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Abstract

Probabilistic processes are used to model concurrent programs that exhibit uncer-
tainty. The state explosion problem for probabilistic systems is more critical than in
the non-probabilistic case. In the paper we propose a cluster-based algorithm for

qualitative LTL model checking of finite state Markov decision processes. We use

*This work has been partially supported by the Grant Agency of Czech Republic grant No.
201/06/1338 and the Academy of Sciences grant No. 1ET408050503.
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the automata approach which reduces the model checking problem to the question
of existence of an accepting end component. The algorithm uses repeated reachabil-
ity which systematically eliminates states that cannot belong to any accepting end
component. A distinguished feature of the distributed algorithm is that its complex-

ity meets the complexity of the best known sequential algorithm.

1 Introduction

Probabilistic systems like Markov chains and Markov decision processes provide a rea-
sonable semantics for systems that exhibit uncertainty. A number of qualitative and
quantitative model checking algorithms for finite state probabilistic systems have been
proposed [18, 29, 11, 1, 12, 20, 13]. In a qualitative setting it is checked whether a prop-
erty holds with probability 0 or 1; in a quantitative setting it is verified whether the
probability for a certain property meets a given lower or upper bound.

For probabilistic systems the state explosion problem is more critical than in the
non-probabilistic case. Several methods that have been developed for non-probabilistic
systems to avoid the state explosion were adapted to probabilistic systems. For branch-
ing time logics these are the symbolic approach [4] implemented in the model checker
PRISM [22, 19] and the MDP model checker RAPTURE [8] which uses an iterative
abstraction refinement. For linear time logic the most prominent partial order ap-
proach has been recently adapted as well [5, 3] and implemented in the verification
tool LiQuor [9].

Over the past decade, many techniques using distributed and/or parallel process-
ing have been proposed to combat the computational complexity of non-probabilistic
verification, model checking in particular. However, not much has been done in apply-
ing these techniques to the verification and analysis of probabilistic systems. A notable
exception is the work on parallelizing the symbolic model checker PRISM [33, 34, 23].

In this paper we focus on the qualitative model checking of finite state Markov deci-
sion processes (MDPs) against LTL properties. We propose a distributed-memory algo-
rithm that solves the problem and exhibits the complexity of the sequential approach.
This is a surprising result as the parallelization of LTL model checking usually costs
extra time or space.

We use the automata-theoretic approach [29, 12, 14]. From the negation of a formula

we construct a deterministic automaton on infinite words and check the existence of an



accepting end component in the product-MDP resulting from the given MDP and the
constructed automaton (probabilistic satisfaction problem).

It is very important to stress that this approach requires a determinization of the
Biichi automaton obtained from the LTL formula. If the initial Biichi automaton is de-
terministic, the probabilistic emptiness problem can be solved in polynomial time [31].
As deterministic Biichi automata are strictly less powerful than nondeterministic, one
has to go to a more general type of w-automaton. In [29] deterministic Rabin automata
are used, while in [12] the authors consider Biichi automata deterministic in limit which
leads to a slight improvment of the complexity of [29]. In the sequential case the LTL
model checking problem for MDPs is hard for doubly exponential time, and can be
solved in time doubly exponential in the specification and quadratic in the size of the
program.

The sequential algorithms check the probabilistic satisfaction problem by repeated
decomposition of the product graph into strongly connected components and subse-
quent removing of states that violate the “ergodic” condition. Distributed decomposi-
tion of a graph into SCCs is difficult to parallelize. Therefore, our new algorithm relies
on a radically different approach for checking the probabilistic satisfaction problem.
The basic idea comes from the distributed SCC-based algorithm for LTL model check-
ing of non-probabilistic systems. To check the probabilistic satisfaction problem it is not
necessary to decompose the graph into SCCs as the existence of an accepting end com-
ponent can be checked easier by repeated reachability which systematically eliminates
states that cannot belong to any accepting end components. Our algorithm as presented
here has the complexity O(|MJ2 - 22",

2 Qualitative LTL Model Checking

Rabin automata. A deterministic Rabin automaton is a tuple A = (X, Q, qinit, 0, Acc),

where I is a finite alphabet, Q is a finite set of states, qinit € Q is an initial state, & :

Q x I — Q is a (complete) transition function and Acc = [(L;, U;),..., (L, Uy)], with
Li, Ui C Qfori=1,... k, is an acceptance condition.
A run of A over an infinite word w = a;a; ... is a sequence qo, q1, . .., where qo =

Qinit and 8(qi 1,a;i) = gi foralli > 1. Acceptance is defined in terms of limits. The limit

ofarunr = qo, qi,...is thesetlim(r) = {q | ¢ = q; infinitely often}. A run ris accepting



if lim(r) N L; # 0 and lim(r) N U; = () for some i. We denote by L(A) the set of all infinite

words with an accepting run.

Linear Temporal Logic (LTL). Formulas of LTL are built from a set AP of atomic propo-
sitions and are closed under the application of Boolean connectives, the unary temporal
connective X (next), and the binary temporal connective U (until). LTL is interpreted
over computations. A computation is a function : w — AP, which assigns truth val-
ues to the elements of AP at each time instant and as such can be viewed as infinite
words over the alphabet 2. For an LTL formula ¢ we denote by L(¢) the set of all

computations satisfying ¢.

Proposition 2.1 ([32, 28]). Given an LTL formula ¢, one can build a deterministic Rabin

automaton A with 22°"'°"" " states and 2°U9) pairs in acceptance condition, such that L(A) =
Lig).

The transformation from LTL formulas to deterministic Rabin automata via nonde-
terministic Biichi automata [32] and Safra’s [28] algorithm leads to a worst case double

exponential blowup, which roughly meets the lower bound established in [21].

Markov decision process (MDP). We use MDP as a model of asynchronous proba-
bilistic systems. In an MDP, any state s might have several outgoing action-labeled
transitions, each of them is associated with a probability distribution which yields the
probabilities for the successor states. In addition, a labeling function attaches to any
state s a set of atomic propositions that are assumed to be fulfilled in state s. The atomic
propositions will serve as atoms to formulate the desired properties in a temporal logic
framework.

Formally, a Markov decision process [16, 26, 30] is a tuple M = (S, Act, P, Sinit, AP, L),
where S is a finite set of states, Act is a finite set of actions, P : (S x Act x S) — [0, 1] is
a (three-dimensional) probability matrix, sinic € S is the initial state , AP is a finite set

of atomic propositions, and L : S — 247

is a labeling function. Act(s) denotes the set of
actions that are enabled in state s, i.e. the set of actions « € Act such that P(s, «, t) >
0 for some state t € S. For any state s € S, we require that Act(s) # () and YV« €
Act(s). ) g Pls, o, s") = 1.

The intuitive operational semantics of an MDP is as follows. If s is the current state
then an action & € Act(s) is chosen nondeterministically and is executed leading to a

state t with probability P(s, ,t). We refer to t as an «-successor of s if P(s, «,t) > 0.



State s is called deterministic if only one action is enabled in s. If all states of an MDP are
deterministic, the MDP is called Markov chain.

An infinite path in an MDP is a sequence T = sp, &1, 81, &2, ... € (S x Act)® such that
a; € Act(si_1) and P(si_1, o, 8i) > O for any i > 1. A trajectory of a path T is the word
L(so),L(s1),L(s2),... over the alphabet 2*” obtained by the projection of T to the state
labels. Finite paths are finite prefixes of infinite paths that end in a state. We use the
notation last(o) for the last state of a finite path o.

A scheduler is a function which resolves the nondeterminism of MDP, and thus, it
yields an exact probability measure on sets of paths of an MDP. We consider determin-
istic history dependent schedulers which are given by a function D assigning an action
D(o) € Act(last(o)) to every finite path 0. Given a a scheduler D, the behavior of M

under D can be formalized as a (possibly infinite state) Markov chain.

Verifying LTL Specifications. Let AP be the alphabet of LTL specification ¢. For an
MDP M and a scheduler D the set of trajectories that satisfy the specification ¢ is mea-
surable [29]. We use Prpp(L(@)) to denote the probability that a trajectory of M un-
der D satisfies the specification ¢. We say that M satisfies ¢ if for all schedulers D,
Pruo(Lie)) = 1.

Our distributed algorithm comes out from the automata-based approach to LTL
model checking. As in the non-probabilistic case, the model is synchronized with the
automaton corresponding to the negation of the formula. However, unlike the non-
probabilistic case, deterministic automata have to be used instead of non-deterministic
Biichi automata. Since we consider deterministic Rabin automata, the synchronization
results in an MDP with Rabin acceptance condition in our case. The model checking
problem is thus reduced to the non-emptiness problem for the product MDP.

Let M = (S, Act,P,sini, AP,L) be an MDP. Let A = (2*°,Q, Qinit, 9,
[(Ly,Wq),..., (Lg, Uyx)]) be a deterministic Rabin automaton. The synchronized prod-
uct of M and A is an MDP M x A = (S x Q, Actmxa, Pmxa,init, AP, Ly a) with
Rabin acceptance condition Accmxa = [(S x L1,S x Uy),..., (S x Li,S x Uy)]l, where

ACtMXA((u)v)) - ACt(U), init = (sinit) qinit)/ LMXA((U‘)V)) - L(LL), and

P(s, o, t) if 3(p,L(s)) =q

0 otherwise.

PMXA((Syp)) &, (ty CI)) - {



Our algorithm rests upon a connection between stochastic properties of an MDP and
its structure when viewed as a graph-like structure. This is exemplified by notions of
end components and accepting end components [14, 12].

Let M x A be a product MDP with Rabin acceptance condition. Consider a directed
labeled graph Gmxa = (S x Q,init, E) where init is an initial state of Gpmxa, E C
(Sx Q) xActx (Sx Q),and E ={(u, &, v) | Pmxalu, x,v) > 0}.

A subgraph (V' E’) of Gmxa forms a strongly connected component (SCC) if for any
two vertices u,v € V'there is a path from u to vin (V', E’). SCC is non-trivial if it has at
least one edge. SCC is terminal if there is no edge (u, @, v) € E outgoing from SCC, i.e.
such thatu € V'and v ¢ V'. Let (V',E’) be a subgraph of Gpmxa. A vertex u € V'is
closed in (V' E') if

e thereis a € Actmua(u) and v € V' such that (u, o, v) € E’
e if (u, x,v) € E/, then (u, ¢, w) € E’ for every w € V such that (u, x, w) € E.

A subgraph (V' E’) of Gmxa is closed under the positive probabilistic transitions (closed for
short) if every state in V'is closed in (V' | E').

An end component (EC) in Gmxa is a strongly connected component of Gmxa that is
reachable from the initial state init and is closed under the positive probabilistic transi-
tions. The end component (V' E’) is called maximal if there is no other end component
of Gmxa containing all vertices and all edges from (V' E’). End component is called
terminal if it is a terminal SCC.

End component (V' E') is accepting (AEC) with respect to the Rabin acceptance con-
dition if forsome 1,1 <i < k,wehave V'N (S x L;) #0and V'N (S x U;) = (). We refer

to the index i as a valid index.

Proposition 2.2 ([30]). Let M be an MDP and ¢ an LTL property. Let A be a deterministic
Rabin automaton with L(A) = L(@). Then there exists a scheduler D such that Py p(L(@)) >

0 if and only if there is an accepting end component in the graph Gymxa.

The qualitative LTL model checking of MDPs is thus reduced to the question
whether the Gpmxa for a given MDP with the Rabin acceptance condition contains an
accepting end component.

A sequential algorithm for AEC detection is given in [30, 14] and for a similar prob-
lem in [12]. The idea is to decompose the given graph Gmxa = (V,init, E) with the

Rabin acceptance condition Accpmya into strongly connected components, and to test
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every component for closure under positive probabilistic transitions and for its accep-
tance with respect to individual pairs (L, U) € Accmxa. If either of the two conditions
is violated, the blamed states are removed from the graph and the component is again
decomposed into SCCs. The graph contains an AEC if and only if the final decompo-
sition is nonempty. The complexity of the algorithm is determined by the number of
acceptance pairs in Accmxa, the complexity of the SCC decomposition, and the num-
ber of repeated SCC decompositions till stabilization. The SCC decomposition can be
performed with Tarjan’s algorithm in time linear in the size of the graph, the number of
SCC decompositions is bounded by the number of vertices. Hence, the complexity of

the algorithm is O(|/Accmxal - 1?), where 1 is the number of vertices.

3 Approximation Set Algorithm

In this section we present a new sequential algorithm, prove its correctness, and give
a complexity bound. The distributed version of the algorithm is discussed in the next
section.

If we follow the classification of SCC-detection algorithms as presented in [27, 17],
then the above sketched sequential algorithm can be classified as an AEC-enumeration
algorithm as it enumerates all accepting end components of a graph. Contrary to this,
the presented (distributed) algorithm can be classified as an AEC-hull algorithm as it
computes the set of states that contains all accepting end components. In particular,
the algorithm maintains approximation set of states that may belong to an AEC. The al-
gorithm repeatedly refines the approximation set by locating and removing states that
cannot belong to an AEC, we call this a pruning step. The core of the algorithm are
conditions determining the states to prune.

Formally, let M x A be a product MDP, Gpmxa = (S x Q, init, E) be its corresponding
graph, and Accpmxa = [(S x L1, S x Uy), ..., (S x Lk, S x Uy)] be the Rabin acceptance
condition. Without lost of generality we suppose that all vertices in S x Q are reachable
from the vertex init. The algorithm tests each indexi,1 = 1,..., k whether it is valid or
not. We henceforth assume a fixed index i and denote the pair (S x L;,; S x U;) as (L, U)
and refer to the vertices from L and U as L-states and U-states, respectively.

An approximation graph is a subgraph (AS, Eas) of the graph Guma such that AS N
U = 0 and (AS, Eas) contains all accepting end components of Guxa. Our goal is to

formulate criteria for eliminating vertices and edges from the approximation graph.



proc DETECT-AEC((S x Q, init, E), (L, U))
AS:=Sx QU
EAS =4
to-eliminate := U
CLOSURE ()
oldSize := 0
while (|AS| # oldSize N\ |AS| > 0) do
oldSize := |AS|
L-REACHABILITY ()
CLOSURE()
od
return(||AS|| > 0)
end

proc L-REACHABILITY ()
can-reach-L = ();
to-explore := ASN L
while (to-explore # () do
pick and remove g from to-explore
foreach (r, «, q) € Eas do
if (r ¢ can-reach-L)
then can-reach-L := can-reach-L U {r}
to-explore := to-explore U {r}
fi
od

od
to-eliminate := AS ~ can-reach-L
AS := AS N can-reach-L

end

proc CLOSURE ()
while (to-eliminate # ()) do
pick and remove q from to-eliminate
foreach (g, x,p) € Eas do
EAS = EAS ~ {(q) “»p)}
od
foreach (r,«, q) € Eas do
foreach (r, «, p) do
EAS = EAS N {(r) O()p)}
od
Actpxal(r) i= Actpxal(r) N {a)
if (Actpmxal(r) =0 A r e AS)
then to-eliminate := to-eliminate U {r}
AS .= AS ~ {r}

end

Figure 1: Sequential algorithm
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Figure 2: Example of a product MDP.

Let (AS,Eas) be an approximation graph. Then the following two conditions are

necessary for a vertex v € AS to belong to an AEC:
1. There is an L-state which is reachable from v along a non-trivial path' in (AS, Eas).
2. The vertex v is closed in (AS, Eas).

The first condition correspond to the acceptance condition for EC (here we remind that
the approximation set does not contain U-states). The second condition conforms with

the closeness under the positive probabilistic transitions.

Lemma 3.1. Graph Gmxa = (S x Q,init, E) contains an AEC if and only if there is a non-
empty approximation graph (AS, Eas) such that all vertices from AS meet the conditions 1 and
2.

Proof: Any AEC in Gmxa is an approximation graph with vertices complying both
conditions.

For the opposite case, let us assume that (AS, Exs) is an approximation graph and all
vertices in the set AS meet the conditions 1 and 2. Let X be a terminal SCC of (AS, Eas).
By the condition 1, X contains at least one L-state and is nontrivial. From the condition
2 we have that X is closed under positive probabilistic transitions. Altogether, X is an

accepting end component. U

A path in a graph is non-trivial if it contains at least one edge.



The pseudo-code of the algorithm DETECT-AEC is given in Figure 1. The algorithm
starts with an approximation graph containing all vertices from Gy, a except U-states.
In each iteration of the while loop, the vertices violating condition 1 are pruned in the
procedure L-REACHABILITY while vertices violating the condition 2 are eliminated in
the procedure CLOSURE. The iterations of the procedure DETECT-AEC are called external.

The computation of the procedure DETECT-AEC can be illustrated on the product
MDP depicted in Figure 2. Vertices 5, 10, and 12 are L-states; vertices 4 and 9 are
U-states. Initially, AS = {1,2,3,5,6,7,8,10,11,12} and to-eliminate= {4,9}. First ex-
ecution of CLOSURE removes from Eas the edges incident to vertices 4 and 9, i.e,,
(4,B8,7),(4,B,8),(1,B8,4),(9,«,10), (10, ,9). This causes that Actmxa(10) = 0 and
the vertex 10 is not closed in the current approximation graph. Therefore, the ver-
tex is added to the set to-eliminate and removed from AS. Consequently, the edges
(6,5,10),(6,5,11),and (11,5, 10) are removed from E s as well. We have Actpmxa(11) =
(0, the vertex 11 is added to to-eliminate and removed from AS. Then (7, «, 11) is re-
moved from Exs. As the set to-eliminate is now empty, the procedure CLOSURE termi-
nates. The first external iteration is now started. The value of oldSize is 8. The pro-
cedure L-REACHABILITY detects vertices 6 and 7 as those from which none [-state is
reachable and sets to-eliminate to {6,7} and AS to {1,2,3,5,8, 12}. Subsequent call to the
procedure CLOSURE removes the edges (7,v,6),(8,v,7), (6,v,7), and (3, «,6), (3, «,5)
from Eas. Actmxa(3) becomes empty, therefore, the vertex 3 is added to fo-eliminate
and removed from AS. Then the edges (1, 8, 3), (2, 3, 3), (5, &, 3) are removed from Exs,
the vertex 5 is added to fo-eliminate and removed from AS. Finally, the edge (2,v,5)
is removed from Eas. The set to-eliminate is now empty and the procedure CLOSURE
terminates. In the second external iteration the value of oldSize is 4. The procedure
L-REACHABILITY eliminates the vertices 1 and 2 and the procedure CLOSURE removes
the edges (1, «, 2), (2,6, 1) from Eas. There are no more vertices eliminated in the third
external iteration. As the resulting approximation graph is non-empty, the procedure
DETECT-AEC returns frue.

In what follows we prove the correctness of the algorithm and analyze its complex-
ity. (AS, Eas) denotes the approximation graph at the beginning of an external iteration
and (AS, Exg) denotes the graph after the iteration has finished. |Gnm«a| denotes the size
of the product graph Gaixa-
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Lemma 3.2. Upon termination of the procedure CLOSURE, Eas contains only edges incident to
vertices from AS and all vertices in AS are closed in (AS, Eas). The complexity of CLOSURE is
O(IGmxal)-

Proof: Let the set to-eliminate contains all vertices directly violating the closure property
in (AS,Eas). Every iteration of the procedure maintains this property, which can be
easily seen from the pseudo-code. Each vertex in to-eliminate is eventually removed and
never inserted into the set again. As soon as the set is empty, the procedure terminates.
[

Lemma 3.3. Upon termination of the procedure L-REACHABILITY, AS C AS and AS con-
tains only those vertices from which an L-state is reachable in (AS,Eas). The complexity of

L-REACHABILITY is O(|Gmxal).

Proof: The procedure adds vertices to the set can-reach-L only when an edge leading to
an L-state, or leading to a vertex from can-reach-L, is discovered. No vertex lying outside
of AS can be added to the set can-reach-L as only edges in E5s are explored and (AS, Exs)
is closed. This is due to Lemma 3.2 and the fact that each call to L-REACHABILITY is
preceded by a call to CLOSURE.

The complexity is given by the fact that every edge in E5s is explored at most once.
The procedure proceeds by backward search as this minimizes its complexity. If a for-
ward search was employed the complexity would be |AS| times the complexity of the

forward search. []

Lemma 3.4. Upon termination of the procedure DETECT-AEC every vertex in the approxima-

tion set AS meets the conditions 1 and 2.

Proof: The procedure DETECT-AEC removes all U-states from V and applies CLOSURE to
ensure that all vertices in AS are closed (Lemma 3.2). Due to Lemmas 3.2 and 3.3 only
vertices violating either 1 or 2 are removed from the approximation set in each external
iteration. Once the external iteration does not change the approximation set all vertices

in AS meet both conditions. O

To prove the complexity bound we need to give an upper bound on the number of
external iterations. A trivial upper bound is [S x Q| as in each external iteration the size
of AS is decreased. However, a more precise bound can be given in terms of maximal

end components. At the very beginning, the algorithm DETECT-AEC removes from the
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graph all U-states and some edges to guarantee that all remaining vertices are closed.

We refer to this graph as Gpmxa ~ U.

Lemma 3.5. The number of external iterations of DETECT-AEC is no more than the number of

maximal end components in Gpxa ~ UW.

Proof: The key observation is that in each external iteration of DETECT-AEC either all
vertices from at least one maximal end component in Gpxa . U are removed from the
approximation set, or the approximation set is not changed at all (and the computation
of DETECT-AEC finishes). Furthermore, at the beginning of each external iteration the
approximation graph is closed (Lemma 3.2).

Let C = (Vc,Ec) be a maximal EC in Gmxa ~ U. Let us suppose that in some
external iteration a vertex q € V is removed from the approximation set. If the vertex
q is removed by the procedure L-REACHABILITY because none L-state is reachable from
q, then together with q the whole V¢ is removed from the approximation set (EC is
strongly connected). If no vertex is removed by L-REACHABILITY, then no vertex can be
removed by CLOSURE as the approximation graph is closed and the algorithm would
terminate.

O

Theorem 3.1. Let M be an MIDP and ¢ be an LTL formula. Then the question whether for all
schedulers D, Prpm p(L(@)) = 1, can be correctly solved by the DETECT-AEC algorithm in time
O(‘M‘z . 22\‘9"1‘%‘@\ )

Proof: Lemma 3.4 together with Lemma 3.1 give correctness of the DETECT-AEC algo-
rithm.

If we start with an MDP M that has m states and e transitions, then Gyi4a has no
more than m - 22" vertices and e - 22° "' edges, i.e. the size of the product graph
Gumxa is O(IM] - 22° ") Complexity of DETECT-AEC is in the worst case quadratic in
the size of the product graph (though Lemma 3.5 gives a more precise bound). The al-
gorithm is performed for every acceptance pair in the corresponding Rabin automaton.
[

Courcoubetis and Yannakakis [12] give an algorithm for qualitative LTL model
checking of MDP with somewhat better complexity O(|M[? - 22", This is due to the
fact that their algorithm translates the verified property to a Biichi automaton which
is deterministic in limit. However, our algorithm is based on a translation to a deter-

ministic Rabin automaton. The approach we present is independent of the type of the
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Figure 3: Modification of Condition 1.

w-automaton. Therefore, using Biichi automata that are deterministic in limit our algo-
rithm exhibits the same asymptotic complexity O(/MJ? - 2200y,

Our algorithm stores edges to enumerate predecessors. A natural question is,
whether this is really necessary. While the condition 1 can be replaced by a symmet-
ric condition requiring that the vertex u is reachable from an L-state along a non-trivial
path in (AS, Eas) and tested by a forward reachability without using backward edges,
the symmetric approach does not work in the case of the condition 2. This is illustrated
on the graph in Figure 3 where all vertices are reachable from the L-state (its number is
1) and are closed, but the graph does not contain any AEC.

If an MDP contains deterministic states only (the MDP is a Markov chain), then every
end component of the corresponding graph Gmxa ~ U is a terminal one. As argued
in the proof of Theorem 3.5 every terminal SCC is removed completely in an external
iteration or it remains in the approximation graph forever. Therefore, the DETECT-AEC
algorithm terminates on Markov chains after one iteration and its complexity is linear

with respect to the size of the product graph.

4 Distributed Implementation of The Algorithm

In the distributed setting, such as the network of workstations, the graph to be explored
is partitioned among the workstations using the so called partition function so that ev-
ery single workstation is responsible for the subgraph assigned to it. For the principle
of partitioning see e.g. [6, 24]. As workstations work concurrently and communicate
by means of message passing, parallelism is introduced in the computation.

The graphs to be explored are given implicitly by the description of the initial vertex
and a set of rules specifying how for a given vertex all of its immediate successors can

be generated. In practical terms, we are thus able to compute immediate successors of
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while (—Finished ) do
PROCESS-INCOMING-MESSAGES()
if (to-explore # ()
then pick and remove g from to-explore
foreach (r, «, q) € Exs do
if (PARTITION(r) is local )
then if (r ¢ can-reach-L)
then can-reach-L := can-reach-L U {r}
to-explore := to-explore U {r}
fi
else send r to can-reach-L and to-explore
on PARTITION (r)

=4}

Figure 4: Main loop of the distributed procedure L.-REACHABILITY.

a given vertex, but we are not able to directly enumerate its predecessors. As our algo-
rithm requires predecessors, vertices of the graph have to be generated first and all the
edges stored. In particular, every vertex has an associated list of (pointers to) its imme-
diate predecessors allowing thus every single workstation to enumerate successors as
well as predecessors of vertices it is responsible for.

The implementation of the algorithm requires also a few other values to be stored
at each vertex. In particular, these are the bit to distinguish whether the vertex belongs
to the approximation set AS and list of actions Actma whose corresponding edges are
still considered to be a part of the approximation set. The global sets to-eliminate,
can-reach-L, and to-explore are partitioned using the same partition function as the
graph. If a vertex is about to be inserted into one of these sets, it is at first judged by
the partition function and then sent to the workstation owning the vertex in order to be
inserted in the corresponding local part of the set.

The main loop of the procedure L-REACHABILITY is replaced with the pseudo-code
given in Figure 4 in the case of the distributed algorithm. The loop in the new pseudo-
code terminates when all sent messages have been delivered and all local sets to-
explore are empty, which is detected using the standard distributed termination de-
tection procedure and indicated with the flag Finished.

Procedure CLOSURE is modified following the same scheme. A specific problem
arises when all edges with a given action are about to be removed from the set E5s for
an immediate predecessors of a given vertex. Consider the situation as depicted on the

left hand side of Figure 5. Let vertex 1 be picked and removed from the set to-eliminate

14



Figure 5: Distributed closure computation on approximation sets.

on the workstation III. Since it has no outgoing edges (Actmxa(1) is empty) the list of
immediate predecessors associated with the vertex is cleared, and the immediate pre-
decessors are told to remove the corresponding action from their sets of valid actions.
The only immediate predecessor of the vertex 1 is the vertex 3 that is assigned to the
workstation I. Thus, a message requesting removal of the action o« from the vertex 3 is
sent from the workstation III to the workstation I and the vertex 1 is removed from the
set AS of vertices remaining in the approximation set (the bit representing its presence
in the set is set to false). This is exemplified in the middle of the Figure. Once the work-
station I receives the message it appropriately modifies the set Actmxa(3), and sends
messages to the workstations II and IV responsible for vertices 2 and 4, respectively,
in order to update the corresponding lists of immediate predecessors of these vertices.
As soon as this is done, the computation of the closure procedure for the vertex 1 is

complete (see the situation on the right hand side of Figure 5).

5 Conclusions

We addressed the problem of qualitative verification of finite state Markov decision pro-
cesses with respect to specifications expressed in linear temporal logic LTL. An optimal
sequential algorithm for the problem is given in [12]. This algorithm is based on the
decomposition of a graph into strongly connected components and as such cannot be
directly modified and effectively implemented in a distributed setting.

We provide a new algorithm for qualitative LTL model checking of Markov deci-
sion processes with the same asymptotic complexity as given in [12]. Contrary to this
algorithm, our algorithm does not require the decomposition into strongly connected

components. Instead of this, the core operation of our algorithm is a reachability test.
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Therefore, the algorithm can be easily implemented as a distributed-memory algorithm

while preserving its complexity.
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