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Abstra
tProbabilisti
 pro
esses are used to model 
on
urrent programs that exhibit un
er-tainty. The state explosion problem for probabilisti
 systems is more 
riti
al than inthe non-probabilisti
 
ase. In the paper we propose a 
luster-based algorithm forqualitative LTL model 
he
king of �nite state Markov de
ision pro
esses. We use�This work has been partially supported by the Grant Agen
y of Cze
h Republi
 grant No.201/06/1338 and the A
ademy of S
ien
es grant No. 1ET408050503.1



the automata approa
h whi
h redu
es the model 
he
king problem to the questionof existen
e of an a

epting end 
omponent. The algorithm uses repeated rea
habil-ity whi
h systemati
ally eliminates states that 
annot belong to any a

epting end
omponent. A distinguished feature of the distributed algorithm is that its 
omplex-ity meets the 
omplexity of the best known sequential algorithm.1 Introdu
tionProbabilisti
 systems like Markov 
hains and Markov de
ision pro
esses provide a rea-sonable semanti
s for systems that exhibit un
ertainty. A number of qualitative andquantitative model 
he
king algorithms for �nite state probabilisti
 systems have beenproposed [18, 29, 11, 1, 12, 20, 13℄. In a qualitative setting it is 
he
ked whether a prop-erty holds with probability 0 or 1; in a quantitative setting it is veri�ed whether theprobability for a 
ertain property meets a given lower or upper bound.For probabilisti
 systems the state explosion problem is more 
riti
al than in thenon-probabilisti
 
ase. Several methods that have been developed for non-probabilisti
systems to avoid the state explosion were adapted to probabilisti
 systems. For bran
h-ing time logi
s these are the symboli
 approa
h [4℄ implemented in the model 
he
kerPRISM [22, 19℄ and the MDP model 
he
ker RAPTURE [8℄ whi
h uses an iterativeabstra
tion re�nement. For linear time logi
 the most prominent partial order ap-proa
h has been re
ently adapted as well [5, 3℄ and implemented in the veri�
ationtool LiQuor [9℄.Over the past de
ade, many te
hniques using distributed and/or parallel pro
ess-ing have been proposed to 
ombat the 
omputational 
omplexity of non-probabilisti
veri�
ation, model 
he
king in parti
ular. However, not mu
h has been done in apply-ing these te
hniques to the veri�
ation and analysis of probabilisti
 systems. A notableex
eption is the work on parallelizing the symboli
 model 
he
ker PRISM [33, 34, 23℄.In this paper we fo
us on the qualitative model 
he
king of �nite state Markov de
i-sion pro
esses (MDPs) against LTL properties. We propose a distributed-memory algo-rithm that solves the problem and exhibits the 
omplexity of the sequential approa
h.This is a surprising result as the parallelization of LTL model 
he
king usually 
ostsextra time or spa
e.We use the automata-theoreti
 approa
h [29, 12, 14℄. From the negation of a formulawe 
onstru
t a deterministi
 automaton on in�nite words and 
he
k the existen
e of an2



a

epting end 
omponent in the produ
t-MDP resulting from the given MDP and the
onstru
ted automaton (probabilisti
 satisfa
tion problem).It is very important to stress that this approa
h requires a determinization of theBü
hi automaton obtained from the LTL formula. If the initial Bü
hi automaton is de-terministi
, the probabilisti
 emptiness problem 
an be solved in polynomial time [31℄.As deterministi
 Bü
hi automata are stri
tly less powerful than nondeterministi
, onehas to go to a more general type of !-automaton. In [29℄ deterministi
 Rabin automataare used, while in [12℄ the authors 
onsider Bü
hi automata deterministi
 in limit whi
hleads to a slight improvment of the 
omplexity of [29℄. In the sequential 
ase the LTLmodel 
he
king problem for MDPs is hard for doubly exponential time, and 
an besolved in time doubly exponential in the spe
i�
ation and quadrati
 in the size of theprogram.The sequential algorithms 
he
k the probabilisti
 satisfa
tion problem by repeatedde
omposition of the produ
t graph into strongly 
onne
ted 
omponents and subse-quent removing of states that violate the �ergodi
� 
ondition. Distributed de
omposi-tion of a graph into SCCs is dif�
ult to parallelize. Therefore, our new algorithm relieson a radi
ally different approa
h for 
he
king the probabilisti
 satisfa
tion problem.The basi
 idea 
omes from the distributed SCC-based algorithm for LTL model 
he
k-ing of non-probabilisti
 systems. To 
he
k the probabilisti
 satisfa
tion problem it is notne
essary to de
ompose the graph into SCCs as the existen
e of an a

epting end 
om-ponent 
an be 
he
ked easier by repeated rea
hability whi
h systemati
ally eliminatesstates that 
annot belong to any a

epting end 
omponents. Our algorithm as presentedhere has the 
omplexity O(jMj2 � 22O(j'j)).2 Qualitative LTL Model Che
kingRabin automata. A deterministi
 Rabin automaton is a tuple A = (�;Q; qinit; Æ; A

),where � is a �nite alphabet, Q is a �nite set of states, qinit 2 Q is an initial state, Æ :Q � � ! Q is a (
omplete) transition fun
tion and A

 = [(L1; U1); : : : ; (Lk; Uk)℄, withLi; Ui � Q for i = 1; : : : ; k, is an a

eptan
e 
ondition.A run of A over an in�nite word w = a1a2 : : : is a sequen
e q0; q1; : : : ; where q0 =qinit and Æ(qi-1; ai) = qi for all i � 1. A

eptan
e is de�ned in terms of limits. The limitof a run r = q0; q1; : : : is the set lim(r) = fq j q = qi in�nitely ofteng. A run r is a

epting
3



if lim(r)\ Li 6= ; and lim(r)\Ui = ; for some i. We denote by L(A) the set of all in�nitewords with an a

epting run.Linear Temporal Logi
 (LTL). Formulas of LTL are built from a setAP of atomi
 propo-sitions and are 
losed under the appli
ation of Boolean 
onne
tives, the unary temporal
onne
tive X (next), and the binary temporal 
onne
tive U (until). LTL is interpretedover 
omputations. A 
omputation is a fun
tion � : ! ! AP, whi
h assigns truth val-ues to the elements of AP at ea
h time instant and as su
h 
an be viewed as in�nitewords over the alphabet 2AP. For an LTL formula ' we denote by L(') the set of all
omputations satisfying '.Proposition 2.1 ([32, 28℄). Given an LTL formula ', one 
an build a deterministi
 RabinautomatonAwith 22O(j'j�j log'j) states and 2O(j'j) pairs in a

eptan
e 
ondition, su
h that L(A) =L(').The transformation from LTL formulas to deterministi
 Rabin automata via nonde-terministi
 Bü
hi automata [32℄ and Safra's [28℄ algorithm leads to a worst 
ase doubleexponential blowup, whi
h roughly meets the lower bound established in [21℄.Markov de
ision pro
ess (MDP). We use MDP as a model of asyn
hronous proba-bilisti
 systems. In an MDP, any state s might have several outgoing a
tion-labeledtransitions, ea
h of them is asso
iated with a probability distribution whi
h yields theprobabilities for the su

essor states. In addition, a labeling fun
tion atta
hes to anystate s a set of atomi
 propositions that are assumed to be ful�lled in state s. The atomi
propositions will serve as atoms to formulate the desired properties in a temporal logi
framework.Formally, a Markov de
ision pro
ess [16, 26, 30℄ is a tupleM = (S;A
t; P; sinit; AP; L),where S is a �nite set of states, A
t is a �nite set of a
tions, P : (S � A
t � S) ! [0; 1℄ isa (three-dimensional) probability matrix, sinit 2 S is the initial state , AP is a �nite setof atomi
 propositions, and L : S ! 2AP is a labeling fun
tion. A
t(s) denotes the set ofa
tions that are enabled in state s, i.e. the set of a
tions � 2 A
t su
h that P(s; �; t) >0 for some state t 2 S. For any state s 2 S, we require that A
t(s) 6= ; and 8� 2A
t(s):Ps 02S P(s; �; s 0) = 1.The intuitive operational semanti
s of an MDP is as follows. If s is the 
urrent statethen an a
tion � 2 A
t(s) is 
hosen nondeterministi
ally and is exe
uted leading to astate t with probability P(s; �; t). We refer to t as an �-su

essor of s if P(s; �; t) > 0.4



State s is 
alled deterministi
 if only one a
tion is enabled in s. If all states of an MDP aredeterministi
, the MDP is 
alledMarkov 
hain.An in�nite path in an MDP is a sequen
e � = s0; �1; s1; �2; : : : 2 (S�A
t)! su
h that�i 2 A
t(si-1) and P(si-1; �i; si) > 0 for any i � 1. A traje
tory of a path � is the wordL(s0); L(s1); L(s2); : : : over the alphabet 2AP obtained by the proje
tion of � to the statelabels. Finite paths are �nite pre�xes of in�nite paths that end in a state. We use thenotation last(�) for the last state of a �nite path �.A s
heduler is a fun
tion whi
h resolves the nondeterminism of MDP, and thus, ityields an exa
t probability measure on sets of paths of an MDP. We 
onsider determin-isti
 history dependent s
hedulers whi
h are given by a fun
tion D assigning an a
tionD(�) 2 A
t(last(�)) to every �nite path �. Given a a s
heduler D, the behavior of Munder D 
an be formalized as a (possibly in�nite state) Markov 
hain.Verifying LTL Spe
i�
ations. Let AP be the alphabet of LTL spe
i�
ation '. For anMDPM and a s
heduler D the set of traje
tories that satisfy the spe
i�
ation ' is mea-surable [29℄. We use PrM;D(L(')) to denote the probability that a traje
tory of M un-der D satis�es the spe
i�
ation '. We say that M satis�es ' if for all s
hedulers D,PrM;D(L(')) = 1.Our distributed algorithm 
omes out from the automata-based approa
h to LTLmodel 
he
king. As in the non-probabilisti
 
ase, the model is syn
hronized with theautomaton 
orresponding to the negation of the formula. However, unlike the non-probabilisti
 
ase, deterministi
 automata have to be used instead of non-deterministi
Bü
hi automata. Sin
e we 
onsider deterministi
 Rabin automata, the syn
hronizationresults in an MDP with Rabin a

eptan
e 
ondition in our 
ase. The model 
he
kingproblem is thus redu
ed to the non-emptiness problem for the produ
t MDP.Let M = (S;A
t; P; sinit; AP; L) be an MDP. Let A = (2AP; Q; qinit; Æ;[(L1; U1); : : : ; (Lk; Uk)℄) be a deterministi
 Rabin automaton. The syn
hronized prod-u
t of M and A is an MDP M � A = (S � Q;A
tM�A; PM�A; init; AP; LM�A) withRabin a

eptan
e 
ondition A

M�A = [(S � L1; S � U1); : : : ; (S � Lk; S � Uk)℄, whereA
tM�A((u; v)) = A
t(u), init = (sinit; qinit), LM�A((u; v)) = L(u), andPM�A((s; p); �; (t; q)) = Æ P(s; �; t) if Æ(p; L(s)) = q0 otherwise.
5



Our algorithm rests upon a 
onne
tion between sto
hasti
 properties of anMDP andits stru
ture when viewed as a graph-like stru
ture. This is exempli�ed by notions ofend 
omponents and a

epting end 
omponents [14, 12℄.LetM�A be a produ
t MDP with Rabin a

eptan
e 
ondition. Consider a dire
tedlabeled graph GM�A = (S � Q; init; E) where init is an initial state of GM�A, E �(S�Q)�A
t� (S�Q), and E = f(u; �; v) j PM�A(u; �; v) > 0g.A subgraph (V 0; E 0) of GM�A forms a strongly 
onne
ted 
omponent (SCC) if for anytwo verti
es u; v 2 V 0 there is a path from u to v in (V 0; E 0). SCC is non-trivial if it has atleast one edge. SCC is terminal if there is no edge (u; �; v) 2 E outgoing from SCC, i.e.su
h that u 2 V 0 and v 62 V 0. Let (V 0; E 0) be a subgraph of GM�A. A vertex u 2 V 0 is
losed in (V 0; E 0) if� there is � 2 A
tM�A(u) and v 2 V 0 su
h that (u; �; v) 2 E 0� if (u; �; v) 2 E 0, then (u; �;w) 2 E 0 for every w 2 V su
h that (u; �;w) 2 E.A subgraph (V 0; E 0) of GM�A is 
losed under the positive probabilisti
 transitions (
losed forshort) if every state in V 0 is 
losed in (V 0; E 0).An end 
omponent (EC) in GM�A is a strongly 
onne
ted 
omponent of GM�A that isrea
hable from the initial state init and is 
losed under the positive probabilisti
 transi-tions. The end 
omponent (V 0; E 0) is 
alled maximal if there is no other end 
omponentof GM�A 
ontaining all verti
es and all edges from (V 0; E 0). End 
omponent is 
alledterminal if it is a terminal SCC.End 
omponent (V 0; E 0) is a

epting (AEC) with respe
t to the Rabin a

eptan
e 
on-dition if for some i, 1 � i � k, we have V 0\ (S� Li) 6= ; and V 0\ (S�Ui) = ;. We referto the index i as a valid index.Proposition 2.2 ([30℄). Let M be an MDP and ' an LTL property. Let A be a deterministi
Rabin automaton with L(A) = L('). Then there exists a s
hedulerD su
h that PrM;D(L(')) >0 if and only if there is an a

epting end 
omponent in the graph GM�A.The qualitative LTL model 
he
king of MDPs is thus redu
ed to the questionwhether the GM�A for a given MDP with the Rabin a

eptan
e 
ondition 
ontains ana

epting end 
omponent.A sequential algorithm for AEC dete
tion is given in [30, 14℄ and for a similar prob-lem in [12℄. The idea is to de
ompose the given graph GM�A = (V; init; E) with theRabin a

eptan
e 
ondition A

M�A into strongly 
onne
ted 
omponents, and to test6



every 
omponent for 
losure under positive probabilisti
 transitions and for its a

ep-tan
e with respe
t to individual pairs (L;U) 2 A

M�A. If either of the two 
onditionsis violated, the blamed states are removed from the graph and the 
omponent is againde
omposed into SCCs. The graph 
ontains an AEC if and only if the �nal de
ompo-sition is nonempty. The 
omplexity of the algorithm is determined by the number ofa

eptan
e pairs in A

M�A, the 
omplexity of the SCC de
omposition, and the num-ber of repeated SCC de
ompositions till stabilization. The SCC de
omposition 
an beperformed with Tarjan's algorithm in time linear in the size of the graph, the number ofSCC de
ompositions is bounded by the number of verti
es. Hen
e, the 
omplexity ofthe algorithm is O(jA

M�Aj � n2), where n is the number of verti
es.3 Approximation Set AlgorithmIn this se
tion we present a new sequential algorithm, prove its 
orre
tness, and givea 
omplexity bound. The distributed version of the algorithm is dis
ussed in the nextse
tion.If we follow the 
lassi�
ation of SCC-dete
tion algorithms as presented in [27, 17℄,then the above sket
hed sequential algorithm 
an be 
lassi�ed as an AEC-enumerationalgorithm as it enumerates all a

epting end 
omponents of a graph. Contrary to this,the presented (distributed) algorithm 
an be 
lassi�ed as an AEC-hull algorithm as it
omputes the set of states that 
ontains all a

epting end 
omponents. In parti
ular,the algorithm maintains approximation set of states that may belong to an AEC. The al-gorithm repeatedly re�nes the approximation set by lo
ating and removing states that
annot belong to an AEC, we 
all this a pruning step. The 
ore of the algorithm are
onditions determining the states to prune.Formally, letM�A be a produ
t MDP, GM�A = (S�Q; init; E) be its 
orrespondinggraph, and A

M�A = [(S � L1; S � U1); : : : ; (S � Lk; S � Uk)℄ be the Rabin a

eptan
e
ondition. Without lost of generality we suppose that all verti
es in S�Q are rea
hablefrom the vertex init. The algorithm tests ea
h index i, i = 1; : : : ; k whether it is valid ornot. We hen
eforth assume a �xed index i and denote the pair (S� Li; S�Ui) as (L;U)and refer to the verti
es from L and U as L-states and U-states, respe
tively.An approximation graph is a subgraph (AS; EAS) of the graph GM�A su
h that AS \U = ; and (AS; EAS) 
ontains all a

epting end 
omponents of GM�A. Our goal is toformulate 
riteria for eliminating verti
es and edges from the approximation graph.7



pro
 DETECT-AEC((S�Q; init ; E); (L ;U))AS := S�QrUEAS := Eto-eliminate := UCLOSURE()oldSize := 0while (jASj 6= oldSize ^ jASj > 0) dooldSize := jASjL-REACHABILITY()CLOSURE()odreturn(kASk > 0)endpro
 L-REACHABILITY()
an-rea
h-L := ;;to-explore := AS \ Lwhile (to-explore 6= ;) dopi
k and remove q from to-exploreforea
h (r; �; q) 2 EAS doif (r 62 
an-rea
h-L )then 
an-rea
h-L := 
an-rea
h-L [ frgto-explore := to-explore [ frg�ododto-eliminate := ASr 
an-rea
h-LAS := AS \ 
an-rea
h-Lendpro
 CLOSURE()while (to-eliminate 6= ;) dopi
k and remove q from to-eliminateforea
h (q; �;p) 2 EAS doEAS := EAS r f(q; �;p)godforea
h (r; �; q) 2 EAS doforea
h (r; �;p) doEAS := EAS r f(r; �;p)godA
tM�A(r) := A
tM�A(r)r f�gif (A
tM�A(r) = ; ^ r 2 AS )then to-eliminate := to-eliminate [ frgAS := AS r frg�ododend Figure 1: Sequential algorithm8
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Figure 2: Example of a produ
t MDP.Let (AS; EAS) be an approximation graph. Then the following two 
onditions arene
essary for a vertex v 2 AS to belong to an AEC:1. There is an L-state whi
h is rea
hable from v along a non-trivial path1 in (AS; EAS).2. The vertex v is 
losed in (AS; EAS).The �rst 
ondition 
orrespond to the a

eptan
e 
ondition for EC (here we remind thatthe approximation set does not 
ontain U-states). The se
ond 
ondition 
onforms withthe 
loseness under the positive probabilisti
 transitions.Lemma 3.1. Graph GM�A = (S � Q; init; E) 
ontains an AEC if and only if there is a non-empty approximation graph (AS; EAS) su
h that all verti
es from AS meet the 
onditions 1 and2.Proof: Any AEC in GM�A is an approximation graph with verti
es 
omplying both
onditions.For the opposite 
ase, let us assume that (AS; EAS) is an approximation graph and allverti
es in the set ASmeet the 
onditions 1 and 2. Let X be a terminal SCC of (AS; EAS).By the 
ondition 1, X 
ontains at least one L-state and is nontrivial. From the 
ondition2 we have that X is 
losed under positive probabilisti
 transitions. Altogether, X is ana

epting end 
omponent. �1A path in a graph is non-trivial if it 
ontains at least one edge.9



The pseudo-
ode of the algorithm DETECT-AEC is given in Figure 1. The algorithmstarts with an approximation graph 
ontaining all verti
es from GM�A ex
ept U-states.In ea
h iteration of the while loop, the verti
es violating 
ondition 1 are pruned in thepro
edure L-REACHABILITY while verti
es violating the 
ondition 2 are eliminated inthe pro
edure CLOSURE. The iterations of the pro
edure DETECT-AEC are 
alled external.The 
omputation of the pro
edure DETECT-AEC 
an be illustrated on the produ
tMDP depi
ted in Figure 2. Verti
es 5, 10, and 12 are L-states; verti
es 4 and 9 areU-states. Initially, AS = f1; 2; 3; 5; 6; 7; 8; 10; 11; 12g and to-eliminate= f4; 9g. First ex-e
ution of CLOSURE removes from EAS the edges in
ident to verti
es 4 and 9, i.e.,(4; �; 7); (4; �; 8); (1; �; 4); (9; �; 10); (10; �; 9). This 
auses that A
tM�A(10) = ; andthe vertex 10 is not 
losed in the 
urrent approximation graph. Therefore, the ver-tex is added to the set to-eliminate and removed from AS. Consequently, the edges(6; Æ; 10); (6; Æ; 11), and (11; Æ; 10) are removed from EAS as well. We haveA
tM�A(11) =;, the vertex 11 is added to to-eliminate and removed from AS. Then (7; �; 11) is re-moved from EAS. As the set to-eliminate is now empty, the pro
edure CLOSURE termi-nates. The �rst external iteration is now started. The value of oldSize is 8. The pro-
edure L-REACHABILITY dete
ts verti
es 6 and 7 as those from whi
h none L-state isrea
hable and sets to-eliminate to f6; 7g and AS to f1; 2; 3; 5; 8; 12g. Subsequent 
all to thepro
edure CLOSURE removes the edges (7; 
; 6); (8; 
; 7), (6; 
; 7), and (3; �; 6); (3; �; 5)from EAS. A
tM�A(3) be
omes empty, therefore, the vertex 3 is added to to-eliminateand removed from AS. Then the edges (1; Æ; 3); (2; �; 3); (5; �; 3) are removed from EAS,the vertex 5 is added to to-eliminate and removed from AS. Finally, the edge (2; 
; 5)is removed from EAS. The set to-eliminate is now empty and the pro
edure CLOSUREterminates. In the se
ond external iteration the value of oldSize is 4. The pro
edureL-REACHABILITY eliminates the verti
es 1 and 2 and the pro
edure CLOSURE removesthe edges (1; �; 2); (2; Æ; 1) from EAS. There are no more verti
es eliminated in the thirdexternal iteration. As the resulting approximation graph is non-empty, the pro
edureDETECT-AEC returns true.In what follows we prove the 
orre
tness of the algorithm and analyze its 
omplex-ity. (AS; EAS) denotes the approximation graph at the beginning of an external iterationand (AS; EAS) denotes the graph after the iteration has �nished. jGM�Aj denotes the sizeof the produ
t graph GM�A.
10



Lemma 3.2. Upon termination of the pro
edure CLOSURE, EAS 
ontains only edges in
ident toverti
es from AS and all verti
es in AS are 
losed in (AS; EAS). The 
omplexity of CLOSURE isO(jGM�Aj).Proof: Let the set to-eliminate 
ontains all verti
es dire
tly violating the 
losure propertyin (AS; EAS). Every iteration of the pro
edure maintains this property, whi
h 
an beeasily seen from the pseudo-
ode. Ea
h vertex in to-eliminate is eventually removed andnever inserted into the set again. As soon as the set is empty, the pro
edure terminates.�Lemma 3.3. Upon termination of the pro
edure L-REACHABILITY, AS � AS and AS 
on-tains only those verti
es from whi
h an L-state is rea
hable in (AS; EAS). The 
omplexity ofL-REACHABILITY is O(jGM�Aj).Proof: The pro
edure adds verti
es to the set 
an-rea
h-L only when an edge leading toan L-state, or leading to a vertex from 
an-rea
h-L, is dis
overed. No vertex lying outsideofAS 
an be added to the set 
an-rea
h-L as only edges in EAS are explored and (AS; EAS)is 
losed. This is due to Lemma 3.2 and the fa
t that ea
h 
all to L-REACHABILITY ispre
eded by a 
all to CLOSURE.The 
omplexity is given by the fa
t that every edge in EAS is explored at most on
e.The pro
edure pro
eeds by ba
kward sear
h as this minimizes its 
omplexity. If a for-ward sear
h was employed the 
omplexity would be jASj times the 
omplexity of theforward sear
h. �Lemma 3.4. Upon termination of the pro
edure DETECT-AEC every vertex in the approxima-tion set AS meets the 
onditions 1 and 2.Proof: The pro
edure DETECT-AEC removes allU-states from V and applies CLOSURE toensure that all verti
es in AS are 
losed (Lemma 3.2). Due to Lemmas 3.2 and 3.3 onlyverti
es violating either 1 or 2 are removed from the approximation set in ea
h externaliteration. On
e the external iteration does not 
hange the approximation set all verti
esin ASmeet both 
onditions. �To prove the 
omplexity bound we need to give an upper bound on the number ofexternal iterations. A trivial upper bound is jS�Qj as in ea
h external iteration the sizeof AS is de
reased. However, a more pre
ise bound 
an be given in terms of maximalend 
omponents. At the very beginning, the algorithm DETECT-AEC removes from the11



graph all U-states and some edges to guarantee that all remaining verti
es are 
losed.We refer to this graph as GM�A rU.Lemma 3.5. The number of external iterations of DETECT-AEC is no more than the number ofmaximal end 
omponents in GM�A rU.Proof: The key observation is that in ea
h external iteration of DETECT-AEC either allverti
es from at least one maximal end 
omponent in GM�A r U are removed from theapproximation set, or the approximation set is not 
hanged at all (and the 
omputationof DETECT-AEC �nishes). Furthermore, at the beginning of ea
h external iteration theapproximation graph is 
losed (Lemma 3.2).Let C = (VC; EC) be a maximal EC in GM�A r U. Let us suppose that in someexternal iteration a vertex q 2 VC is removed from the approximation set. If the vertexq is removed by the pro
edure L-REACHABILITY be
ause none L-state is rea
hable fromq, then together with q the whole VC is removed from the approximation set (EC isstrongly 
onne
ted). If no vertex is removed by L-REACHABILITY, then no vertex 
an beremoved by CLOSURE as the approximation graph is 
losed and the algorithm wouldterminate. �Theorem 3.1. LetM be an MDP and ' be an LTL formula. Then the question whether for alls
hedulersD, PrM;D(L(')) = 1, 
an be 
orre
tly solved by the DETECT-AEC algorithm in timeO(jMj2 � 22j'j�log j'j).Proof: Lemma 3.4 together with Lemma 3.1 give 
orre
tness of the DETECT-AEC algo-rithm.If we start with an MDP M that has m states and e transitions, then GM�A has nomore thanm � 22j'j�log j'j verti
es and e � 22j'j�log j'j edges, i.e. the size of the produ
t graphGM�A is O(jMj � 22j'j�log j'j). Complexity of DETECT-AEC is in the worst 
ase quadrati
 inthe size of the produ
t graph (though Lemma 3.5 gives a more pre
ise bound). The al-gorithm is performed for every a

eptan
e pair in the 
orresponding Rabin automaton.� Cour
oubetis and Yannakakis [12℄ give an algorithm for qualitative LTL model
he
king of MDP with somewhat better 
omplexity O(jMj2 � 22O(j'j)). This is due to thefa
t that their algorithm translates the veri�ed property to a Bü
hi automaton whi
his deterministi
 in limit. However, our algorithm is based on a translation to a deter-ministi
 Rabin automaton. The approa
h we present is independent of the type of the12



431 2��� ��Figure 3: Modi�
ation of Condition 1.!-automaton. Therefore, using Bü
hi automata that are deterministi
 in limit our algo-rithm exhibits the same asymptoti
 
omplexity O(jMj2 � 22O(j'j)).Our algorithm stores edges to enumerate prede
essors. A natural question is,whether this is really ne
essary. While the 
ondition 1 
an be repla
ed by a symmet-ri
 
ondition requiring that the vertex u is rea
hable from an L-state along a non-trivialpath in (AS; EAS) and tested by a forward rea
hability without using ba
kward edges,the symmetri
 approa
h does not work in the 
ase of the 
ondition 2. This is illustratedon the graph in Figure 3 where all verti
es are rea
hable from the L-state (its number is1) and are 
losed, but the graph does not 
ontain any AEC.If anMDP 
ontains deterministi
 states only (theMDP is aMarkov 
hain), then everyend 
omponent of the 
orresponding graph GM�A r U is a terminal one. As arguedin the proof of Theorem 3.5 every terminal SCC is removed 
ompletely in an externaliteration or it remains in the approximation graph forever. Therefore, the DETECT-AECalgorithm terminates on Markov 
hains after one iteration and its 
omplexity is linearwith respe
t to the size of the produ
t graph.4 Distributed Implementation of The AlgorithmIn the distributed setting, su
h as the network of workstations, the graph to be exploredis partitioned among the workstations using the so 
alled partition fun
tion so that ev-ery single workstation is responsible for the subgraph assigned to it. For the prin
ipleof partitioning see e.g. [6, 24℄. As workstations work 
on
urrently and 
ommuni
ateby means of message passing, parallelism is introdu
ed in the 
omputation.The graphs to be explored are given impli
itly by the des
ription of the initial vertexand a set of rules spe
ifying how for a given vertex all of its immediate su

essors 
anbe generated. In pra
ti
al terms, we are thus able to 
ompute immediate su

essors of13



while (:Finished ) doPROCESS-INCOMING-MESSAGES()if (to-explore 6= ;)then pi
k and remove q from to-exploreforea
h (r; �; q) 2 EAS doif (PARTITION(r) is lo
al )then if (r 62 
an-rea
h-L )then 
an-rea
h-L := 
an-rea
h-L [ frgto-explore := to-explore [ frg�else send r to 
an-rea
h-L and to-exploreon PARTITION(r)�od�od Figure 4: Main loop of the distributed pro
edure L-REACHABILITY.a given vertex, but we are not able to dire
tly enumerate its prede
essors. As our algo-rithm requires prede
essors, verti
es of the graph have to be generated �rst and all theedges stored. In parti
ular, every vertex has an asso
iated list of (pointers to) its imme-diate prede
essors allowing thus every single workstation to enumerate su

essors aswell as prede
essors of verti
es it is responsible for.The implementation of the algorithm requires also a few other values to be storedat ea
h vertex. In parti
ular, these are the bit to distinguish whether the vertex belongsto the approximation set AS and list of a
tions A
tM�A whose 
orresponding edges arestill 
onsidered to be a part of the approximation set. The global sets to-eliminate,
an-rea
h-L, and to-explore are partitioned using the same partition fun
tion as thegraph. If a vertex is about to be inserted into one of these sets, it is at �rst judged bythe partition fun
tion and then sent to the workstation owning the vertex in order to beinserted in the 
orresponding lo
al part of the set.The main loop of the pro
edure L-REACHABILITY is repla
ed with the pseudo-
odegiven in Figure 4 in the 
ase of the distributed algorithm. The loop in the new pseudo-
ode terminates when all sent messages have been delivered and all lo
al sets to-explore are empty, whi
h is dete
ted using the standard distributed termination de-te
tion pro
edure and indi
ated with the �ag Finished.Pro
edure CLOSURE is modi�ed following the same s
heme. A spe
i�
 problemarises when all edges with a given a
tion are about to be removed from the set EAS foran immediate prede
essors of a given vertex. Consider the situation as depi
ted on theleft hand side of Figure 5. Let vertex 1 be pi
ked and removed from the set to-eliminate14



II

I

IV

II

I

IV

II

I

IV

1

3 4 4

11

4

2

III III III

2

33

2

��� � �� ��Æ Æ Æ

 
 


Figure 5: Distributed 
losure 
omputation on approximation sets.on the workstation III. Sin
e it has no outgoing edges (A
tM�A(1) is empty) the list ofimmediate prede
essors asso
iated with the vertex is 
leared, and the immediate pre-de
essors are told to remove the 
orresponding a
tion from their sets of valid a
tions.The only immediate prede
essor of the vertex 1 is the vertex 3 that is assigned to theworkstation I. Thus, a message requesting removal of the a
tion � from the vertex 3 issent from the workstation III to the workstation I and the vertex 1 is removed from theset AS of verti
es remaining in the approximation set (the bit representing its presen
ein the set is set to false). This is exempli�ed in the middle of the Figure. On
e the work-station I re
eives the message it appropriately modi�es the set A
tM�A(3), and sendsmessages to the workstations II and IV responsible for verti
es 2 and 4, respe
tively,in order to update the 
orresponding lists of immediate prede
essors of these verti
es.As soon as this is done, the 
omputation of the 
losure pro
edure for the vertex 1 is
omplete (see the situation on the right hand side of Figure 5).5 Con
lusionsWe addressed the problem of qualitative veri�
ation of �nite state Markov de
ision pro-
esses with respe
t to spe
i�
ations expressed in linear temporal logi
 LTL. An optimalsequential algorithm for the problem is given in [12℄. This algorithm is based on thede
omposition of a graph into strongly 
onne
ted 
omponents and as su
h 
annot bedire
tly modi�ed and effe
tively implemented in a distributed setting.We provide a new algorithm for qualitative LTL model 
he
king of Markov de
i-sion pro
esses with the same asymptoti
 
omplexity as given in [12℄. Contrary to thisalgorithm, our algorithm does not require the de
omposition into strongly 
onne
ted
omponents. Instead of this, the 
ore operation of our algorithm is a rea
hability test.15
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