct for every number of user components lower than

the cutoff then it is correct for any number of users. We present an on-the-fly model

checking algorithm which integrates computation of a cutoff with the verification

itself. Symmetry reduction can be applied during the verification to tackle the state

explosion of the model. Applying the algorithm we verify models of several previ-

ously published component-based systems.1

∗The author has been supported by the grant No. 1ET400300504.
†The author has been supported by the grant No. 1ET408050503.
1Full version of the paper presented at the Conference on Component-Based Software Engineering

2008 (CBSE2008).
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1 Introduction

Model-checking [11] is a formal verification technique which has received a wide atten-

tion in industry as it can be used to detect design errors early in the design life-cycle.

Model checking is based on state space generation and as such can be directly applied

to finite state systems. In case of infinite state systems more involved techniques have

to be employed.

Component-based software development is an alternative to existing software de-

velopment techniques. Component-based development proposes to assemble software

systems from reusable components, which helps to significantly reduce development

time and costs. On the other hand, interaction among components opens new issues

relevant to the correctness of interaction.

An extensive study of component-based systems reveals that many systems are com-

posed of a beforehand unknown number of components. A typical situation is the

composition of one fixed component (control component) with an unknown number

of identical components (user components). These systems are usually called Control-

User systems. Formal verification of Control-User systems includes verification of every

possible composition of the control component with any number of user components.

Even if the composition of the control component with a specific number of user com-

ponents is finite, the verification task itself is infinite.

It has been observed [14] that reachability properties are the most common proper-

ties arising in verification. Reachability is closely related to safety, expressing that no

unsafe state is reachable in a system. This remains true also for Control-User systems.

In this paper we aim to use existing approaches to build-up two reachability veri-

fication algorithms. Our verification method is based on cutoffs [15, 19]. If a system is

proved to be correct for every number of user components lower than the cutoff then it

is correct for any number of users. First of the two introduced algorithms is suitable for

efficient verification of a finite set of reachability properties. The algorithm iteratively

computes theminimal cutoff and during the computation it finds a finite set of represen-

tatives of all reachable states. Representatives bear all information needed for deciding

reachability and thus to verify given properties of the whole Control-User system it is

enough to check these representatives. Advantages of the verification algorithm are that

it works with the minimal cutoff and allows to verify many properties at the same time.

Evaluation of the algorithm reveals that the cutoff is typically rather small and thus
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the verification itself is efficient. The experimental studies were conducted on several

previously published case studies as well as on a tailored Control-User system.

The second (bounding) algorithm is proposed for computing the highest possible

number of users which are simultaneously in the same state (part of a computation).

The bounding algorithm provides answers to questions like What is the maximal number

of users simultaneously requiring the same services? The number of users is called the bound.

The algorithm has two main parts. In the first part the algorithm finds a candidate for

the bound and proves that the bound is less or equal to the candidate. In the second

part it computes the exact value of the bound. Experiments demonstrate that typically

in the first part the algorithm efficiently finds a candidate which is equal to the bound.

In both algorithms the effectiveness can be supported by symmetry reduction over the

reachable state space.

The paper is structured as follows. Section 2 presents a model of Control-User sys-

tem while Section 3 introduces several types of reachability properties. Section 4 high-

lights backward reachability for C-U systems. The algorithm for verification of reacha-

bility properties is described in Section 5 and its evaluation is in Section 6. The bounding

algorithm and its evaluation can be found in Section 7. Related work is summarised in

Section 8.

2 The Control-User System Model

We consider a class of parametrised systems where a system consists of a unique com-

ponent - in the literature called the control component [21, 17] and an arbitrary num-

ber of components with an identical model - user components. An example of such

a system with n users is in Figure 1 a). Components are executing concurrently with

the interleaving semantics, capturing that a component can communicate with another

component using the pairwise rendezvous synchronisation (a component can send a

message iff the receiver is enabled).

As the formal model of a Control-User system we use a labelled Kripke structure

(LKS) [9]. An LKS is a structure underlying many other formalisms capturing interac-

tions between components like I/O automata [25], Component-Interaction Automata

[34], or Extended Behavior Protocols [24].

Definition 2.1 (LKS). A labelled Kripke structure (or LKS for short) is a tuple

(Q, I,Ap, L, Σ, δ) where Q is a set of states, I ⊆ Q is a set of initial states, Ap is a set of
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atomic propositions, L : Q → 2Ap is a state-labelling function, Σ is a finite set of actions

and δ ⊆ Q× Σ×Q is a transition relation.

We suppose that Σ = Σint ∪ Σout ∪ Σinp, where Σout = Σ ′
out × {!}, Σinp = Σ ′

inp × {?}.

The alphabets Σout resp. Σinp represent output resp. input actions which can be used

for pairwise rendezvous communication between LKSs. The alphabet Σint represents

internal actions. We write q → q ′ if there is a label l ∈ Σ such that (q, l, q ′) ∈ δ, →∗

is the transitive and reflexive closure of →. A state q is reachable iff in →∗ q for some

in ∈ I. Let q = (q0, · · · , qn) be an n + 1-tuple. Then pri(q), i = 0, . . . , n, denotes its

i+1-th projection, pri(q) = qi.

In this paper we restrict ourselves to systems in which the models of the con-

trol and user component are finite and have one initial state. Thus LKSs C =

(QC, {inC}, ApC, LC, ΣC, δC), U = (QU, {inU}, ApU, LU, ΣU, δU) form a Control-User model

(or C-U model for short) iff QC, QU, ΣC, and ΣU are finite.

Definition 2.2 (Composition). Let n ∈ N0 and for each i = 0, . . . , n let Ki =

(Qi, Ii, Api, Li, Σi, δi) be an LKS. Then K0‖ . . . ‖Kn denotes the asynchronous composition of

K0, . . . , Kn and is defined as the LKS

(Q0 × · · · ×Qn, I0 × · · · × In, (Ap0×{0}) ∪ · · · ∪ (Apn×{n}), L, Σ, δ),

where the state-labelling function L assigns to each state (q0, . . . , qn) the set
⋃n

i=0Li(qi) × {i}.

The alphabet Σ =
⋃n

i=0Σi,int ∪ {l | l ∈
⋃n

i=0Σ
′
i,inp ∧ l ∈

⋃n

i=0Σ
′
i,out)}. The transition relation

δ is defined by the prescription (q, l, q ′) ∈ δ iff any of the next possibilities holds

• ∃0 ≤ i ≤ n : ∀0 ≤ j ≤ n, j 6= i : prj(q) = prj(q
′), and (pri(q), l, pri(q

′)) ∈ δi,

• ∃0 ≤ i, i ′ ≤ n, i 6= i ′ : ∀0 ≤ j ≤ n, i 6= j 6= i ′ : prj(q) = prj(q
′),

(pri(q), (l, ?), pri(q
′)) ∈ δi, and (pri′(q), (l, !), pri′(q

′)) ∈ δi′ .

A C-U system with n clients is modelled as the composition of n+ 1 LKSs where the

first LKS stands for the control component while the others are identical and represent

the users. A Control-User system with arbitrary many clients is modelled as the union

of LKSs modelling systems with n clients, for all n ∈ N.

Definition 2.3 (C‖Un, C‖U∞). LetC,U be a C-U model, n ∈ N. ThenC‖Un denotes the com-

position C‖U‖ · · · ‖U of C and n copies of U. C‖U∞ is an infinite state LKS defined C‖U∞ =

(
⋃

n∈N

QC‖Un ,
⋃

n∈N

{inC‖Un },
⋃

n∈N

ApC‖Un ,
⋃

n∈N

LC‖Un ,
⋃

n∈N

ΣC‖Un ,
⋃

n∈N

δC‖Un).
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Figure 1: a) CoordinatorEventHandler with n Sales, b) Component Token.
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Figure 2: LKS Cex modelling CoordinatorEventHandler.

The states of C‖Un or C‖U∞ are called global states while the states of C or U are

called local states.

Example 2.4 (Coordinator System). As a running example we present a part of the Com-

mon Component Modelling Example (CoCoME) system [34]. Coordinator is a part of the

system that is used for managing express checkouts. For this purpose, Coordinator keeps a list

of sales that were done within the last 60 minutes and decides whether an express cash desk is

needed. Coordinator consists of two types of sub-components: CoordinatorEventHandler

(control component) and Sale (user) see Figure 1 a). Anytime a new sale arrives, Coordi-

natorEventHandler creates a new instance of the Sale component and displays it in the list.

Whenever a sale represented by an instance expires, CoordinatorEventHandler removes the

instance from the list which causes its destruction.

We use the models of CoordinatorEventHandler and Sale as presented in [33]. In the

models we abbreviate the name of the method getNumberofItems() to gNI, getPaymentMode()

to gPM, getTimeofSale() to gTS, updateStatistis() to uS, and isExpressModeNeeded()

to iEMN.

The control component Cex is depicted in Fig. 2. Its set of atomic propositions corresponds to

the set of labels, ApCex = ΣCex . For a state q ∈ QCex the set LCex(q) contains all labels which are

enabled in the state. For example LCex(A) = {onEvent} and LCex(I) = {(gMP, !), (SaleD, !)}.
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Figure 3: LKS Uex modelling Sale.

The user component Uex is depicted in Fig. 3. Its atomic propositions are ApUex =

ΣUex ∪ {activated, served}. For q ∈ {1, . . . , 7} the set LUex(q) contains labels which are en-

abled in the state, for q ∈ {3, 5, 6, 7} it moreover contains the atomic predicate activated,

and for q ∈ {2, 4, 5, 6, 7} the set LUex(q) in addition contains served. For example LUex(2) =

{(Sale ′, !), served} and LUex(7) = {(gTS ′, !), activated, served}.

Note 2.5. Note that systems with more than one type of users can be modelled as C-U

models as well. More precisely, the C-U model can represent an arbitrary system with a

control part and a finite number of distinct types of users. The model of a user is an LKS

which in the initial state non-deterministically chooses one of the given behaviours and

after that it behaves like the choosen type of user. For example in the model of Token

and its support (part of the prototype implementation of a payment system for public

Internet on airports [29]) a Token (client) first chooses whether it will behave as a client

with prepaid or free access to Internet (for model of the component see Figure 1 b)).

3 l-symmetric Reachability Properties

We concentrate on verification of reachability properties of C-U models. Properties of

interesting states are expressed as formulae of a propositional logic. Formulae are de-

fined over a set of atomic propositions with the help of standard Boolean operators

∧,∨,¬. A propositional formula is interpreted over a state of an LKS. A formula is true

in a state iff after evaluating all atomic proposition assigned to the state as true and all

others as false the result formula is true. In the following text we use a standard shortcut
∨

i∈∅ψi ≡ false.

A reachability property (or RP for short) is a property capturing that a state satisfying

a given propositional formula is reachable in the model C‖Un for some n. The general

reachability problem for C-U models is formulated as:
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Instance (reachability):

− C-U model C, U

− sequence of formulae {ϕn}n∈N, where ϕn is a formula of the propositional logic over atomic

propositions LC×{0} ∪ LU×{1} ∪ · · · ∪ LU×{n}.

Problem: Is there n ∈ N such that a state satisfying ϕn is reachable in C‖Un?

In the paper we are interested only in special types of reachability properties which

make no distinction among users – so called 0-symmetric RP, 1-symmetric RP, etc. For

a fixed l ∈ N0 and any n ∈ N, an l-symmetric RP guarantees that if a state q ∈ QC‖Un

satisfies ϕn, then there are l users which together with the control component ensure

that the state q satisfies ϕn. An instance of the l-symmetric reachability problem is:

Instance (l-symmetric reachability):

− C-U model C, U, number l ∈ N0

− sequence of l-symmetric formulae {ϕn}n∈N, where for each n ∈ N:

ϕn =
∨

f:{1,...,l}→{1,...,n}

ψ(1,f(1)),...,(l,f(l)).

Here ψ is a formula of the propositional logic over atomic propositions defined LC ×

{0}∪ LU× {1}∪ · · · ∪ LU× {l}, f is an injective function, and ψ(1,f(1)),...,(l,f(l)) is the formula

which results from ψ if we substitute each atomic proposition (a, i) by (a, f(i)) leaving

(a, 0) untouched. We say that ψ is the propositional formula underlying {ϕn}n∈N.

Example 3.1. l-symmetric RPs of the C-U model Cex, Uex described in Example 2.4 are e.g.

properties describing reachability of a state satisfying:

1. Sale can send an event but CoordinatorEventHandler is not ready to accept it.

It is a 1-symmetric RP described by the sequence {ϕn}n∈N with the underlying formula

ψ =
∨

act∈{Sale ′,SaleD ′,gNI ′,gMP ′,gTS ′}

((act, !), 1) ∧ ¬((act, ?), 0).

2. Two Sales are able to send a response Sale' to CoordinatorEventHandler at the

same time. It is a 2-symmetric RP with the underlying formula ψ = ((Sale ′, ?), 0) ∧

((Sale ′, !), 1) ∧ ((Sale ′, !), 2).

3. At leastm Sales can be activated simultaneously. It is anm-symmetric RP with the

underlying formula ψ = (activated, 1) ∧ · · · ∧ (activated,m).

4. CoordinatorEventHandler can service (at least)m activated Sales simultaneously.

It is anm-symmetric RP with the underlying formula ψ = (served, 1) ∧ (activated, 1) ∧

· · · ∧ (served,m) ∧ (activated,m).
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4 Backward Reachability

Backward reachability is one of the methods used in verification of parametrised sys-

tems for checking reachability of critical states [4, 22, 23]. For a given LKS S and a set of

its states Q the question is whether a state fromQ is reachable in the structure S. For it-

eratively increasing values j, one generates the set of states fromwhichQ can be reached

by a sequence of transitions of the length at most j. The backward reachability proce-

dure terminates in the first iteration where the generated set of states does not increase

comparing to the set generated in the previous iteration or if the last generated set of

states contains an initial state. For transition systems with an infinite number of states

termination of backward reachability is not guaranteed. However, the termination can

be guaranteed for special sets Q.

Lemma 4.1. Let C, U be a C-U model, A ⊆ QC. Then the backward reachability in C‖U∞

starting with Q =
⋃
i∈N

A×QU × · · · ×QU︸ ︷︷ ︸
i

terminates.

Proof: For proof see Appendix.

5 Verification Algorithm

In this Section we present an algorithm which verifies a given l-symmetric RP. A naïve

approach is to check all reachable states of the C-U model (more precisely, all reachable

states of the LKSs C‖U1, C‖U2, . . . ) for validity of the given property. As the number of

the reachable states is infinite, we first define a finite number of their representatives.

Definition 5.1 (l+1-tuple). Let C, U be a C-U model, q ∈ QC‖U∞ and l ∈ N0. Then an

l+ 1-tuple (qC, q1, . . . , ql) ∈ QC‖Ul is assigned to the state q iff the local state of C in q is qC

and there are l different users in q with local states q1, . . . , ql.

In a similar way we can assign an l+1-tuple to an (l+i)+1-tuple t ′ (t ′ is a state ofC‖Ul+i).

l + 1-tuples serve as an abstraction of the C-U model states where only the local

states of l chosen users in an arbitrary order are maintained. Observe that for any fixed

sequence {ϕn}n∈N describing a l-symmetric RP a state q of C‖Ui does not satisfy ϕi if

and only if there is an l + 1-tuple t assigned to q such that t (which is a state of C‖Ul)

does not satisfyψ (ψ is the propositional formula underlying {ϕn}n∈N). Hence if we find

all l+ 1-tuples assigned to the reachable states of C‖U∞ (so called reachable l+ 1-tuples
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of C‖U∞) we can easily verify validity of the given l-symmetric RP2. Thus the core of

our verification algorithm is a procedure for finding all reachable l+ 1-tuples of C‖U∞ .

As for each l ∈ N0 the number of l + 1-tuples is finite there must exist a number k such

that the set of all reachable l + 1-tuples of {C‖Un}n∈{l,...,k} is exactly the set of reachable

l+ 1-tuples of C‖U∞ . Let us call the number k cutoff.

The smallest number which can be a cutoff is the number L = max(1, l). The al-

gorithm which we propose searches for the minimal cutoff and returns all reachable

l + 1-tuples of C‖U∞ . It iteratively traverses all reachable states of C‖UL, C‖UL+1, . . .

In the i-th iteration all l+ 1-tuples assigned to reachable states of C‖UL+i are computed

and compared to those computed in the previous iteration. More precisely, as for any j

the set of reachable l+ 1-tuples of C‖Uj is a subset of the set of reachable l+ 1-tuples of

C‖Uj+1, it is sufficient to compare their cardinality. Once there is no difference between

the two sets, the number L+ i− 1 is the candidate for a cutoff. It can happen that there

is an l + 1-tuple assigned to a state reachable in C‖UL+j−1 for some j > i which is not

covered yet. Therefore we need to verify whether L+ i− 1 is a cutoff.

To confirm that L+i−1 is a cutoff we run backward reachability inC‖U∞ from the set

of its states to which a not yet covered l + 1-tuple is assigned. If backward reachability

finds that some of these states is reachable in C‖U∞ , then the state must be reachable in

C‖Uk for some k > L + i − 1 and the state is not reachable in C‖Uk for k ≤ L + i − 1.

Consequently L + i − 1 is not a cutoff and we start the whole procedure with L + i.

Otherwise L+ i−1 is the minimal cutoff; the algorithm returns all reachable l+1-tuples

of C‖UL+i−1.

The pseudo-code of the algorithm is given in Fig. 4. The procedure FIND CUTOFF

returns the first number k greater or equal to Cutoff such that the sets of reachable l+1-

tuples of the LKSs C‖Uk and C‖Uk+1 are the same. The set of all reachable l + 1-tuples

of C‖Uj is monotonically increasing with increasing parameter j and at the same time

the set of all possible l + 1-tuples is finite. These two facts ensure that the procedure

terminates.

The procedure BACKWARD REACHABILITY(T ) first computes the set containing all

states of C‖U∞ to which an l + 1-tuple from T is assigned. By iterative searching of

predecessors it decides reachability of states from T in C‖U∞ .

Lemma 5.2. The procedure BACKWARD REACHABILITY always terminates.

2In fact, having all reachable l+ 1-tuples of C‖U∞ we can verify any l ′-symmetric RP for l ′ ≤ l.
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1 proc REACHABLE l+1-TUPLES(C,U,l)

2 All_tuples := all l+1-tuples

3 Cutoff := MAX(l,1); Valid_cutoff := false

4 while Valid_cutoff = false do

5 FIND CUTOFF(Cutoff)

6 BACKWARD REACHABILITY(All_tuples \Reached_tuples)

7 if Valid_cutoff = false then Cutoff :=Cutoff +1fi

8 od

9 Cutoff =Cutoff −1;

10 return Reached_tuples

1 proc FIND CUTOFF(Cutoff)

2 k :=Cutoff ; Reached_tuples := ∅

3 repeat Old_tuples := Reached_tuples

4 Reached_tuples := all l+1-tuples assigned to reachable states in C‖Uk

5 if |Old_tuples| 6= |Reached_tuples| then k := k+1fi

6 until |Old_tuples| = |Reached_tuples|

7 Cutoff := k−1

1 proc BACKWARD REACHABILITY(T)

2 Q := {q∈ QC‖U∞ | an l+1-tuple assigned to qbelongs to T}

3 Q′ := ∅; Reach := false

4 while (Q 6= Q′) ∧ (Reach = false)do

5 Q := Q∪ Q′

6 Q′ := predecessors of Q in C‖U∞

7 if Q′ ∩ inC‖U∞ 6= ∅ then Reach := true fi

8 od

9 if ¬Reach then Valid_cutoff := true fi

Figure 4: Algorithm for computing all reachable l+ 1-tuples.

Lemma 5.3. Let for a C-U model C, U and l ∈ N0 the following condition is true:

An unreachable l+1-tuple of C‖U∞ is assigned to every unreachable (l+1)+1-tuple

of C‖U∞ . (*)

Then BACKWARD REACHABILITY(T ), where T is the set of all unreachable l + 1-tuples of

C‖U∞ , terminates after the first iteration.

Proof: For proof of Lemma 5.2 and Lemma 5.3 see Appendix.

Example 5.4. Let us inspect the computation of REACHABLE l+1-TUPLES(Cex,Uex, 1); where

Cex,Uex is the C-U model from Example 2.4.

In the first iteration of whenReached_tuples
k=0

= ∅while-cycle FIND CUTOFF(1) is called

and it iteratively computes the set Reached_tuples :

10



Reached_tuples
k=1

= {(x, 1), (x, 3) | x ∈ {A, B, C, G, N, O, P}} ∪

{(x, 3) | x ∈ {E, F, I, L}} ∪

{(D, 2), (H, 7), (J, 4), (K, 6), (M, 5)},

Reached_tuples
k=2

= {(x, 1), (x, 3) | x ∈ {A, . . . , P}} ∪

{(D, 2), (H, 7), (J, 4), (K, 6), (M, 5)},

Reached_tuples
k=3

= Reached_tuples
k=2

.

After that BACKWARD REACHABILITY(All_tuples \ Reached_tuples
k=3

) is called.

Iteration 0: Q contains all states of Cex‖U
∞
ex to which a tuple from

T = {(x,2), (x,4), (x,5), (x,6), (x,7) | x∈ {A, . . . , P}} \ {(D,2), (H,7), (J,4),

(K,6), (M,5)} is assigned,

Iteration 1: Q contains all states of Cex‖U
∞
ex to which a tuple from

T ∪ {(D,2,2), (H,7,7), (J,4,4), (K,6,6), (M,5,5)} is assigned,

Iteration 2: Q is the same as for the iteration 2.

Thus after 2 iterations BACKWARD REACHABILITY terminates and returns that the found

cutoff 2 is valid, consequently REACHABLE l+ 1-TUPLES returns the set Reached_tuples
k=2

.

We should stress that even if the algorithm is presented as a procedure for finding

all reachable l+ 1-tuples of C‖U∞ it is in fact a verification algorithm. As pointed out at

the beginning of this Section, keeping the set of all reachable l + 1-tuples of C‖U∞ one

can decide validity of any l ′-symmetric RP for an arbitrary l ′ ≤ l.

Note 5.5 (Optimisation). There are several possible optimisations of the algorithm. We

list the two most important.

• Symmetry reduction [10] in the algorithm decreases the number of both reachable

states and tuples exponentially.

• On-the-fly approach to verification: as soon as an l+1-tuple is reached for the first

time it is checked for validity of given reachability properties.

Note 5.6 (Verification). There is another important way how to use the presented algo-

rithm, namely verification of an updated (modified) system. When updating a system

we usually want to guarantee that the new system satisfies all important properties

which the original system satisfies. The problem is that it is hard to enumerate all (im-

portant) properties of the original system. In such a case it is profitable to use the given

algorithm and compute differences between the reachable l + 1-tuples in the original

and the updated system.
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6 Evaluation

In order to test efficiency of the proposed algorithmwe use several models of previously

published real component-based C-U systems (RI - RIV), simplified real systems (SI,

SII), and simple C-U systems proposed for evaluation of our algorithm (EI, EII). The

inspected C-U models are: RI - model of Coordinator (Example 2.4), RII - model of Token

and its support (Note 2.5), RIII - model of Cash desk and its support (Fractal model in [7]),

RIV - model of Subject - Observer system with n subjects (published in [32], model of the

system [3]). SI and SII are models of Comanche Web Server with a Sequential resp. Multi

Thread Scheduler and their clients, published in [1]. EI is a system where the controller

provides 5 services in parallel and users can use the services sequentially. EII is a system

where the controller provides 2 services and in all states it can receive or return any

request, users use the services sequentially. Detailed description of all models and their

characteristics are on the web page [2].

Table on Figures 5 and 6 displays for a given C-U model and a parameter l ∈ {1, 2, 3}

the number of states of C‖Uk for maximal k for which the state space is generated in

FINDCUTOFF (States), the minimal cutoff (Cutoff ), and the number of iterations of back-

ward reachability (Iterations). Based on experimental evaluation we conclude:

1. In all cases the while-cycle in REACHABLE l+1 -TUPLES was performed only once

- the Cutoff computed in FINDCUTOFF was the valid minimal cutoff.

2. For each of the models and every l ≥ 2 the condition (*) holds. It means that for

each of the models and every l ≥ 2 to arbitrary unreachable l + 1-tuple of C‖U∞

is assigned an unreachable 2 + 1-tuple of C‖U∞ . Thus for each model and an

arbitrary l ≤ 2 BACKWARD REACHABILITY terminates after the first iteration.

3. The minimal cutoff for l+ 1-tuples is typically the minimal cutoff for 0+ 1-tuples

plus l.

7 Bounding Algorithm

When analysing C-U systems we are often interested in the highest possible number of

users which are simultaneously in the same state (situation, part of a computation). For

instance, we can ask how many users have started a communication with the control

component and have not finished it yet, or how many users are demanding the same

12



model l States Cutoff Iterations

1 144 2 2

RI 2 332 3 1

3 748 4 1

1 145 125 4 2

RII 2 1 091 875 5 1

3 7 821 875 6 1

1 297 108 4 2

RIII 2 1 706 103 5 1

3 8 957 952 6 1

1 48 320n 4 2

RIV 2 266 240n 5 1

3 1 425 920n 6 1

Figure 5: Evaluation of the verification algorithm.

model l States Cutoff Iterations

1 1 126 2 2

SI 2 4 910 3 1

3 20 830 4 1

1 7 514 2 2

SII 2 142 476 3 1

3 2 672 672 4 1

1 4 051 6 2

EI 2 9 276 7 1

3 19 080 8 1

1 69 3 1

EI 2 245 4 1

3 312 5 1

Figure 6: Evaluation of the verification algorithm.
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service. This can be described by a sequence of reachability properties {Pm}m∈N such

that for each m the property Pm = {ϕm
n }n∈N is an m-symmetric RP expressing that It is

possible to reach a global state in which at leastm users are in the same specified setting.

Example 7.1. Motivations can be found e.g. in Example 3.1, properties 3 and 4: What is

the maximal number of Sales which can be activated simultaneously? or What is the

maximal number of activated Sales which can CoordinatorEventHandler service simul-

taneously?

Lemma 7.2. Let {Pm}m∈N be a sequence where every Pm is anm-symmetric RP with the under-

lying formula ψm. Let the implication ψj ⇒ ψi be true for every j > i. Then if C‖U∞ satisfies

Pj then it also satisfies Pi for each i ≤ j. (**)

A sequence of RPs satisfying the condition of Lemma 7.2 is denoted integrated se-

quence of RPs. Note that an equivalent to the condition (**) is: if C‖U∞ does not satisfy

Pi then it does not satisfy Pj for any i ≤ j.

For a given integrated sequence of RPs we propose an algorithm for computing

a bound which is the number b such that Pb is satisfied and Pb+1 is not satisfied (if it

exists). In practise we are often given a value Max and the question is whether the

bound is at most Max and only if this is the case we want to know the exact value of

bound. The task which we study can be described as

Instance:

− C-U model C, U, number Max ∈ N

− sequence {Pm}m∈{1,...,Max}, where Pi is an i-symmetric RP satisfying (**)

Problem: Compute

bound
def
=






0 if P1 is not satisfied,

b if Pb is satisfied and Pb+1 is not satisfied, 1 ≤ b <Max,

Max if PMax is satisfied.

From the Section 5 it follows that for checking the property Pi from the sequence

{Pm}m∈{1,...,Max} it suffice to compute all i+ 1-tuples reachable in C‖U∞ . A trivial bound-

ing algorithm, using the algorithm given in the previous section, first finds all 1 + 1-

tuples reachable in C‖U∞ and checks P1, then it finds 2 + 1-tuples reachable in C‖U∞

and checks P2, etc. However, this approach is not effective enough, for explanation see

item 3 in Section 6. This motivate us to propose another algorithm which instead of
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Figure 7: The sets of b+ 1-tuples All_b, Unreach_b, Reach_b, and Unreach_b_k.

1 proc BOUND(C,U,Max,{Pi}1≤i≤Max)

2 k := 0; Unreach_New = ∅

3 repeat k := k +1

4 Unreach_Old :=Unreach_New

5 Reach_New := REACHABLE l+1-TUPLES(C,U,k)

6 Unreach_New := all k+1-tuples \Reach_New

7 if IS_k−1_BOUND() then return k-1 fi

8 Changes =Unreach_New \GENERATE_POSSIBLE_NEW(Unreach_Old)

9 until (Changes = ∅)∨(k ≥ Max)

10 b := LAST_SATISFIED(Unreach_Old)

11 return VALIDATEBOUND(b ,Unreach_Old)

1 proc IS_k−1_BOUND

2 Old_Satisfied =New_Satisfied ;

3 New_Satisfied = IS_Pk_SATISFIED(Reach_New)

4 if Old_Satisfied ∧(¬New_Satisfied) then return true

5 else return false

Figure 8: Algorithm for computing the bound.

computing all i + 1-tuples reachable in C‖U∞ for each i over-approximate the sets of

tuples.

The core idea is that if we have a high integer b, we can choose a small integer k and

under-approximate the setUnreach_b of all unreachable b+1-tuples ofC‖U∞ by the set

Unreach_b_k of all b+1-tuples towhich is assigned an unreachable k+1-tuple ofC‖U∞ .

The profit is that to compute Unreach_b_k instead of Unreach_b it is necessary to find

all reachable k + 1-tuples instead of all reachable b + 1-tuples. The set Unreach_b_k

serves also as an over-approximation of all reachable b + 1-tuples of C‖U∞ . Let us

denote All_b the set of all possible b + 1-tuples of C‖U∞ . Then the set of all reachable

b+ 1-tuples of C‖U∞ can be over-approximated Reach_b_k = All_b \Unreach_b_k of

all b+1-tuples to which is not assigned an unreachable k+ 1-tuple of C‖U∞ .

The pseudo-code of the algorithm is given in Fig. 8. The algorithm in the first cycle

(lines 3-9) iteratively finds the minimal k such that to each unreachable k + 1-tuple of

C‖U∞ is assigned an unreachable (k − 1) + 1-tuple of C‖U∞ . For every value of l ≤ k
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the algorithm tests whether l− 1 = bound (line 7). If the bound is greater than k− 1, then

in the next step (line 10) the algorithm computes the maximal b ∈ {k, . . . ,Max} such that

a b + 1-tuple from Reach_b_k satisfies the property Pb. The inclusion Reach_b_k ⊇

Reach_b implies that the property Pb may but must not be satisfied. On the other hand

if b < Max then the property Pb+1 can not be satisfied. Thus the number b is a maximal

value which can be the bound and for us it is a candidate for the bound. Consequently

the algorithm computes which of the values k, . . . , b is the bound (line 11).

The procedure REACHABLE l + 1-TUPLES is described in Section 5. The procedure

IS_k−1_BOUND computes, using the set of all reachable k-tuples of C‖U∞ Reach_New,

whether k − 1 is the bound. GENERATE_POSSIBLE_NEW generates all k + 1-tuples to

which is assigned a (k − 1) + 1-tuple in the input set. The procedure LAST_SATISFIED

returns the maximal number b from the set {k, . . . ,Max + 1} such that the intersection

of all tuples unsatisfying Pb and Reach_b_k is not empty. The procedure gradually

tests b = k, . . . ,Max + 1. The procedure VALIDATEBOUND tests which of the numbers

k, . . . , b is the result. If b = Max then it is the valid result, else it firstly checks whether

b is the bound and after that it tests k, k+ 1, etc.

Evaluation

As noted in item 2 in Section 6 for each examined model and an arbitrary k ≥ 2 the

condition (*) holds. Consequently for any of the presented models and arbitrary b, k,

where b ≥ k ≥ 2, equalities Unreach_b_k = Unreach_b and Reach_b_k = Reach_b

hold. Thus the procedure BOUND for all studied models and any sequence of described

properties found the correct bound in the while-cycle (lines 3-9) - if it is less then 3. If

the bound is greater of equal to 3, than the algorithm computes b as the bound (line 10)

and than it successfully verifies, that Pb is satisfied. Our experience with verification of

different properties of component-based systems is that a good choice for the valueMax

is |QC| + 1 as usually if the bound is finite then it is at most |QC|.

8 Related work

Many papers address parametrised systems and their verification, we relate our contri-

bution to the previously published results in several aspects.

Computational model We consider control-user systems of the form C‖Un with fi-

nite models of C and U. Components communicate using the pairwise rendezvous
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synchronisation, and there are no variables in the model. Similar models are studied

in [6, 8, 21].

Two other approaches to modelling C-U system can be found in the literature. The

first one is a model containing a parametrised number of identical finite state compo-

nents (modelling users) with a finite set of global variables (modelling states of the con-

trol component) where an individual user can make a transition if the global variables

satisfy a Boolean guard, see [12, 26, 27, 28]. The second approach is to model a C-U sys-

tem with a finite number of control states (modelling the control component), infinite

set of data values N
|QU |

0 (corresponding to the number of users in each state from QU),

and appropriate synchronisation, see [4].

Cutoff Verification methods based on a cutoff have been successfully applied to sev-

eral types of properties of various parametrised systems. In [21] an approach implicitly

based on a cutoff was used for proving that verification of l-symmetric reachability

properties is decidable but the algorithm runs in triple exponential time and thus it is

impractical. Other papers [15, 16, 19, 20] propose algorithms which are more efficient

however these are not applicable to our model of control-user systems. In our previous

work [31] we studied verification of LTLX properties using a cutoff. This algorithm is

incomplete and for several l-symmetric properties with l > 0 does not terminate.

VerificationAmong a number of approaches to verification of parametrised systems

[4, 6, 8, 12, 18, 19, 20, 21, 22, 23, 26, 27, 28] there are several fully automatic techniques

which can be used for systems which we study in the paper.

Several of the approaches are based on (backward or forward) reachability analy-

sis [4, 22, 23, 26, 30]. The paper [4] presents verification of reachability properties for

general types of systems using backward reachability analysis. The authors prove that

for a general type of systems and a special type of reachability properties (including

l-symmetric properties) the algorithm terminates, but the number of iterations in which

it terminates is not known. The symbolic backward and forward reachability analysis

for general rich assertional languages using regular sets and acceleration is performed

in [23]. The paper [22] extends [4]. It studies general program model and using a tran-

sitive closure generation and acceleration of actions it performs a reachability analysis

on those systems. In [26] the author uses a tree based decision procedure which gen-

erates predecessors to solve this problem. The main purpose of the paper is to prove

a decidability of verification of safety properties for a broad class of systems and thus
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the paper does not contain any experimental results. Authors in [30] study backward

analysis using the local backward reachability algorithm.

Another approach to verification of safety properties works with invisible invariants

[5, 20, 27, 28]. This incomplete approach is based on computing an inductive assertion.

Our approach can be seen in some aspects as a restriction of this approach (inductive

assertion is exactly determined by reachable l + 1-tuples). Contrary to the mentioned

algorithms our algorithm always terminates.

Papers [8, 12] propose an algorithm based on generating abstract finite model of

infinite users (an over-approximation of the model of the system with U∞). Paper [12]

moreover studies in which cases the algorithm returns a valid counterexample.

The technique presented in [6] takes each instance of a parametrised system as an

expression of a process algebra and interprets this expression in modal mu-calculus,

considering a process as a property transformer. The result is an infinite chain of mu-

calculus formulae and technique solves the verification problem by finding the limit of

a chain of formulae.

To sum it up, our verification algorithm is complete (contrary to [5, 8, 12, 27, 28, 31]),

it computes a cutoff for l-symmetric RPs (not only checks an l-symmetric RP, contrary to

[4, 6, 22, 23, 26, 30]), and the found cutoff is minimal (contrary to [21, 31]). Experiments

demonstrate that the number of backward reachability iterations is typically very small

(contrary to [4, 22, 23, 26, 30]) but steps of backward reachability in our algorithm are

usually quite complex. As it was mentioned our verification algorithm computes the

cutoff for l-symmetric RPs. Consequently our verification algorithm is important espe-

cially whenever one needs to find several types of possible errors in the system. The

algorithm computes the reachable l+ 1-tuples and after (or during) this computation it

verifies which of the given properties are fulfilled.

As far as we know there is no other algorithm for verification of integrated sequences

of RPs. Experiments show that the algorithm BOUND typically estimates the value of

the bound correctly and thus is very efficient.

9 Conclusions

The paper studies systems composed of a control component and a dynamic number

of user components (Control-User systems). Such type of systems is often of use in

component-based systems e.g. when a central component provides services to unspeci-
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fied number of clients. Safety properties are used to express that the system cannot enter

an undesired configuration. The complexity of verification of reachability problems for

Control-User systems stems from the fact that we want to guarantee the correctness for

every possible number of users communicating with the control component. Though

the problem of verification of symmetric safety properties on C-U system is decidable

[21, 4], the state-space explosion is highly limiting factor for practical usage of verifica-

tion techniques on those systems.

The paper presents two verification algorithms. The first algorithm solves the prob-

lem whether a given C-U model satisfies a given (finite) set of l-symmetric properties.

The second algorithm is for computing the largest number of users which can be at the

same time in a specific situation, state (so called bound).

The algorithms are evaluated on several C-U models of component-based systems

(see also [2]). Characteristics of these models confirm practical usability of both algo-

rithms as only instances with very low number of user components have to be explored

during the algorithm.

An open question is whether similar approaches can be used to verify a wider class

of reachability properties.
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A Appendix

A.1 Proof of Lemma 4.1

Lemma 1. Let C, U be a C-U model, A ⊆ QC. Then backward reachability in C‖U∞ starting

with Q =
⋃
i∈N

A×QU × · · · ×QU︸ ︷︷ ︸
i

terminates.

Proof: To prove the lemma we first define an auxiliary object: C-U protocol and its

states. Then we transform the problem of backward reachability forQ in the LKS C‖U∞

to backward reachability for the set of states A × N
|QU |

0 in the C-U protocol C‖U∞ and

we prove that backward reachability forA×N
|QU |

0 in the C-U protocol C‖U∞ terminates.

As a consequence we demonstrate that the original backward reachability terminates as

well.

Definition A.1 (C-U protocol). A Control-User protocol (C-U protocol for short) is a 5-

tuple (Q,S, I, δ, Σ), where Q is a finite set of control states, S is a finite ordered set of user

states, I ⊆ (Q × N
|S|

0 ) is a nonempty set of initial states, Σ is a finite set of actions, and

δ ⊆ (Q×N
|S|

0 )×Σ× (Q×N
|S|

0 ) is a transition relation. Elements of (Q×N
|S|

0 ) are called states

of the C-U protocol. The reachability relation is defined in a similar way as for C-U models.

W.l.o.g. we can assume that the user states of a C-U protocol are named {1, . . . , |QU|}

and inU = 1. For a global state q ∈ QC‖Ux , x ∈ N ∪ {∞}, and for each j ∈ QU the symbol

#j(q) denotes the number of users which are within the global state q in the local state j

and #0(q) denotes the state of the control component in the global state q.

Definition A.2 (C-U protocols C‖Un, C‖U∞). Let C, U be a C-U model and n ∈ N.

We define the C-U protocol C‖Un as a tuple (QC, QU, (inC, n, 0, . . . , 0), δ, ΣC‖Un). Here

(q1, a, q2) ∈ δ iff there is (r1, a, r2) ∈ δC‖Un , such that for each i ∈ {1, 2} it holds

qi = (#0(ri), (#1(ri), . . . , #|QU|(ri))).

C-U protocol assigned to the C-U model is C‖U∞ = (QC, QU,
⋃

n∈N
IC‖Un ,

⋃
n∈N

δC‖Un ,
⋃

n∈N
ΣC‖Un).

The C-U protocol C‖Un is an abstraction of the LKS C‖Un. The abstraction of the

state set QC‖Ux is the state set QC × N
|QU |. A state q ∈ QC‖Un is in the set QC × N

|QU |

0

represented by the tuple (#0(q), (#1(q), . . . , #|QU|(q))).

Let q1, q2 ∈ QC‖U∞ satisfy (#0(q1), (#1(q1), . . . , #|QU|(q1))) = (#0(q2),(#1(q2), . . . ,

#|QU|(q2))). Then if a state q ′
1 is a successor of q1 in C‖U∞ then a global state q ′

2 with

the same state of the control component as in q ′
1 and with the same numbers of users in
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local states as in q ′
1 is a successor of q2 in C‖U

∞ .

Observation 1. Let C, U be a C-U model and let A ⊆ QC. Then backward reachabil-

ity in C‖U∞ starting with the set {q | #0(q) ∈ A} of global states modelling the control

component in a state from A terminates in the i-th step iff backward reachability in C‖U∞

starting with A× N
|Qu |

0 terminates in the i-th step.

Definition A.3. A subset X of the state set of a C-U protocol is upward closed iff for every

state (qc, i1, . . . , i|Qu |) ∈ X and every tuple (j1, . . . , j|Qu |) such that i1 ≤ j1, . . . , i|Qu | ≤ j|Qu |,

the state (qc, j1, . . . , j|Qu |) belongs to X as well.

For any A ⊆ QC the set A × N
|QU |

0 is upward closed. As the set of vectors of k nat-

ural numbers with the component-wise ordering is partially ordered (Dickson’s lemma

[13]) we can use results from [4] and conclude that for every upward closed set back-

ward reachability in a C-U protocol terminates. As a consequence of Observation 1 we

have that the backward reachability in C‖U∞ starting with X =
⋃
i∈N

A ×QU × · · · ×QU︸ ︷︷ ︸
i

terminates as well.

A.2 Proof of Lemma 5.2

Let us first study an alternative procedure BACK_REACH_ALTERNATIVE(T ), where T

is a set of l + 1-tuples. The procedure works with a modified C-U model consisting

of the original user model and a new control component model Cnew. Cnew models

the composition of the original control component and l user components. Let Q ′ be

the set of all states of Cnew‖U
∞ in which Cnew is in the local state equal to a tuple in

T (Q ′ =
⋃
i∈N

T × QU × · · · ×QU︸ ︷︷ ︸
i

). The procedure BACK_REACH_ALTERNATIVE(T ) com-

putes using backward reachability whether a state from Q ′ is reachable in Cnew‖U
∞ . If

it is so, then T contains an l+1-tuple reachable in C‖U∞ , otherwise T does not contain

such an l+1-tuple. Lemma 4.1 guarantees that BACK_REACH_ALTERNATIVE(T ) always

terminates.

Lemma 2. The procedure BACKWARD REACHABILITY always terminates.

Proof: At first we prove that BACKWARD REACHABILITY(T ) always terminates after less

or equal number of transitions than the BACK_REACH_ALTERNATIVE(T ).
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Let Q ′
0 = Q ′, where Q ′ is defined in the previous paragraph, and Q ′

j is the set of

states from which Q ′
0 is reachable in j or less transitions in Cnew‖U

∞ .

Let Q0 be the set of all the states of C‖U∞ to which is assigned a tuple from T , and

Qj is the set of states from which Q0 is reachable in j or less transitions in C‖U
∞ .

Let us assume that the statement does not hold. Let i ∈ N be such thatQ ′
i = Q ′

i+1 and

Qi ⊂ Qi+1. If q ∈ Qi+1\Qi then there is a state q ′ ∈ Q0 that is reachable from q in C‖U∞

by a sequence of transitions of length i+1. As q ′ ∈ Q0 it to q
′ is assigned an l+1-tuple

from T and thus there exists a state q ′ ∈ Q ′
0 such that the number of users (including

the users composed in the new control component) in any local state is the same as in

the state q ′, and the state of the control component is the same too. The definition of

transition relations implies that there is a state q ∈ Q ′
i+1 = Q ′

i such that the number of

users in any state is the same as in the state q and the state of the control component

is the same too. Since q ∈ Q ′
i a state q ′′ ∈ Q ′

0 is reachable from q by a sequence of

transitions of length less than i+1. Because q ′′ = (qCnew , q0, . . . ) ∈ Q ′
0 the local state

qCnew ∈ T . Thus there is a state q ′′ ∈ Q0 such that the number of users in any local state

is the same as in the state q ′′ and the state of the control component is the same too.

Hence from the state q, the state q ′′ must be reachable by a sequence of transitions of

the length less than i+1 and consequently q is contained in the set Qi.

BACKWARD REACHABILITY(T ) always terminates after at most the number of steps

than the BACK_REACH_ALTERNATIVE(T ). Moreover we know that the procedure

BACK_REACH_ALTERNATIVE always terminates. Thus Lemma 5.2 holds.

A.3 Proof of Lemma 5.3

Lemma 3. Let for a C-U model C, U and l ∈ N0 the following condition is true:

An unreachable l+1-tuple of C‖U∞ is assigned to every unreachable (l+1)+1-tuple

of C‖U∞ . (*)

Then BACKWARD REACHABILITY(T ), where T is the set of all unreachable l + 1-tuples of

C‖U∞ , terminates after the first iteration.

Proof: The set Q from which backward reachability starts is in this case the set con-

taining all states of C‖U∞ to which an l + 1-tuple from T is assigned. The set of

states generated in the first iteration of backward reachability is the set Q together

with the set of predecessors of the states in Q. Consequently it is necessary to prove
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that in this case any predecessor of a state in Q is in the set Q. Let q ∈ Q and

(q ′ = (q ′
c, q

′
1, . . . , q

′
n), l, q = (qc, q1, . . . , qn)) ∈ δC‖U∞ . Because q ∈ Q, an unreach-

able l + 1-tuple must be assigned to q, denote such a tuple t = (qc, qi1 , . . . , qil). There

are four possibilities:

• (q ′, l, q) models a communication of the control component. The l + 1-tuple

t ′ = (q ′
c, qi1 , . . . , qil) is assigned to q ′ and because (t ′, l, t) ∈ δC‖U∞ the tuple t ′

is unreachable in C‖U∞ . Consequently q ′ ∈ Q.

• (q ′, l, q) models a communication of a user j. If j 6∈ {i1, . . . , il} then t is assigned

to q ′ and thus q ′ ∈ Q. Else j ∈ {i1, . . . , il} and j = ix for some x ∈ {1, . . . , l}. Then

the tuple t ′ = (qc, qi1 , . . . , qix−1, q
′
ix
, qix+1, . . . , qil) is assigned to q ′ and because

(t ′, l, t) ∈ δC‖U∞ the tuple t ′ is unreachable in C‖U∞ . Consequently q ′ ∈ Q.

• (q ′, l, q) models a communication of the control component and user j.

– Let j 6∈ {i1, . . . , il} then the (l+1)+1-tuple u ′ = (q ′
c, qi1 , . . . , qil , q

′
j) is assigned

to q ′. Moreover it holds

(u ′, l, u = (qc, qi1 , . . . , qil , qj)) ∈ δC‖U∞ .

Because t is an unreachable l+ 1-tuple, umust be an unreachable (l+ 1) + 1-

tuple, thus u ′ must be an unreachable (l + 1) + 1-tuple too. Hence and from

the assumption of the lemma we obtain that to the state q ′ is assigned an

unreachable l+ 1-tuple and consequently q ′ ∈ Q.

– In the other case j ∈ {i1, . . . , il} and ix = j for some x ∈ {1, . . . , l}. Then the

tuple t ′ = (q ′
c, qi1 , . . . , qix−1, q

′
ix
, qix+1, . . . , qil) is assigned to the state q ′ and

because (t ′, l, t) ∈ δC‖U∞ the tuple t ′ is unreachable in C‖U∞ . Thus q ′ ∈ Q.

• (q ′, l, q) models a communication of two users j1, j2.

– Let j1, j2 6∈ {i1, . . . , il} then t is assigned to q ′ and thus q ′ ∈ Q.

– Let j1 ∈ {i1, . . . , il} and ix = j1 for x ∈ {1, . . . , l}, and j2 6∈ {i1, . . . , il}. In such a

case the (l+ 1) + 1-tuple

u ′ = (qc, qi1 , . . . , qix−1, q
′
ix
, qix+1, . . . , qil , q

′
j2

)

is assigned to q ′. Moreover it holds

(u ′, l, u = (qc, qi1 , . . . , qil , qj2 )) ∈ δC‖U∞ .
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Because t is an unreachable l+ 1-tuple, umust be an unreachable (l+ 1) + 1-

tuple, thus u ′ must be an unreachable (l + 1) + 1-tuple too. Hence and from

the assumption of the lemma we obtain that to the state q ′ is assigned an

unreachable l+ 1-tuple and consequently q ′ ∈ Q.

– Let j1, j2 ∈ {i1, . . . , il} and ix = j1, iy = j2 for some x, y ∈ {1, . . . , l}.

Without lost of generality we assume that x < y. Then the tuple t ′ =

(q ′
c, qi1 , . . . , qix−1, q

′
ix
, qix+1, . . . , qiy−1, q

′
iy
, qiy+1, . . . , qil) is assigned to the

state q ′ and because (t ′, l, t) ∈ δC‖U∞ the tuple t ′ is unreachable in C‖U∞ .

Thus q ′ ∈ Q.
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