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Abstract

An own design of an indexing structure for general graph structured data called�-index that allows an effective processing of special path queries is presented.

These special queries represent for example a search for all paths lying between

two arbitrary vertices limited to a certain path length. The �-index is a multilevel

balanced tree structure where each node is created with a certain graph transforma-

tion and described by modified adjacency matrix. Hence, �-index indexes all the

paths to a predefined length l inclusive. The search algorithm is then able to find

all the paths shorter than or having the length l and some of the paths longer then

the predefined l lying between any two vertices in the indexed graph. The designed

search algorithm exploits a special graph structure, a transcription graph, to com-

pute the result using the �-index . We also present an experimental evaluation of the

process of creating the �-index on graphs with different sizes and also a complexity

evaluation of the search algorithm that uses the �-index.
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Figure 1: An example of a connection between vertices A and B. Two paths originated

in A and B connected in a common vertex X.

1 Introduction

In the context of the Semantic Web, �-operators are proposed in [5] as a mean to explore

complex relationships [16] between entities. The problem of searching for the complex

relationships can be modeled as the process of searching paths in a graph where various

entities represent vertices and edges the direct relationships between them. In case of

the semantic web the resources or classes and edges the properties between them. The

notion of complex relationships can be also identified in bibliographic digital libraries,

where entities are publications and the relationship can represent references or direct

citations between them.

As proposed in [5], we recognize two kinds of complex relationships. The first one

is represented by a path lying between two inspected vertices. Speaking in terms of

publications this means that one publication indirectly cites or references the other pub-

lication – a chain of publications can be built so that one cites another. The second type

of complex relationship is a connection between two inspected vertices. This symbolizes

a fact that the two inspected publications indirectly cite one common publication, see

Figure 1 for an example of this kind of complex relationship.

The knowledge about complex relationships among publications can be used for

example for ranking the result of the search for publications using the complex rela-

tionship discovery among entities present in the result and then sorting them according

to that information. Another use case can be an automated recommendation of pub-

lications based on the preferred set of publications by searching for close connections
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between the publications from the preferred set. Intuitively, the complex relationship

discovery has sense in any other field of interest that incorporates graph structured

data. For that reason, this paper introduces an indexing technique called the �-index

that enables efficient discovery of all complex relationships between any two inspected

entities in large collections of arbitrary graph structured data.

This paper is then structured as follows, Section 2 presents related work in the field

of indexing graph structured data, Section 3 is a brief insight into the design of the

proposed indexing structure. Section 4 introduces a search algorithm that is used to

discover all paths between any two vertices in the indexed graph using �-index. Conse-

quently, the experimental evaluation of the designed indexing structure and the search

algorithm is in Section 5. Finally, this paper is concluded and some directions of the

future work are proposed in Section 6.

2 Related Work

The problem of answering various graph queries has two possible solutions. One is

through an algorithmic on the fly query answering and the other one is preprocessing

some indexing structure that would ease the computational complexity of the query

processing.

Firstly we discuss one of the on the fly algorithmic approaches which is Tarjan’s

algorithmic solution to a single source path expression problem from [14, 15] which can

be used to answer the queries for all paths lying between any two vertices in a graph.

Hence, given a graph G = (V;E) and a distinguished source vertex s, for each vertex v
find a regular expression P(s; v)which represents all paths from s to v in G. The problem

is that the algorithm is designated to be used only on directed acyclic graph (DAG).

Although, there is a transformation proposed to covert an arbitrary graph to DAG, the

computational complexity of the algorithmic solution is O(jEj) making it infeasible for

efficient query processing.

The indexing structures that can be used for efficient search for all paths lying be-

tween two vertices in a graph were designed for RDF [10] graphs. A short example of

a RDF graph is depicted in Figure 2. The first index [5] was designed directly for the

purpose of implementing the �-operators that represent the search for the complex re-

lationships in RDF graphs. Its concept is that it creates a matrix for each RDF schema

[8] that takes part in the indexed RDF graph where each entry of the matrix represents
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Figure 2: An example of the RDF graph.

all paths between the entities in the schema. This approach indexes only the schema

part of the graph due to the computational and store complexity of the index. When

candidate paths are retrieved from the index the actual existence of their instances in

the knowledge base is checked.

The second indexing structure [1] that has been introduced for RDF graphs and can

be used to process the queries concerning the complex relationships among vertices

in a graph is based on path expressions and suffix arrays [11]. The base idea lies in

extracting all possible path expressions from the indexed graph and consequently create

all suffix arrays on string representations of the path expressions. The main drawback

of this approach lays in its limitation of application to DAGs. Therefore, in this paper

we introduce our own indexing structure for efficient query processing of path oriented

queries.
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Nonetheless, the search for complex relationships can be reduced to a reachability

query answering. Simply, instead of returning all paths lying between two inspected

vertices a single boolean value is returned answering a question whether the start vertex

can reach the end one. There are numerous algorithmic approaches to solve this prob-

lem varying mostly by the structures they use to compute the transitive closure of the

relation. They are either a matrix based like [3] that are based on Warshall’s algorithm

[17] or the graph based algorithms [12, 13] or combining both approaches which results

in a algorithm [4]. The indexing structures for efficient reachability query processing

are labeling schemes that stem from the XML and tree structure labeling schemes. The

most popular labeling schemes are based on either interval labeling scheme [2] or on a

structural approach like [9] or again combining both in a hierarchical labeling presented

in [18]. Yet, these approaches can be used only to distinguish the existence of a complex

relationship between two vertices, further inspection of the complex relationship itself

is not possible.

3 Design of the index

The graph theory proved that a very handy representation of a directed graph is its

adjacency matrix because using matrix algebra we can comfortably study the graph’s

properties. For instance, if the adjacency matrix is powered by two, each field in the re-

sulting matrix contains a number of paths of length two lying between each two vertices

in the original graph. If the computation continued, the result would contain amounts

of all paths of an arbitrary length. Moreover, with a slight modification of the matrix

that is introduced later in this section we would get not just the amounts of paths but

the paths themselves.

Main difficulty of matrix representation of a graph is that its use is limited to fairly

small graphs since the matrix grows in the quadratic space and the multiplication op-

eration on matrices has even cubic time complexity. Therefore, we introduce graph

transformation to enable the use of the matrix approach to graphs of arbitrary size.

3.1 Graph Segmentation

The graph transformation designed to simplify the graph we used is called graph seg-

mentation. It takes the indexed graph and divides it into segments in a way that each

vertex is contained in some segment and once assigned to a segment such vertex is not
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assigned to any other segment. Precise definition can be found in Definition 3.1. The

main difference between subgraph and segment of a graph is that segment can contain

edges which’s both vertices are not in the same segment.

Definition 3.1. Graph segment and a graph segmentation:� LEFT_V(e) = v1 , e = (v1; v2)� RIGHT_V(e) = v2 , e = (v1; v2)
Segment S in a graph G : S = (VS; ES) : VS � V ^ ES = fe 2 E j RIGHT_V(e) 2 VS _LEFT_V(e) 2 VSg
Segmentation S(G) = fSjS is a segment of Gg ^ 8S; S 0 2 S(G); S 6= S 0 : VS \ VS 0 =; ^ SS2S(G)VS = V
Afterward, the vertices and edges between vertices within one segment form a sub-

graph of the indexed graph. The edges lying between vertices assigned to different

segments form edges in the simplified graph. Segments then form the vertices in the

simplified graph what we call a segment graph which is defined in Definition 3.2. By

this transformation, multiple edges can appear between vertices in the new graph. Re-

gardless, each multiple edge can be substituted by a single edge since from a path point

of view it means a redundant information.

Definition 3.2. Segment graph of G:SG(G) = (S(G); X); X = fhjh = (Si; Sj) , 1 � i; j � k ^ EDGES_OUT(Si) \EDGES_IN(Sj) 6= ;g
where k is the number of segments in S(G).
The segment graph SG(G) has very similar properties as the graph G. Any path fol-

lowed in the indexed graph can be observed also in the segment graph. Since we left out

only the inner edges of each segment. This simplified path in the segment graph we call

a sequence of segments just to avoid confusion of terms, see Definition 3.3. Intuitively,

each path in the indexed path can be represented by only one sequence of segments.

The method to transform a path into a sequence of segments is to replace each group

of vertices and inner edges of each segment by that particular segment and to replace

each edge lying between two two vertices assigned to different segments by a particular

edge from X, with regard to the Definition 3.2 such edge always exists.
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Definition 3.3. Sequence of segments:

EDGES_OUT(S) = feje 2 ES ^ LEFT_V(e) 2 VS^^RIGHT_V(e) 62 VSg
EDGES_IN(S) = feje 2 ES ^ RIGHT_V(e) 2 VS^^LEFT_V(e) 62 VSg

Sequence of segments (S1 : : : Sl) : S1; : : : Sl 2 S(G); 1 � i � l - 1 : EDGES_OUT(Si) \EDGES_IN(Si+1) 6= ;
Thereafter, each of the segments can be represented by its path type adjacency ma-

trix. A path type adjacency matrix is a modification of a usual adjacency matrix known

from graph theory. It is designed to represent a graph in a path oriented way. It stores

paths in its fields instead of just amounts of those paths. Initially, in each field path type

matrix contains a path consisting of a single edge whenever there is an edge between

two vertices in the graph. The convenience it presents over the usual adjacency ma-

trix is that after the transitive closure of the path type matrix is computed – the fields

contain not just an amount of paths lying between any two vertices, but also the paths

themselves. Naturally, the mathematical operations on numbers + and � are replaced

by the respective operations on paths – set union and concatenation.

Using the graph segmentation one large graph (G) can be transformed into a smaller

simplified graph (SG(G)) by identifying certain number of segments and collapsing

them into single vertices. The size of the segment by which we mean a number of

vertices in the segment can be easily controlled. If the transformed graph is still too big

to be described by its path type matrix the whole procedure can be repeatedly applied

again taking as an input the already simplified graph. Thus we can acquire a multilevel

indexing structure where each vertex represents a graph on the lower level.

Hence, the creation of the �-index accompanies a graph segmentation followed by a

computation of the path type matrix for each segment. This step is repeated until we get

a graph that we are able to describe by its path type adjacency matrix. A size of segments

may vary on every particular level. Therefore the maximal sizes of the segments at each

level form the parameter settings of the �-index. Examples of the parameter settings for�-index creation are discussed in Section 5. The visual outline of the indexing structure

is in Figure 3.
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Figure 3: Structure outline of the �-index.

3.2 Graph Segmentation Method and Strategy

Various ways how to assign the vertices to segments have been identified and studied.

One of them was a graph to forest of trees transformation which’s result is a forest of

trees and was proposed in [6]. Combination of vertex clustering and the graph to forest

of trees transformation together with its preliminary evaluation can be found in [7].

Further implementation and evaluation showed that the graph to forest of trees makes

the resulting indexing structure very tangled and therefore the search algorithm did not

present good results.

Therefore, for the experimental evaluation presented in this paper we have chosen

the vertex clustering as a segmentation method. Initially it puts a single vertex into setVS. Afterwards it incrementally enlarges the segment with vertices to which or from

leads an edge to this vertex. Those edges then form the set ES. This continues until a

maximal number of vertices in VS is reached. For each level the maximal number of

vertices in VS is stated as a parameter.

The nature of the �-index tree structure is very dependent on the settings for the

maximal number of vertices in VS at each level. Intuitively, by setting small sizes of the

segments a slim and high tree can be created. On the other hand, using a large number

at first level a wide and low tree is acquired. The evaluation of different parameter

settings and how they affect the search itself is demonstrated in Section 5.
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3.3 Sequence of Segments Properties

As we mentioned above, each path on a lower level can be represented by some segment

sequence on the upper level. Intuitively, some two different paths can be represented by

one segment sequence. Some of those path are called connecting paths and are defined in

Definition 3.4. The main property of a connecting path is that it starts with an common

edge of first two segments and ends with a common edge of last two segments in the

sequence of segments.

Definition 3.4. Connecting path in a sequence of segments:

Common edges CEi for (S1 : : : Sl): 1 � i � l - 1 : CEi = EDGES_OUT(Si) \EDGES_IN(Si+1)
Connecting path p = (e1e2 : : : en) 2 (S1 : : : Sl) : e1 2 CE1 ^ en 2 CEl-1 ^9i2; i3; : : : il-1 : 1 < i2 < i3 < : : : < il-1 < n : fe2; : : : ei2g � ES2 ^ fei2; : : : ei3g �ES3 ^ : : : ^ feil-2; : : : eil-1g � ESl-1
In general, each segment sequence can represent a huge amount of paths of different

lengths. This is because each segment represents a subgraph in which paths with differ-

ent lengths can be found. Important to us is knowledge of a length of the shortest path

that the particular segment sequence represents. Obviously, the shortest path is one of

the connecting paths. The length of the shortest path is then referred to as a weight of

the sequence of segments. We have chosen weight instead of length because length of a

segment sequence means the length of the sequence but the more important to us is the

length of the shortest path it actually represents. Therefore, if we want to compute all

the paths to the length l we have to store all the segment sequences having its weight

less or equal to l. This parameter l then forms a path length limit that is to be indexed.

Seemingly, to compute the weight of the sequence of segments (S1 : : : Sl) we would

have to compute all its connecting paths to find out which of them is the shortest. But

an enhanced algorithm does not compute all the connecting paths but only one short-

est connecting path for each combination of common edges picked from all CEis, see

Definition 3.4. Thus we have an upper bound on a number of connecting paths to be

computed for each sequence of segments.

Due to the fact that the weight of a segment sequence represents the length of a

shortest path it represents, it also represents some of the paths that are longer then its

minimal weight. Therefore, using �-index we can compute surely all the paths to the

length l but also some of the paths that are actually longer than the specified l. As
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we will show in the evaluation in Section 5 the amounts of paths longer then l is not

insignificant, yet we realize that this fact highly depends on the nature of the data on

which the �-index is being used.

4 The search algorithm

In this section we describe the algorithm for discovery of all paths to a certain length

between two vertices in the indexed graph using �-index. Firstly, the algorithm looks

up the segments the start and end vertex are assigned to. If we have more than two

levels in the �-index it looks up to which segments on the upper level are assigned the

segments acquired in the previous step. This continues until we reach the top level of

the �-index or we get one common segment for both vertices. This process goes from

the bottom of the structure to the top. From the definition of the graph segmentation

each vertex or segment belongs to one segment on the upper level. Therefore, for each

vertex in the original graph only one segment exists at each level that contains it.

4.1 The Transcription Graph

A special graph structure is used to represent the result throughout the algorithm com-

putation. It is a transcription graph where the vertices and edges are replaced by sub-

graphs retrieved from the �-index. The vertices in the transcription graph are either the

segments of the �-index or the vertices of the indexed graph. Those are considered to

form the lowest level of the �-index. The transcription graph contains four special kinds

of edges:

(0, 0, 0)

v1

E
K L

F
v10

YX

(1, 1, 0)

(2, 2, 0)

(4, 3, 1)(3, 3, 0)

(5, 2, 1)

(6, 1, 1)

(7, 0, 1)

Y
(4, 3, 1)

segment name

order from left

edges:

min path length from start

transitionTo

existsPathTo

isSuperiorToRight

belongsToRightlevel number

Figure 4: Example of an initial transcription graph.
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1.

2.
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Figure 5: Transcription of a transition to a lower level.

transitionTo denotes an existance of a transition (edge) between vertices at the partic-

ular level.

existsPathTo indicates an edge that can be replaced by a subgraph from �-index con-

sisting of vertices at the same level and transitions between them, representing all

sequences of segments lying between these two vertices. This edge may be only

between two vertices that are assigned to one common segment on a higher level.

belongsToRight represents the relationship of containment, a vertex from a lower level

belongs to a vertex on a higher level.

isSuperiorToRight is an opposite of the previous relationship, it means that the vertex

at a higher level contains the vertex on a lower level.

Figure 4 demonstrates an initial state of the transcription graph for a search of all

paths between vertices 1 and 10 in �-index having four levels. The vertices are assigned

to respective segments on upper levels and on the topmost level an existence of a path

is supposed between the segments at the highest level.

The concept of the transcription process is to take the initial transcription graph and

transform it to a graph which comprises of only vertices at the lowest level and all

edges are of the transitionTo type. To achieve this, all the segments and edges at the

higher levels need to be processed – transcribed – into entities at lower levels until we

achieve the stop condition of the algorithm. Firstly, it replaces the existsPathTo edge by

a respective subgraph of sequences of segments lying between the two vertices where

all the edges are transitions. Secondly, all of the transitions concerning the particular
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segment, that is to be transformed into entities on the lower level, each transition orig-

inated or terminated at this segment is replaced by a subgraph of segments at a lower

level connected to this segment by the type of edges connecting segments on different

levels. This transformation is demonstrated in Figure 5 as the first step in the process.

The transition between the segments X and Z is transformed into a transition between

segments L and K, but on a lower level. This fact indicates, that there exists a border

edge between segments X and Y which is originated in K and terminated in L, where K
belongs to segment X and L is assigned to segment Y. If there existed any other border

edges they would also appear in the transcription graph at this point.

Once the segment has only edges connecting it to other segments on a lower level it

is transformed into lower level entities by connecting each entity on the left side with

each entity on the right side with an existPathTo type of an edge going from left to right.

This is demonstrated in Figure 5 by a step number 2 and 3. The transformed segment

and all its connecting edges to lower levels are removed from the graph.

As for the transcription strategy during the transcription process, each vertex in

the transcription graph is assigned two important numbers which are kept updated

through the whole computation. The first number is the vertex’s order from left and the

other one is a length of a shortest path between the start vertex and this particular ver-

tex. The left order number makes possible to have the vertices sorted by their position

in the transcription graph as the algorithm processes its vertices strictly from left to

right. Since the left order number is a floating point number, every time the process

needs to insert a vertex between other two vertices there is always a gap between their

left orders. Therefore, the transcription graph forms a special type of a directed graph

referred to as a network which is also a DAG. Since, vertices can be ordered by its left

order number and it is true that there is no edge pointing from a vertex with higher left

order to a vertex with a smaller left order.

The length of a shortest path from the start vertex is used to limit the weight of

segment sequences that are retrieved from the index to replace the path edges in the

transcription graph. It considers the length of an already computed piece of path from

the start vertex to the particular vertex. The segment sequences of a maximal weight

of a difference of the already computed piece of the result and the maximal length of

a desired path, our l, are retrieved and placed into the transcription graph. This fact

assures that the algorithm will actually stop for any input because if it is not possible to

reach the end vertex from a segment by a sequence of segments with a weight less then
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Figure 6: Vertex degree distribution in the synthetic graph G5000.
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Figure 7: Vertex degree distribution in the synthetic graph G10000.l considering the already minimal length of a path, the whole branch is removed from

the transcription graph.

When the process finishes the resulting transcription graph represents either a net-

work of all paths initiated in the start vertex and terminated in the end vertex with a

length lower or equal to the predefined l and some paths longer than l due to the na-

ture of the graph segmentation. All that with respect to the paths that are in the indexed

graph. If there are no paths shorter than l between the start and end vertex the resulting

transcription graph will have only two vertices and no edges.

5 Experimental evaluation

In this section we present and discuss the results gained by the indexing structure and

its search algorithm introduced in this paper. As a testing data we have used generated

synthetic data which’s properties are described later in this section.

As follows, the set of experiments performed took as a testing data generated graphs

having sizes growing from 5,000 to 30,000 vertices and from 10,000 to 60,000 edges.

The graphs were generated iteratively using a small core graph in the first step. In
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Figure 8: Vertex degree distribution in the synthetic graph G20000.
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Figure 9: Vertex degree distribution in the synthetic graph G30000.

each iteration a smaller graph was enlarged by randomly adding edges between newly

added vertices or between a new vertex and an old vertex with a random direction. The

probability of where the edge was placed was equal to the proportion of the number of

vertices in the smaller graph to the number of vertices in the newly built graph. In the

rest of this paper we will refer to these graphs as G5000, G10000, G20000 and G30000

with respect to the number of vertices contained in the testing graph. The vertex degree

distribution of the testing graphs is illustrated in Figures 6, 7, 8 and 9.

This way we gained graphs with different sizes and having the property that the

smaller graph is always a subgraph of any of the larger graphs. This property is very

important when we evaluate the experiments that compare the search results in graphs

with different sizes, because the result of a search performed on a smaller graph is also

a subset of a search result of the same search performed on any larger graph. So its true

that G5000 � G10000 � G20000 � G30000.

As we performed all the experiments described in the following sections we stated

the maximal indexing length l to be 10. The �-index then was built to index all the paths

up to this length and the search then returns all the paths to this length and some paths
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Figure 10: A �-index creation time.

longer. Due to the space limitations of this paper we will not present a detailed insight

into what means some in exact numbers. Yet we briefly tackle this issue in Section 5.3.

As for the machinery on which we executed all our experiments concerning the �-

index, the computer is a dual double core Athlon Opteron 2.4 GHz with a 12 GB of

RAM. During the time the tests were run the computer was not dedicated to only that

task so all the experiments were ran multiple times and the results depicted are averages

of the results thus gained.

5.1 �-index Creation Time

First of all we present how much time the creation of the �-index consumes for certain

sizes of the testing graphs and particular parameter setting. Figure 10 represents the

experiments performed on our four testing graphs. The �-index created for each graph

had 4 levels. The maximal size of a segment on the lowest level is represented by the

values on the x-axis. The other parameters were chosen to be 10 at the second level, 5

on the third and 2 at the top level. Just to remind the parameters are the maximal sizes

of the segment at the particular level.

The results of this evaluation showed that the �-index is sensitive to underfill of the

structure. This can be observed for the case of the smallest graph when even the ideal

parameter setting which is around the value 8 for the max segment size for the lowest

level lead into a creation time which was greater than the best time of a graph twice as
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Figure 11: A �-index search complexity with respect to the graph size.

large. We assume that this is caused by a inadequate �-index setting. The �-index for

this testing graph should have been created using only three levels or smaller maximal

segment sizes at the second and third level.

The creation times of the remaining three graphs indicate that the �-index is highly

dependent on the parameter setting. We can observe that the creation times form a

curve of a parabolic shape for all graphs and the size of the testing graph determine the

shift of the values on the y-axis. This implies that the optimum parameter setting can

be easily predicted for graphs at this particular graph size category upon these exper-

imental results. As a category we consider a graphs of a similar size and connectivity.

In this case the category is formed by graphs having from 10,000 to 30,000 vertices and

20,000 to 60,000 edges respectively.

5.2 Search Complexity

This group of experiments performed describe the complexity of the search algorithm

using the �-index to search all paths to a certain length in respect to the size of the graph

on which the search was performed. Figure 11 demonstrates the experiments where the

parameter settings were fixed and the size of the graph grew. As we mentioned earlier

in this section, the result of the search of the larger graph contains all the search results

of the smaller graphs, thus they are comparable.

Both parts of Figure 11 refer to the same results of the same experiments. They only

differ in the y-axis scale. The left part depicts the results in the whole scale, the right

part depicts them ranging from 0 to 80,000 of processed vertices.
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The particular curves represent the algorithms used to perform the search of all paths

lying between two vertices. The lines labeled with the prefix seq represent a sequential

algorithm. This algorithm represents an upper bound of a way to solve the problem of

searching all path between two vertices to a certain length. It is a depth first search that

tries to recursively build a path of a some maximum length. The number in the label

states the maximal length of a searched path.

In Figure 11 are present two results for a sequential algorithm seq. This is caused by

the nature of the �-index and its search algorithm which results in a fact that all paths to

a specified length l to which the �-index was built are returned and some of the paths

longer than l are also returned by the search algorithm. That implies for the result of the

search using �-index that is true: seq(l)� �-index�seq(l+k) for a particular k, where the

set inclusion is meant on the results of the search algorithms. For that reason we also

present the complexity of the algorithm seq(12) which represents the sequential scan for

all paths to the length 12. The rough comparison of the complexity measured for the

sequential algorithm with the length set to 10 and 12 we can observe that the growth is

exponential.

Another approach to the problem of searching all paths lying between two vertices in

a directed graph is a direct computation using the Tarjan’s algorithms described in [14]

and [15]. The algorithm works in a time complexity n � log(m) where n represents the

number of edges in the graph and m the number of vertices in the graph. The algorithm

takes a flow graph on the input and a start vertex and returns the path expressions

(regular expressions where the letters are edges of the flow graph) representing all paths

to all vertices in a graph on the output. A flow graph is a special type of a directed graph

which allows only one source vertex in the graph and no cycles. There exist a non-trivial

transformation of an arbitrary directed graph into a flow graph. This computational

overhead of the graph transformation is not included in the complexity of the Tarjan’s

algorithm.

In the progress of the search computational complexity of our designed index struc-

ture and algorithm a decrease of the complexity can be observed for the graphs G5000

and G10000. As we mentioned in the previous subsection, this is due to the underfill of

the search structure. The parameter settings used to built the �-indexfor each of the test-

ing graphs were the optimal ones for each particular graph. Again only the max size of

the segment on the lowest level varied and the rest of the parameter settings remained

same for all testing graphs.
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Figure 12: A �-index search complexity of queries with different maximal search length.

5.3 Search Complexity of Queries with Limited Maximal Length

To this point we always considered the maximal length of the searched path by the

search algorithm to be the same as the maximal length that was used to create the �-

index. In this subsection we explore the behavior of the search algorithm when the

maximal length of the searched path is its parameter.

As we refer to the maximal length l of the indexed path, we refer to the maximal

length of a searched path as softL. Setting this parameter does not limit the search to

return paths longer than softL but again it must not necessarily find all of them.

Thus Figure 12 represents searches executed on the graph G10000 and with the pa-

rameters set to 30, 10, 5 and 2. The �-index was computed with l equal to 10. The

x-axis then represents the values of the softL parameter and the curves represent the

respective algorithms used to compute the result.

To make the Tarjan’s approach comparable with ours and the sequential algorithm

we approximated the computational complexity by limiting the input graph to only

those vertices and edges that are reachable within softL steps.

As for the number of the found paths, the sequential algorithm finds all paths to

the length of softL, our algorithm finds all the paths to the length of softL and some

of the paths that are longer than that. Figure 13 represents the percentage of paths not

found that have length greater than softL for each particular length. Although we ran

the experiment for the softL value of 3 the curve representing returned results is not
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Figure 13: A �-index percentage of paths longer than softL not found.

present here since it returns no paths for this softL value. For softL value 5 it finds no

path longer than 5 so the curve reaches immediately 100 percent at length 6.

At this point we have to point out that the amount of paths increases in exponential

manner, what means that the amount of paths of length 12 between the testing start

and end vertex actually present in G1000 is 1821 and the amount of paths of length 14

between the same two vertices is 12644. So even if we find really low percentage of the

paths present in the indexed graph, their amount can easily reach tens of thousands.

For illustration, for the softL = l = 10 and a path length of 24 the amount of found

paths is 72,000 and the longest found path has a length of 42.

5.4 Search Complexity Affected by the Parameter Settings

Since the �-index can be created for one particular graph using different parameter set-

tings and as we could see from this section, also having different properties, we explore

the correlation between certain parameter setting and the complexity of the searches

performed on the respective indexing structures built upon one particular testing graph.

Again we have chosen the testing graph G10000. The parameter settings differed in

the maximal size of a segment on the lowest level, the upper level settings remained the

same for all tests. Consequently, Figure 14 depicts the relation between the parameter

settings and the average search complexity for thus created �-index. This curve is falling

with the increase of the cluster size. The dashed curve in Figure 14 reflects the creation
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Figure 14: A �-index search complexity related to the parameter setting.

time of the �-index for that particular parameter setting. The time is is in minutes mul-

tiplied by 1000 to make the curve visible in this scale. On the contrary, the progress of

this curve is rising as the �-index structure is becoming underfilled. We have already

seen this behavior in Figure 10 at all graph sizes at the rising part of the parabolas.

These facts represent a creation and search tradeoff. We gain better creation time

results for certain parameter settings but on the other hand we get worse search com-

plexity results. This tradeoff has even one more dimension which is the amount of paths

returned that are longer then l. Due to the space limitations we are not able to discuss

this dependence more in detail.

6 Concluding Remarks & Future Work

Our goal was to design an indexing structure that would make possible an effective

discovery of paths having special properties in a large graph. The first objective was

to find all paths to certain length l between any two vertices. Also we still get some

amount of paths longer than the specified l as an approximation.

For brevity, in this paper we did not presented all the experiments we have con-

ducted in respect to explore the behavior of the designed �-index. For example we

tackled the issue of the parameter settings modification also at the upper levels of the

indexing structure and their impact on the particular �-index creation time and conse-

quent search complexity.

20



Hence, to this relates also our next future work. Firstly we want to carry out more

tests to be able to precisely predict the �-index properties under certain parameter set-

tings and hence to be able to find optimal settings for the testing data. Afterwards, we

would like to carry out tests on more testing data in order to investigate the scalability

of the �-index in respect to the number of vertices and to the number of edges in the in-

dexed data. In our near future work we would also like to implement the algorithm for

discovering all connections between two vertices as the �-index allows such utilization

according to [6].
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[7] S. Bartoň and P. Zezula. Rho-index - an index for graph structured data. In 8th International

Workshop of the DELOS Network of Excellence on Digital Libraries, pages 57–64, 2005.

[8] D. Brickley and R. V. Guha. Resource Description Framework Schema specification. 2000.

[9] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via

2-hop labels. In Proceedings of the 13th ACM-SIAM SODA, pages 937–946, 2002.

[10] O. Lassila and R. R. Swick. Resource Description Framework: Model and Syntax specifica-

tion. 1999.

21



[11] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. In

SODA ’90: Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pages

319–327, Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics.

[12] P. W. Purdom. A transitive closure algorithm. BIT, 10:76–94, 1970.

[13] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on computing, pages

146–160, 1972.

[14] R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594–614, 1981.

[15] R. E. Tarjan. A unified approach to path problems. J. ACM, 28(3):577–593, 1981.

[16] S. Thacker, A. Sheth, and S. Patel. Complex relationships for the semantic web. In D. Fensel,

J. Hendler, H. Liebermann, and W. Wahlster, editors, Spinning the Semantic Web. MIT Press,

2002.

[17] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

[18] X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent structure

analysis. ACM Transactions on Database Systems, 30(4):960–993, 2005.

22


