
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

Component-Interaction Automata
Modelling Language

by

Ivana Černá
Pavlína Vařeková

Barbora Zimmerova

FI MU Report Series FIMU-RS-2006-08

Copyright c© 2006, FI MU October 2006

Copyright c© 2006, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Component-Interaction Automata
Modelling Language

Ivana ČERNÁ, Pavlína VAŘEKOVÁ, Barbora ZIMMEROVA∗

Faculty of Informatics, Masaryk University

Brno, Czech Republic

{cerna,xvareko1,zimmerova}@fi.muni.cz

October 15, 2006

Abstract

The paper introduces a Component-interaction automata language, which was de-

signed for modelling of component interactions in hierarchical component-based

software systems. The language supports modelling of important interaction at-

tributes of such systems, and hence provides a rich base for further application of

formal methods. Component-interaction automata provide a flexible form of com-

ponent composition which can respect architectural assembly of the system, com-

munication mechanisms, and other specifics of component-based systems. This al-

lows the language to capture interactions in many different kinds of component-

based systems (built on different component models for instance). This paper pro-

vides a detailed study of the language including discussion of its practical applica-

tion and comparison with related work. We intend to use this language as a frame-

work for verifying coordination errors, checking of reconfiguration correctness, and

formal analysis of component interactions in component-based systems, which is

our ongoing and future work.

∗The work has been supported by the grant No. 1ET400300504.

1

Contents

1 Introduction 3

2 Component-interaction automata language 4

2.1 Definition of a component-interaction automaton 5

2.2 Composition of component-interaction automata 9

3 Application 15

3.1 Architectural assembly . 15

3.2 Communication between components . 15

3.3 Types of synchronization . 16

3.4 Other specifics . 17

4 Related work 18

4.1 Automata-based languages . 18

4.2 Languages defined within ADLs . 20

5 Conclusion and future work 22

2

1 Introduction

Component-based and service-oriented development [15], developing software sys-

tems through hierarchical composition of autonomous components providing services

to others, is becoming a standard practice in development of large-scale software sys-

tems. Although this technique offers great benefits of reusing prefabricated compo-

nents, increasing flexibility of software products and reducing development costs, it

also poses serious questions on faultlessness and correctness of such systems. The main

aspect that makes the correctness task difficult is that the components are usually de-

veloped by third parties with no knowledge of the environment they will become a part

of. Hence even if we assume that each individual component in the system is correct,

there is no guarantee that the components will cooperate correctly to deliver expected

results. We refer to this as interaction correctness.

For further investigation of interaction correctness, proper specification of compo-

nent interactions in assembled system is indispensable. Choice of an appropriate spec-

ification language should be done very carefully with respect to the following aspects.

Firstly, the language should be flexible enough to be usable for component-based sys-

tems built on various component models (using different communication mechanisms).

That then enables introduction of a set of formal methods that are applicable to sys-

tems built on different platforms. Secondly, the language should model the reality as

closely as possible capturing important interaction attributes. Lastly, it should be of

manageable complexity to allow us to build and analyse models of systems that are of

significant size.

This paper presents such a language, named Component-interaction automata, which

was designed with the primary purpose oriented to component-based systems and their

specifics. The language is a simple combination of inspiring features of several existing

languages with some additional constructs, which allow the language to fit the needs

described above and still remain simple and general with many interesting applications.

The language concentrates on capturing of important interaction aspects of systems (in

what order components intend to communicate their actions, what is their architecture

like) and update such information during component assembly as well (which com-

ponents synchronized on particular actions, how the architectural structure changed).

One of the essential differences to related languages (discussed in Section 4) is that

Component-interaction automata language model component assembly using a flexi-

3

ble form of composition, which can be parametrized by a set of interactions that are

feasible/infeasible in the system. This allows the language to model several variations

of component-based systems (based on different component models for instance).

The paper is organized as follows. Firstly, in Section 2, the Component-interaction

automata language is defined and basic examples of its use are provided. Practical ap-

plication of the language is studied in Section 3 where we present several modelling

issues that appear in component-based systems. Section 4 provides a discussion of re-

lated work and in Section 5 we conclude with stating our future work.

2 Component-interaction automata language

Component-interaction automata (first presented in [8]) are a specification language for

modelling of component interactions in hierarchical component-based software sys-

tems, which are usually connected to a particular component model. For this reason,

Component-interaction automata are very general and support modelling of compo-

nent interactions in component-based systems build on various component models. The

generality of the language follows from two things. First, the Component-interaction

automata language does not explicitly associate action names with interfaces/services/

provisions/requirements/requests/responses/events, which allows the designers to

make the association themselves. Second, the language provides a flexible form of

composition that can be fixed according to a specific component model (type of com-

munication, synchronization, blocking/non-blocking strategy, etc.). In this manner,

Component-interaction automata can be instantiated to a particular component model

by fixing the composition operator and semantics of actions. The main reason for this

generality is the following. We use the language as a formal basis for analysis and verifi-

cation of component interactions in component-based systems. Hence the more systems

can be modelled with it, the more systems can be formally analysed using the (uniform)

set of verification and analytical techniques we propose.

Let us now summarize what intuition the language has about the component-

based systems. The language regards component-based systems as systems that are

assembled from autonomous (COTS) components, possibly in a hierarchical manner.

Each component-interaction automaton represents a component in the system that can

be either primitive or composite. A component is regarded as an encapsulated unit

which interacts with the environment solely through its interfaces (possibly by pro-

4

vided/required services, messages, events, etc.). A component is designed as an au-

tonomous unit. Hence it knows nothing about the environment it will become a part

of. It therefore does not specify the components which should serve its requests. This is

determined by other means – by bindings among components for instance. Automata

(representing components) interact with their environment through actions. The de-

signer should decide whether an action represents a service, part of a service or some-

thing else. If the same action name is used in two components, in one as an input and

in the other as an output, it marks a point on which the components may communicate

(a provided and required service of the same type for instance). Only two components

may synchronize in this way (with respect to a client–supplier principle). However,

more sophisticated synchronization strategies can be realized by synchronizing compo-

nents or connectors (modelled as component-interaction automata also). A primitive

component cannot use the same action name for two distinct services as we would not

be able to distinguish between them in the automaton.

2.1 Definition of a component-interaction automaton

We focus on modelling of hierarchical component-based systems. Hence a component-

interaction automaton of a system captures information about the set of primitive com-

ponents (which make up the system) and the way in which they are assembled to form

the system. As it is important to know what the primitive components of the system

are, each primitive component in the automaton is associated with a unique name. The

component names are also used to remember which components communicated on par-

ticular actions. In the case of Component-interaction automata, the names are natural

numbers1.

In Component-interaction automata, the information about the composition order

that was used to compose a particular high-level (composite) component is preserved

within a hierarchy of component names. Every hierarchy of component names is an n-tuple

(where n ∈ N) whose items correspond to natural numbers or lower level hierarchies

of component names that can be either primitive or compound. A primitive hierarchy

of component names for a component with a numerical name 1 can take form of (1) or

(((1))) for instance, and a compound hierarchy of component names for a composition

of components 1 and 2 can take form of (((1)), (2)) or (2, 1) for instance.

1The set of possible component names is selected as N for the sake of simplicity. Any other set of

names (not containing special symbols like parentheses and commas) could play the same role.

5

Definition 2.1. A hierarchy of component names is an n-tuple H = (H1, . . . , Hn), n ∈ N,

of one of the following forms; SH denotes the set of component names corresponding to H.

• The first case is that H1, . . . , Hn are pairwise different natural numbers; then SH =
⋃n

i=1{Hi}.

• The second case is that H1, . . . , Hn are hierarchies of component names where SH1
, . . . , SHn

are pairwise disjoint; then SH =
⋃n

i=1 SHi
.

A set of hierarchies of component names is denoted H.

A hierarchy of component names H ∈ H is primitive iff |SH| = 1.

Now we can proceed to the definition of a component-interaction automaton which

is a labelled transition system with structured labels and a hierarchy of names of the

component whose composition the automaton represents.

Definition 2.2. A component-interaction automaton (or CI automaton for short) is a

5-tuple C = (Q,Act, δ, I, H) where

• Q is a finite set of states,

• Act is a finite set of actions,

Σ = ((SH ∪ {−})×Act× (SH ∪ {−})) \ ({−}×Act× {−}) is a set of labels,

• δ ⊆ Q× Σ×Q is a finite set of labelled transitions,

• I ⊆ Q is a nonempty set of initial states and

• H ∈ H is a hierarchy of component names.

The labels have semantics of input, output, or internal, based on their structure. In

the triple, the middle item represents an action name, the first item represents a name

of the component that outputs the action, and the third item represents a name of the

component that inputs the action. Examples of three CI automata are in Figure 2, and

are discussed in Example 2.5. Before we proceed to the example, we complete the set

of definitions with the definition of a path in a CI automaton, and a notation for sets of

labels in a CI automaton.

Definition 2.3. A path of a CI automaton C = (Q,Act, δ, I,H) is an alternating sequence of

states and labels given by δ that is either infinite, or is finite in case that it ends with a state from

which there is no transition in δ. The set of all paths of a CI automaton C is denoted Path(C).
The set of all finite prefixes of paths from Path(C) that end with a state is denoted FinPath(C).

Notation 2.4. For a given CI automaton C = (Q,Act, δ, I,H) we denote

• LC = {l | ∃ q0, l0, . . . , qk−1, lk−1, qk ∈ FinPath(C) : q0 ∈ I ∧ lk−1 = l}

the set of all labels reachable in C,

6

• Linp,C = LC ∩ {(−, a, n2) | a ∈ Act, n2 ∈ N}

the set of all input labels reachable in C (a component n2 inputs an action a),
• Lout,C = LC ∩ {(n1, a, −) | a ∈ Act, n1 ∈ N}

the set of all output labels reachable in C (a component n1 outputs an action a),
• Lint,C = LC ∩ {(n1, a, n2) | a ∈ Act, n1, n2 ∈ N}

the set of all internal labels reachable in C (n1 and n2 synchronize on a),
• Lext,C = Linp,C ∪ Lout,C = LC \ Lint,C

the set of all external (input and output) labels reachable in C.

The structure of symbols shows that at most two components participate in any tran-

sition. It is a natural form of component communication according to a client–supplier

principle. However, if it becomes necessary to address a multi-way synchronization, the

model could be naturally extended to Multi Component-interaction automata with labels

(A, a,B) where A is a set of components sending an action a and B a set of components

receiving a.

Example 2.5. Let us consider a simple example shown in Figure 1 and Figure 2 capturing a

WordProcessor-like application consisting of three sub-components Document1, Document2

and SpellChecker. Figure 1 shows only the component architecture of the application in

UML 2.02, whereas the description in Figure 2 explains the behaviour of the components as

CI automata.

According to the description, both Document1 (automaton C1) and Document2 (automa-

ton C2) represent primitive components with numerical names 1 and 2, respectively. Each of

them first requests spell checking (sends an action check.req) and waits for a response with a

result afterwards (receives an action check.resp). On the other hand, SpellChecker (automa-

ton C3) is a composite component that has two primitive sub-components with numerical names

3 and 4. In such case, all external actions of SpellChecker are in fact delegated to the primitive

sub-components that perform all the functionality. In particular, the spell checking is realized by

a component 3, which after receiving a request for checking a part of a text (action check.req),

may ask a component 4 (in several loops) to find some words (actions find.req, find.resp),

and then returns the result (action check.resp).

2Any other architecture description language could be used. In this example, we have chosen UML

because it is widely known and accepted.

7

Figure 1: Component model of a simple application

C1 : // 0?>=<89:;
(1 , check.req , −) //

1?>=<89:;
(− , check.resp , 1)

oo

Hierarchy of component names: (1)

C2 : // 0?>=<89:;
(2 , check.req , −) //

1?>=<89:;
(− , check.resp , 2)

oo

Hierarchy of component names: (2)

C3 : // 0?>=<89:;
(− , check.req , 3) //

1?>=<89:;
(3 , find.req , 4) //

(3 , check.resp , −)
oo 2?>=<89:;

(4 , find.resp , 3)
oo

Hierarchy of component names: (3, 4)

Figure 2: CI automata C1, C2 and C3

8

The simplest form of a CI automaton according to the hierarchy of component names

is an automaton representing one individual component only (with a primitive hierar-

chy of component names).

Definition 2.6. A CI automaton C = (Q,Act, δ, I,H) is primitive iff H is primitive.

Example 2.7. The automata C1 and C2 in Figure 2 are primitive as their hierarchies consist of

one component only, the automaton C3 is not.

In some cases it is useful to abstract from the inner hierarchy of a CI automaton and

consider it as a primitive one to make the system less complex for further verification.

For such a view on a CI automaton it suffice to replace all component names with a one

unique name and change the hierarchy of component names.

Definition 2.8. Let C = (Q,Act, δ, I, H) be a CI automaton. Then a CI automaton C ′ =

(Q,Act, δ ′, I, (n)) is primitive to C iff

• n ∈ N,

• (q, (n, a, n), q ′) ∈ δ ′ iff ∃n1, n2 ∈ N : (q, (n1, a, n2), q
′) ∈ δ,

• (q, (−, a, n), q ′) ∈ δ ′ iff ∃n2 ∈ N : (q, (−, a, n2), q
′) ∈ δ,

• (q, (n, a, −), q ′) ∈ δ ′ iff ∃n1 ∈ N : (q, (n1, a, −), q ′) ∈ δ.

Example 2.9. Considering the automata depicted in Figure 2, both the automaton C1 is primitive

to C2, and the automaton C2 is primitive to C1. An example of the CI automaton which is

primitive to the automaton C3 is depicted in Figure 3 as an automaton C4.

C4 : // 0?>=<89:;
(− , check.req , 5) //

1?>=<89:;
(5 , find.req , 5) //

(5 , check.resp , −)
oo 2?>=<89:;

(5 , find.resp , 5)
oo

Hierarchy of component names: (5)

Figure 3: CI automaton C4

2.2 Composition of component-interaction automata

CI automata (a set of them) can be composed to form a higher level CI automaton.

The language of Component-interaction automata allows us to compose any set of CI

automata that have disjoint sets of component names. This assures that each primitive

component in the assembled system has a unique name.

9

Notation 2.10. Let I = {i1, i2, . . . , in} be a nonempty set of integers with i1 < · · · < in.

Then for a set {Hi}i∈I the symbol (Hi)i∈I denotes the n-tuple (Hi1 , Hi2, . . . , Hin).

Definition 2.11. Let S = {(Qi, Acti, δi, Ii, Hi)}i∈I be a set of CI automata. We say that the set

S is composable iff I ⊆ N is finite and (Hi)i∈I ∈ H.

We can now proceed to the automaton which results as a composition of the set of

CI automata. The transition set of the composite automaton is defined over a complete

transition space which represents all potentially feasible transitions of the system. The

complete transition space for a set of CI automata consists of all transitions capturing

that (1) one of the automata follows its original transition or (2) two automata synchro-

nize on complementary transitions.

Notation 2.12. Let I = {i1, i2, . . . , in} be a nonempty set of integers with i1 < · · · < in,

and let Qi be a set for each i ∈ I. Then Πi∈IQi denotes the set {(qi1 , qi2 , . . . , qin) | ∀j ∈
{1, . . . , n} : qij ∈ Qij}. For any j ∈ I, projj denotes a function projj : Πi∈IQi → Qj such

that projj((qi)i∈I) = qj.

Definition 2.13. Let S = {(Qi, Acti, δi, Ii, Hi)}i∈I be a composable set of CI automata. Then

the complete transition space for S is ∆S = ∆S,old ∪ ∆S,new where

• ∆S,old = {(q, x, q ′) | q, q ′ ∈ Πi∈IQi, ∃ j ∈ I : [(projj(q), x, projj(q
′)) ∈ δj ∧ ∀i ∈

(I \ {j}) : proji(q) = proji(q
′)]}

• ∆S,new = {(q, (n1, a, n2), q
′) | q, q ′ ∈ Πi∈IQi ∧ ∃ j1, j2 ∈ I, j1 6= j2 :

[(projj1(q), (n1, a, −), projj1(q
′)) ∈ δj1 ∧ (projj2(q), (−, a, n2), projj2(q

′)) ∈ δj2 ∧

∀ i ∈ (I \ {j1, j2}) : proji(q) = proji(q
′)]}

Example 2.14. The complete transition space for a set of CI automata {Ci}i∈{1,2,3} in Figure 2 is

given in Figure 4. For lucidity, an action check.req is shortened to c, action check.resp to

c ′, action find.req to f, and find.resp to f ′, and every state (q1, q2, q3) ∈ Q1 ×Q2 ×Q3 is

represented as a sequence q1q2q3.

The composition of a set of CI automata is defined in a flexible manner as a CI au-

tomaton over the set, and can take several forms for the same set of CI automata. In

particular, the CI automaton over the set is defined as a product automaton whose tran-

sition set is a subset of the complete transition space. Thanks to this fact the resulting

automaton may consist of only those transition that are really feasible in the system,

according to the architectural assembly or type of synchronization for instance.

10

002?>=<89:;
(1,c,-) //

(-,c’,2)

²²

(3,f,4) ""EE
EE

EE
EE 102?>=<89:;(-,c’,1)
oo

(-,c’,2)

²²

(3,f,4)

||yy
yy

yy
yy

001?>=<89:;
(1,c,-) //

(-,c’,2)

²²

(4,f’,3)
bbEEEEEEEE

(-,c,3)

!!B
BB

BB
BB

BB
BB

BB
BB

BB 101?>=<89:;(-,c’,1)
oo

(-,c’,2)

²²

(4,f’,3)

<<yyyyyyyy

(-,c,3)

}}||
||

||
||

||
||

||
||

|

(3,c’,1)

vvmmmmmmmmmmmmmmmmmmmmmmmmmmmm

000?>=<89:;
(-,c’,1)

//

(-,c’,2)

²²

(3,c’,-)

aaBBBBBBBBBBBBBBBBB

(2,c,3)

§§°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°
°°

(1,c,3)

66mmmmmmmmmmmmmmmmmmmmmmmmmmmm
100?>=<89:;(1,c,-)oo

(-,c’,2)

²²

(3,c’,-)

==|||||||||||||||||

(2,c,3)

»»1
11

11
11

11
11

11
11

11
11

11
11

11
11

1

010?>=<89:; (-,c’,1)
//

(2,c,-)

OO

(3,c’,-)

}}||
||

||
||

||
||

||
||

|

(1,c,3)

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ 110?>=<89:;
(1,c,-)oo

(2,c,-)

OO

(3,c’,-)

!!B
BB

BB
BB

BB
BB

BB
BB

BB

011?>=<89:; (1,c,-) //

(2,c,-)

OO

(4,f’,3)

||yy
yy

yy
yy

(-,c,3)

==|||||||||||||||||

(3,c’,2)

FF°°°°°°°°°°°°°°°°°°°°°°°°°°°°
111?>=<89:;

(-,c’,1)
oo

(2,c,-)

OO

(4,f’,3) ""EE
EE

EE
EE

(-,c,3)

aaBBBBBBBBBBBBBBBBB

(3,c’,2)

XX1111111111111111111111111111
(3,c’,1)

hhQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

012?>=<89:; (1,c,-) //

(2,c,-)

OO

(3,f,4)

<<yyyyyyyy
112?>=<89:;

(-,c’,1)
oo

(2,c,-)

OO

(3,f,4)
bbEEEEEEEE

Figure 4: Complete transition space for {Ci}i∈{1,2,3}

11

Definition 2.15. Let S = {(Qi, Acti, δi, Ii, Hi)}i∈I be a composable set of CI automata. Then

C = (Πi∈IQi , ∪i∈IActi , δ , Πi∈IIi , (Hi)i∈I) is a component-interaction automaton over

S iff δ ⊆ ∆S .

The preceding definition provides the notion of what the composition of a set of CI

automata into another CI automaton looks like. However, it does not determine the

resulting automaton uniquely. The following definition introduces an operator (a set of

operators in fact) that gives precision to the composition of a set of CI automata.

Definition 2.16. Let T be a set of transitions, then ⊗T denotes a unary composition operator

on composable sets of CI automata. If S = {(Qi, Acti, δi, Ii, Hi)}i∈I is a composable set of CI

automata, then ⊗TS = (Πi∈IQi , ∪i∈IActi , ∆S ∩ T , Πi∈IIi , (Hi)i∈I).

It directly follows from Definition 2.16 that the composite automaton ⊗TS is again

a component-interaction automaton, and moreover for any set of transitions T , it is a

component-interaction automaton over S .

In fact, the composition operator ⊗T defines the composite automaton in a way that

it consists of only the transitions from the complete transition space that are part of

T . Hence it is the set T that introduces the flexibility into the composition. This starts

to be interesting when we realize that T can be defined using conditions that delimit

the behaviour that is possible/impossible in the system. Such conditions allow us to

characterize feasible transitions in the automaton and remove infeasible ones to model

a real system (built on a particular component model) as closely as possible.

The choice of the set T can in fact determine a subset of operators and hence in-

stantiate the operator to a particular component model. We illustrate one of such

instantiations in the rest of this section. For a given set of (feasible) labels F , let

TF = {(q, x, q ′) | x ∈ F }. This choice allows the composite automaton ⊗TFS (where

S is a set of CI automata) to provide only the transitions with labels from F .

The set of operators ⊗TF , denote it ⊗F , is weaker then ⊗T in a sense that for each F ′

we can express ⊗F ′ as ⊗T ′ for some T ′, but not vice versa. Each operator ⊗F chooses le-

gal transitions only with respect to their labels. It does not regard the states. So it cannot

analyse the transitions based on their position in automaton’s execution. However, it is

still quite strong and has several practical applications including component assembly

modelling which allows synchronization of only those components that are connected

by a binding in the system. It is possible thanks to the information about participants

of communication that CI automata include in labels. We may choose F as the set of

12

those labels that represent communication between the components that are connected

by communicational binding in the system. As ⊗F is of our high interest, we provide

its precise definition here, even if it is just a special case of ⊗T .

Definition 2.17. Let F be a set of labels, then ⊗F denotes a unary composition operator on

composable sets of CI automata. If S = {(Qi, Acti, δi, Ii, Hi)}i∈I is a composable set of CI au-

tomata, then⊗FS = (Πi∈IQi,∪i∈IActi, δ, Πi∈IIi, (Hi)i∈I) where δ = {(q, x, q ′) | (q, x, q ′) ∈
∆S ∧ x ∈ F }.

As the set F represents component assembly of the system, we require that it con-

tains all internal labels of former automata (that are to be composed) since the assembly

binds only external services of the components. It does not concern the former internal

behaviour.

Definition 2.18. We say that the automaton⊗F {Ci}i∈I is defined iff {Ci}i∈I is a composable set

of CI automata and F ⊇ ⋃
i∈I Lint,Ci

.

When F is selected as a set of possible inner and inter-component communication

(indicated by bindings in the system), ⊗F models standard blocking (handshake) com-

munication of components. If F includes also output behaviour of components (output

labels of automata), then ⊗F models one-to-one output non-blocking synchronization

of components with respect to F .

Example 2.19. Let us again consider the system with architectural description in Fig-

ure 1 and automata specification in Figure 2. We will construct the composite au-

tomaton ⊗FS where S = {Ci}i∈{1,2,3}. We want to capture the situation that only

the components that are connected by a binding may communicate (by handshake syn-

chronization) and the application has no free inputs or outputs (because no services of

components can be delegated outside the system according to the architecture). For this

purpose, we will use the operator ⊗F and we construct the set of feasible labels (rep-

resenting feasible bindings among components and outside of the application) as F =

{(1, check.req, 3), (3, check.resp, 1), (2, check.req, 3), (3, check.resp, 2), (3, find.req, 4),

(4, find.resp, 3)}. The composite automaton should then consist only of the transitions from

the complete transition space that have labels from the set F .

The selected labels indicate that both Document1 and Document2 components may partic-

ipate only in internal communication with the SpellChecker component. Their external actions

modelled by input and output labels are not allowed in the composition as the architecture does

13

not enable their delegation out of the application. The same applies to SpellChecker. Now we

can model the composite automaton as ⊗FS. The diagram in Figure 5 depicts the automaton

considering reachable transitions (solid lines) in comparison to the complete transition space

(dotted lines). Every state (q1, q2, q3) ∈ Q1 × Q2 × Q3 is again represented as a sequence

q1q2q3 for short.

102?>=<89:;

(3,find.resp,4)||yy
yy

yy
yy

101?>=<89:;

(4,find.req,3)
<<yyyyyyyy

(3,check.resp,1)

uujjjjjjjjjjjjjjjjjj

000?>=<89:;

(2,check.req,3)

©©³³
³³
³³
³³
³³
³³
³³
³³
³³
³

(1,check.req,3)

55jjjjjjjjjjjjjjjjjj
aaBBBBBBBB

011?>=<89:;

(4,find.req,3)||yy
yy

yy
yy

(3,check.resp,2)

HH³³³³³³³³³³³³³³³³³³³

012?>=<89:;

(3,find.resp,4)
<<yyyyyyyy

Hierarchy of component names: ((1), (2), (3, 4))

Figure 5: CI automaton ⊗FS where S = {Ci}i∈{1,2,3}

It remains to be explained why we define the composition as a unary operation

where the argument is a set of CI automata, when it is more usual in other languages

that the composition is a binary operation. What motivated us is the fact that each

composition of CI automata represents a step up in the hierarchy of components in the

system. Thus we want to compose all the components representing a particular level in

the hierarchy to remember the information about the hierarchical structure of the sys-

tem. Moreover, the composition operator allows us to compose the set with only one

automaton which represents an encapsulation of a component into another component

that publishes only selected services of the former one. It is given by way of removal of

the transitions that represent the services that are not delegated outside the component.

14

3 Application

We have already shown that the Component-interaction automata language allows us to

model hierarchical component-based systems preserving information about interaction

among primitive components of the system. We have introduced a flexible concept of

composition which offers a choice of the transition set according to the behaviour that

is really possible in the system. This helps the language to model component-based

systems quite precisely even if the language of Component-interaction automata is very

simple. In this section, we outline some specifics of component-based systems that can

also be modelled using this language to provide a better idea of its use.

3.1 Architectural assembly

One of the basic specifics of component-based systems is the architectural assembly of

components that constitute the system. In the previous section, we have introduced a

composition operator that can be parametrized by the information about the assembly

(bindings among components) which allows it to respect the architecture of the system.

As a result, the composite automaton can consist only of those transitions that demon-

strate existing bindings among components.

This is possible thanks to the information about communicating components which

is associated with each use of an action on a transition (in a label in particular). This

information facilitates more than just the modeling of static bindings in the system. It

for instance allows us to capture that, when a component C receives an action a from a

component C ′, it rebinds from the component C ′ to a component C ′′ and from that state

C will communicate with C ′′ only. We can encode such information into the set T that

parameterises the composition ⊗T . In particular, such T would not contain those transi-

tions that signifies communication of C and C ′ on all paths where they are preceded by

a transition with the label (C ′, a, C). Note that this is possible just because we regard an

action shared among components as a point of possible communication, not as a point of

requisite interaction as in other languages (Darwin/Tracta [19], Interface automata [12],

SOFA Behavior protocols [20], Wright [2]).

3.2 Communication between components

The component-based systems usually have an underlying framework that supplies the

components with services such as communication mechanisms. Such frameworks are

15

called component models. We now focus on the communication mechanisms that are

usual in such component models. The basic one is a communication through method

calls when one component (a client) sends a request for a method to another component

(a supplier) that computes the result and returns the response to the former component.

In Component-interaction automata, we can model this situation by the use of two dis-

tinct actions, one symbolizing the request and the other the response of the method call.

There are two distinct types of method call communication: synchronous and asyn-

chronous. In synchronous communication, the client, after sending the request, is not

allowed to perform any action before receiving the response. This information can be

captured in the primitive CI automaton for the client and is propagated through the

composition naturally. In the asynchronous composition the client after sending the re-

quest can continue in the computation before the response is received. This case can

be also captured in the primitive CI automaton directly and is propagated through the

composition.

Besides the common method call where there is exactly one request and one response

for each method call, there are several other types that can occur. They usually involve

one request that is followed by zero (in the case of one-way method call) or more than

one (a method call with confirmations) responses. These cases can also be modelled

within the primitive components using either different or the same action names for

particular responses. The special case of one-way calls is message (event) passing that

can be also modelled naturally using single actions.

3.3 Types of synchronization

Communication of components in component-based systems is commonly based on a

synchronization of an input of one component with an output of another one. There are

two types of this synchronization that are usually distinguished.

(i) Blocking – Whenever a component is ready to perform an input/output transition

(which cannot be delegated outside), it has to wait (is blocked) until a counterpart

is ready (or perform another transition possible in the state).

(ii) Output non-blocking – Whenever a component is ready to perform an output tran-

sition, it is free to do so. Whenever a component is ready to perform an input

transition, it has to wait until a counterpart is ready.

16

The most natural synchronization in the sense of Component-interaction automata

is the first one (i) (used also in Tracta [19] for instance). According to this, we can let the

composition operator remove all external transitions that cannot be delegated outside

of the component assuming that they would be blocked as no counterpart was ready.

However, in component-based (and also object-oriented) software engineering the more

usual notion is the second one (ii) (used by Interface automata [12] or SOFA Behavior

protocols [20] for instance). It reflects that a component does not know whether a coun-

terpart is ready and outputs an action whenever it needs to.

In Component-interaction automata, we can capture the synchronization type (ii)

by choosing T for a set of CI automata S as T ⊇ {(q, (n1, a, −), q ′) ∈ ∆S | @n2, q
′′ :

(q, (n1, a, n2), q
′′) ∈ ∆S}. This allows the composite automaton to include the transi-

tions representing output transitions in the states where they cannot be connected with

appropriate input actions to form internal actions. Note that we do not have to be

afraid that the non-blocked outputs (that cannot be delegated outside the system) will

synchronize with another action on a higher level of composition because in architec-

tural assembly there will be no binding that would allow it. Another important point is

that there is no explicit indication that the non-blocked outputs are errors. The reason is,

that the underlying component model does not need to consider the outputs as errors.

In may simply ignore them. Therefore the outputs should not be explicitly marked as

errors (as it is in Interface automata and SOFA Behavior protocols) but the information

about them should be preserved to be detectable in the verification phase.

Some other types of synchronization can be modelled using connectors. A connector

is a unit similar to a component that can simulate a specific kind of communication. For

example in the case of broadcast communication, it can be modelled as a CI automaton

that whenever it receives an action, it broadcasts the action to other components that

are connected to it.

3.4 Other specifics

There are several other specific issues that can be considered for component-based sys-

tems. We briefly mention some of them.

The first is modeling of systems where any service of a component can be executed

for at most one client at a time. Other attempts to request the service are blocked before

the response of the active service is delivered. We can capture this fact in every primitive

17

CI automaton and guard this condition during the composition (remove all transitions

that violate it).

The next specific issue is the form of bindings among components. They can bind

the services (methods) or the whole interfaces (set of services/methods). It is usually

given whether a service/interface can be bound to only one counterpart, or to several

counterparts (where the actual counterpart is selected at run-time). All of these situ-

ations can be modelled in Component-interaction automata, as they abstract from the

structure of interfaces and are interested only in the information about which compo-

nents may communicate with each other on a specific action, where an action may be

shared by several (not just two) components.

4 Related work

In this section, we discuss several languages that were designed for a similar purpose

as Component-interaction automata. However, as the purpose is not exactly the same,

we have found some difficulties in their use for specifying component interactions in a

flexible way and preserving information about the interaction among components. We

have divided the languages into two classes: automata-based languages, and languages

defined within architecture description languages.

4.1 Automata-based languages

The languages discussed in this section have several features in common. They are

automata-based and produce models in a form of (finite) transition systems labelled

with three types of actions: input, output and internal. One of the main advantages

of such languages for specification of component interactions is that automata-based

models allow straightforward application of a wide range of formal methods and veri-

fication algorithms (model checking [10] in particular). We focus on I/O automata, Team

automata, and Interface automata.

Input/Output automata The Input/Output automata (I/O automata for short) were de-

fined by Lynch and Tuttle in [21, 17] as a labelled transition system language based

on nondeterministic automata. The I/O automata language is suitable for modelling

distributed and concurrent systems with differentiation of input, output and internal

actions. I/O automata can be composed together to form a higher-level I/O automaton

18

and thus form a hierarchy of components of the system. Unfortunately there are sev-

eral issues that make the task of modelling component interactions using I/O automata

difficult.

Firstly, the I/O automata are input enabled in all states which means that an I/O au-

tomaton can never block an input. Hence in I/O automata, we are unable to directly

reason about properties capturing that a component C1 is ready to send an output ac-

tion a to a component C2 which is not ready to receive it (e.g. needs to finish some

computation first). Secondly, the sets of input, output and internal actions of I/O au-

tomaton have to be pairwise disjoint. This fact may be troublesome when modelling

some practical systems that use method call delegation for instance, when a component

needs to output the same action that it has received as an input. It was important for us

to design Component-interaction automata in a way that the sets of input, output and

internal actions do not have to be pairwise disjoint.

Regarding the composition, a set of I/O automata may be composed only if the sets

of output actions of the automata are pairwise disjoint. Therefore it is not possible to

compose a set of I/O automata where two or more automata have the same output

action. Moreover, when composing a set of I/O automata, each input action that may

synchronize in a composition is removed from the resulting automaton to preserve the

condition of disjoint input and output action sets. That input actions then cannot be

delegated out of the composed component to be linked in a higher level of composition.

Team automata The Team automata language [7] was first introduced in [13] by Ellis.

This complex language is designed primarily for modelling groupware systems with

communicating teams (using several types of multi-way synchronization) but can be

also used for modelling component-based systems (for which one-to-one synchroniza-

tion is sufficient). Team automata, unlike other automata-based languages, offer free-

dom of choosing the transition set of the automaton obtained when composing a set of

automata, and thus are not limited to one fixed form of synchronization. This feature

inspired us to define the flexible composition in Component-interaction automata.

In a team automaton, it is again required that the sets of input, output and internal

actions are pairwise disjoint. It implies that the composite automaton cannot propagate

some actions of the sub-automata as it would violate this condition. In particular, the

composition hides every input action which is an output action of some other automa-

ton in the composition. Therefore the input action cannot be used on a higher level of

19

compositional hierarchy later on. Another important feature is that during the com-

position, valuable information about component interactions can get lost. For example

information about which component automata synchronized on an action.

Interface automata The Interface automata model [11, 12] was introduced by de Alfaro

and Henzinger. The model is designed for documentation and validation of systems

made of components communicating through their interfaces. Interface automata, as

distinct from I/O automata, are not input enabled in all states and may compose only

two automata at a time.

A significant particularity of Interface automata is the explicit indication of erro-

neous behaviour (error states) in the composition of two components. An error state is

the state where one automaton generates an output that is an illegal input for the other

automaton. The composition of two interface automata is then defined in a way that

the transition set of the product automaton is restricted to disable transitions to error

states. It follows the optimistic assumption that two automata can be composed if there

exists an environment that can make them work together properly (disable transitions

to error states). Then the composition of the automata consists only of the transitions

available in such an environment.

4.2 Languages defined within ADLs

Architecture description languages (ADLs) may specify both static (system architecture,

bindings among components) and dynamical (component behaviour, interactions) as-

pects of hierarchical component-based systems. These languages are very close to prac-

tice and often address many practical issues which can arise in real systems. In this

section we focus only on their sub-languages desired for specification of component

interactions.

Tracta / Darwin Tracta approach [19, 14] proposed by Giannakopoulou defines a lan-

guage and methods for analysing the behaviour of distributed systems using structural

description of an architecture description language Darwin [18].

Behaviour of every component is described as a finite state Labelled Transition System

(LTS). Considering the composition, one of the shortcomings in the context of modelling

component interactions is that Tracta supports only one type of synchronization (deter-

mined by strict broadcast semantics of the LTS parallel composition operator) without

20

distinction of input and output actions. This is quite distant from the component-based

systems that are usually based on a client–supplier communication principle.

Behavior protocols / SOFA Behavior protocols [20, 1] were proposed by Plasil and Vis-

novsky as a formalism for description of component interaction behaviour within the

framework of the SOFA Component Model [4] which is a part of the SOFA project (SOFt-

ware Appliances) that aims to create a distributed development and run time environ-

ment for component-based software systems.

A behavior protocol is a regular-like expression enabling behavioural description of

entities like interfaces, components or component compositions. During the composi-

tion, SOFA enables one type of synchronization with explicit indication of the errors that

occurred. This helps in static verification of system correctness but reduces generality of

the model. It limits the applicability of behavior protocols solely to those systems that

have the same notion of erroneous behaviour.

Parametrized networks of communicating automata / Fractal Parametrized networks

of communicating automata language [5] was proposed in [6] by Barros et al. as a lan-

guage for behavioural specification of components in distributed systems as parame-

trized transition systems. The language relies on the Fractal component model [9] which

is a general component composition framework with a focus on dynamic reconfigura-

tion.

This language presents a very complex approach to specification of component-

based systems. Behaviour of each component is modelled as a finite state parametrized

Labelled Transition System (pLTS) and the composition is defined using the parametrized

synchronization Network (pNet) that is a form of a generalised parallel operator where

each of its arguments is typed by a Sort that determines sets of its possible observable

actions for synchronization. The pNet defines synchronization using a transducer which

is a LTS with synchronization vectors in place of labels, each describing one particular

synchronization of the process actions. The composition is computed as a product of

the pLTSs with the transducer which controls the synchronization.

Wright An architecture description language Wright [3, 2] was proposed by Allen and

Garland as a language for describing and analysing software architectures. Wright pro-

vides a formal basis for specifying both structure and behaviour of architectural descrip-

21

tion. Specifically, it supports the description of architectures as hierarchical graphs of

components and connectors. Each component and connector is augmented with a de-

scription that helps in reasoning about behaviour of a single component and interaction

among several components.

The behaviour and coordination of components is specified in Wright using the no-

tation based on CSP [16]. The basic unit of a behaviour specification is an event which

can be either initiated or observed (analogically to output and input actions, respectively).

The composition is performed using CSP parallel operator ‖. In the parallel composi-

tion of several processes, the processes must synchronize on shared actions from their

alphabets and interleave independent actions (that are part of an alphabet of just a sin-

gle process). The CSP interpretation removes the initiate/observe markings on events

so that they will synchronize.

5 Conclusion and future work

The paper presents a specification language called Component-interaction automata,

an underlying formalism for formal analysis and verification of component-based sys-

tems in view of component interactions. The language provides a transparent and un-

derstandable way of modelling component interactions thanks to the primary purpose

oriented to component-based systems and their specifics. The language is inspired by

some features of the languages discussed in the previous section, but differs in many

others. It supports freedom of choosing the transition set which facilitates the adjustabil-

ity according to an architectural description and communication mechanism (inspired

by Team automata) and is based on synchronization of one input and one output action

with the same name which becomes internal later on (inspired by Interface automata

and SOFA Behavior protocols). The language is designed to preserve important inter-

action attributes to provide a rich base for further verification. As distinct from the

discussed languages, it naturally preserves information about the components which

participated in a synchronization and about the hierarchical structure of the system.

In future, we aim to address several issues using the language as an underlying

formalism. The main area is a temporal verification of coordination errors that may

consist of both standard (deadlock, computational progress) and component specific

(interaction between specific components) coordination errors. The next interesting set

of problems regards the reconfiguration correctness which addresses the correctness of

22

a system after reconfiguration (modification or replacement of a component). Last, not

only verification is worth studying in this context. Proper specification of component

interactions may open up a gateway to component-based systems optimizations, con-

struction strategies, or error prevention, which are the topics of real practical needs. We

hope that the Component-interaction automata will contribute to answering them.

References

[1] J. Adamek. Enhancing behavior protocols. Master’s thesis, Charles University,

Prague, Faculty of Mathematics and Physics, Czech Republic, September 2001.

[2] R. J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon

University, School of Computer Science, USA, May 1997.

[3] R. J. Allen and D. Garlan. The wright architectural specification language. Tech-

nical Report CMU-CS-96-TBD, Carnegie Mellon University, School of Computer

Science, USA, September 1996.

[4] D. Balek, F. Plasil, and R. Janecek. SOFA/DCUP: Architecture for component trad-

ing and dynamic updating. In Proceedings of the 4th International Conference on Con-

figurable Distributed Systems (ICCDS’98), pages 43–51, Annapolis, Maryland, USA,

May 1998. IEEE Computer Society, USA.

[5] T. Barros. Formal Specification and Verification of Distributed Component Systems. PhD

thesis, Université de Nice – Sophia Antipolis, France, November 2005.

[6] T. Barros, R. Boulifa, and E. Madelaine. Parameterized models for distributed Java

objects. In Proceedings of the 24th International Conference on Formal Techniques for Net-

worked and Distributed Systems (FORTE’04), pages 43–60, Madrid, Spain, September

2004. LNCS Springer-Verlag.

[7] M. Beek, C. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team automata

for groupware systems. Computer Supported Cooperative Work — The Journal of Col-

laborative Computing, 12(1):21–69, February 2003.

[8] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova. Component-Interaction au-

tomata as a verification-oriented component-based system specification. In Pro-

ceedings of the ESEC/FSE Workshop on Specification and Verification of Component-Based

23

Systems (SAVCBS’05), pages 31–38, Lisbon, Portugal, September 2005. Iowa State

University, USA. Published also in ACM SIGSOFT Software Engineering Notes,

Volume 31, Issue 2 (March 2006).

[9] E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal Component Model, version

2.0-3, February 2004.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, USA,

January 2000.

[11] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 9th

Annual Symposium on Foundations of Software Engineering (FSE’01), pages 109–120,

Vienna, Austria, September 2001. ACM Press, USA.

[12] L. de Alfaro and T. A. Henzinger. Interface-based design. In Proceedings of the 2004

Marktoberdorf Summer School, Germany, 2005. Kluwer, The Netherlands.

[13] C. Ellis. Team automata for groupware systems. In Proceedings of the International

ACM SIGGROUP Conference on Supporting Group Work: The Integration Challenge

(GROUP’97), pages 415–424, Phoenix, AZ, USA, November 1997. ACM Press, USA.

[14] D. Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD the-

sis, University of London, Imperial College of Science, Technology and Medicine,

UK, January 1999.

[15] G. T. Heineman and W. T. Councill. Component Based Software Engineering: Putting

the Pieces Together. Addison-Wesley Professional, June 2001.

[16] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[17] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed al-

gorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of Distrib-

uted Computing (PODC’87), pages 137–151, Vancouver, Canada, August 1987. ACM

Press, USA.

[18] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software

architectures. In Proceedings of the 5th European Software Engineering Conference

(ESEC’95), pages 137–153, Sitges, Spain, September 1995. Springer-Verlag, UK.

24

[19] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software ar-

chitectures. In Proceedings of the 1st Working IFIP Conference on Software Architec-

ture (WICSA’99), pages 35–50, San Antonio, TX, USA, February 1999. Kluwer, The

Netherlands.

[20] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Trans-

actions on Software Engineering, 28(11):1056–1076, November 2002.

[21] M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. Master’s

thesis, Massachusetts Institute of Technology, Laboratory for Computer Science,

USA, April 1987.

25

