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Abstract

We present BEEM — BEnchmarks for Explicit Model checkers. This benchmark set

includes more than 50 models together with correctness properties (both safety and

liveness). The benchmark set is accompanied by an comprehensive web portal,

which provides detailed information about all models. The web portal also includes

information about state spaces and facilities selection of models for experiments.

The report describes the rationale beyond the form of the benchmark set, the

design of the web portal and the main aspects of its realization, and also an example

of an experimental analysis over the benchmark set: an analysis of a performance

of sequential and distributed reachability.

The address of the web portal is http://anna.fi.muni.cz/models.

1 Introduction

Model checking field underwent a rapid development during last years. Several new,

sophisticated techniques have been developed, e.g., symbolic methods, bounded model

checking, or automatic abstraction refinement. However, for several important applica-

tion domains (e.g., mutual exclusion algorithms, communication protocols, controllers,

leader election algorithms) we still cannot do much better than the basic explicit model

∗Supported by the Grant Agency of Czech Republic grant No. 201/06/1338 and by the Academy of

Sciences of Czech Republic grant No. 1ET408050503.
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proc EXPLICITSEARCH(M)

add s0 to Wait; add s0 to States

while Wait 6= ∅ do

remove s from Wait

foreach s
a

−→ s ′ do

if s ′ 6∈ States then

add s ′ to Wait

add s ′ to States

fi od

od

end

Figure 1: Basic explicit search.

checking approach — brute force exhaustive state space search (Figure 1). This tech-

nique is used by several of the most well-known model checkers (e.g., Spin [14], Mur-

phi [7]). Even some of the software model checkers (e.g., Java PathFinder [12], Zing [1])

are based on the explicit search.

The explicit model checking technique has gained extensively from the progress in

computer speed and memory sizes. There has also been progress in the algorithmic

improvement of the method, e.g., heuristics for memory consumption, reduction tech-

niques, directed search, distributed search. Altogether, the application scope of the ex-

plicit technique has been extended significantly and many realistic case studies showed

practical usability of the method.

There is also a very large body of research work devoted to the improvement of

explicit model checking. Unfortunately, many papers fail to convincingly demonstrate

the usefulness of newly presented techniques. For both researchers and practitioners,

it is rather difficult to judge and compare different improvements. In order to enable

better development and evaluation of techniques, we need to study practically used

models and to develop a benchmark set. This is the goal of this work.

1.1 State of the Art

In order to support the need for benchmarks, we present an evaluation of experiments in

model checking papers. We have used a sample of 80 publications which are concerned
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Table 1: Quality of experiments reported in model checking papers. For each quality

category, we report number of published papers in years 1994-2006.
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Q1 - - 1 1 1 1 1 3 2 4 2 1 1

Q2 - - 3 3 2 3 3 1 2 2 2 1 -

Q3 - 2 1 3 1 2 2 1 3 2 2 4 1

Q4 1 - - - 1 - 1 4 1 1 2 - 2

Q5 - - - 1 - - - - 1 - 1 - -

with explicit model checking and contain an experimental section1. Experiments in each

of these publications were classified into one of the following five categories (the dis-

tinction among toy models, simple models, and case studies is described in Section 2.3):

Q1 Random inputs and/or few toy models.

Q2 Several toy models (possibly parametrized) or few simple models.

Q3 Several simple models (possibly parametrized) or one large case study.

Q4 Exhaustive study of parametrized simple models or several case studies.

Q5 Exhaustive study with the use of several case studies.

Table 1 presents the quality of experiments in papers from our sample (list of all

used papers and their classification is in Appendix B). Although the classification is

slightly subjective, it is clear from Table 1 that there is nearly no progress in time towards

higher quality of used models. This is rather disappointing, because more and more

case studies are available. Low experimental standards make it hard to assess newly

proposed techniques and obstruct the progress of the research in the field. As we have

discussed in our evaluation of on-the-fly reduction techniques [17], the practical impact

of many techniques can be quite different from claims made in publications. Clearly, a

good benchmark set is missing.

1The sample was obtained by collecting all relevant papers from SPIN, TACAS and CAV conferences

and browsing their citations and references to them. Nevertheless, this sample is certainly not meant to

be complete.
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The need for benchmarking, better experiments, and thorough evaluation of tools

and algorithms is well recognized, e.g., experimentation is a key part of Hoare’s pro-

posal for a Grand Challenge of Verified Software [13]. As can be seen from the be-

low given discussion of the related work, there is significant interest in benchmarks in

the model checking community. Nevertheless, the progress up to date has been rather

slow. The main obstacle in developing model checking benchmarks is the absence of

a common modeling language — each model checking tool is tailored towards its own

modeling language and even verification results over the same example are often in-

comparable.

Although the development of benchmarks is difficult and the model checking com-

munity will probably never have a universal benchmark set, we should try to build

benchmarks as applicable as possible and steadily improve our experimental analysis.

This is the goal of this work.

1.2 Our Approach

We present BEEM — a benchmark set which is built over the following principles.

Modeling Language

Models are implemented in a low-level modeling language based on communicating ex-

tended finite state machines (DVE language, see [18] for syntax and semantics). The

adoption of a low-level language makes the manual specification of models harder, but

it has several advantages. The language has a simple and straightforward semantics;

it is not difficult to write own parser and state generator. It can also be automatically

translated into other modeling languages — at the moment, the benchmark set includes

also Promela models which were automatically generated from DVE sources.

Models and Properties

Most of the models are well-known examples and case studies. Models span several

different application areas (e.g., mutual exclusion algorithms, communication protocols,

controllers, leader election algorithms, planning and scheduling, puzzles). In order to

make the set organized, models are classified into different types and categories. The

benchmark set is large and still growing (at the moment it contains 56 parametrized

models with 276 specified instances). Source codes of all models are publicly available.
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Models are briefly described and include pointers to sources (e.g., paper describing the

case study).

The benchmark set includes also correctness properties of the models. Since important

part of model checking is error detection, the benchmark set includes also models with

errors (presence of an error is a parameter of the model).

Tool Support

The modeling language is supported by an extensible model checking environment — The

Distributed Verification Environment (DiVinE) [3]. DiVinE is both a model checking

tool and a open and extensible library for a development of model checking algorithms.

Researchers can use this extensible environment to implement their own algorithms,

easily perform experiments over the benchmark set, and directly compare with other

algorithms in DiVinE. Promela models can be used for comparison with the well-known

model checker Spin [14].

Web Portal

The benchmark set is accompanied by an comprehensive web portal, accessible at

http://anna.fi.muni.cz/models, which should facilitate the experimental work. The web

provides:

• presentation of all information about models, their parameters, and correctness

properties,

• detailed information about properties of state spaces of models [16] including

summary information,

• verification results,

• web form for selection of suitable model instances according to a given criteria,

• instance generator, which can generate both DVE models and Promela models for

given parameter values.

1.3 Content of the Report

This report describes the used modeling language, content of the benchmark set, classi-

fication of models, design and realization of the web portal. We also demonstrate sev-
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eral simple experimental applications over the benchmark set. We study the behaviour

of simple sequential and distributed reachability. The experiments show how much the

experimental results depend on used models, that it can make difference if we use toy or

complex models. We also demonstrate the speed of state space traversal, and speed-up

in distributed environment.

1.4 Related Work

Corbett [6] was the first to evaluate model checking tools over a large benchmark set. He

used models described in Ada; this benchmark set is now rather outdated. There have

been several other systematic experimental works [5, 4, 17], but they do not provide any

generally usable benchmarks.

Detailed arguments for the need of benchmarking in model checking were given by

Avrunin et al. [9]. They even started to build a web portal of models2. Their portal is

simpler then ours and it was never finished — it contains only very small number of

models.

Atiya et al. [2] described benchmark proposal based on benchmarking theory. They

provide a carefully selected list of models, describe them, and discuss studies that used

these models. Unfortunately, their benchmark proposal does not include source codes

of models. Moreover, selected models are from different tools (and hence expressed in

different modeling languages). This makes it very difficult to use this benchmark set for

practical experiments.

Jones et al. [15] propose a preliminary benchmark set for benchmarking parallel

model checkers. Their set consists of just two parametrized artificial models; we con-

sider such set completely insufficient for reasonable experiments.

Most of the well known model checking tools (Spin, Uppaal, Murphi, CADP) have

their own sets of examples, either directly included in distribution or as a stand alone

collection (Promela model database3, CADP case studies4). These collections, however,

lack systematic organization and usually cover only some of part of the explicit model

checkers’ application domain.

The Very Large Transition Systems benchmark suite5 and our study of properties of

state spaces [16] both contain large number of representative examples which are more-
2http://laser.cs.umass.edu/verification-examples/
3http://web.tiscali.it/ikaria/alberto/promela_models/models.html
4http://www.inrialpes.fr/vasy/cadp/case-studies/
5http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html
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over systematically organized. Unfortunately, both these studies provide only state

spaces and not models. This makes them inapplicable for most of the model checking

experiments.

Specialized web portals have proved very useful in several related disciplines. Spec-

ification pattern system [8] provides a database of verification properties. Petriweb por-

tal [10] provides a collection of Petri nets, particularly for pedagogical purposes. Some

of its design aspects (e.g., selection of models according to given parameters) are similar

to the design of our portal.

2 The Benchmark Set BEEM

In this section we describe the used modeling language, models included in the bench-

mark set, and the used classification of models. At the moment, the benchmark set

contains 56 different models and a 276 specified instances of these models.

2.1 The DVE Modeling Language

Models in BEEM are presented in the DVE modeling language, which is the native input

language of DiVinE [3]. DVE language is a low-level language based on communicating

extended finite state machines. The language is similar to other modeling languages

(Spin’s Promela, Uppaal’s networks of extended timed automata, CADP’s LOTOS, etc.).

The language is designed to have straightforward semantics and for easy automatic

processing — so it is not very user friendly. Nevertheless, it is expressive enough to

model all classical examples and case studies. Figure 2 shows an example of a DVE

code.

The basic features of the language are the following:

• Model is comprised of a network of processes; processes execute asynchronously.

• Each process is a finite state machine extended with finite domain variables (in-

cluding one dimensional arrays). Each transition is comprised from guard, syn-

chronization and update of variables; transitions execute atomically.

• Processes can synchronize via two-party handshake (with optional value passing).

The full (abstract) syntax and semantics of the language is given in Appendix A.

Useful features, like more dimensional arrays, buffered communication, committed
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states, (discrete) timers, etc. can be realized using low-level mechanisms and macros6.

For macros we use of a powerful, general m4 preprocessor7. The preprocessor is also

used to represent parametrized versions of models. In this way we have only one source

file for each model.

BEEM contains two types of source codes:

• MDVE files: manually written source code with directives for preprocessor (in-

cludes macros and declarations of model parameters),

• DVE file: the low-level input code for the model checker or for automatic trans-

lation to other modeling languages; DVE files are generated from MDVE files by

the preprocessor.

2.2 Correctness Properties

For each model, BEEM also includes several correctness properties of the model. The

properties are expressed over atomic propositions, which are defined by expressions

over model variables. At the moment, we support two types of properties: reachability

properties and linear temporal logic (LTL) properties.

2.3 Classification of Models

Models are classified according to two criteria: type and complexity. Type of model

is one of the following application domains: mutual exclusion; communication proto-

cols; leader election algorithms; controllers; other protocols; puzzles, planning, schedul-

ing; other. Table 2 presents for each class of models their typical characteristics, typical

correctness properties used over this class of models, and some characteristics of state

spaces of these models. Each type of model is briefly described below.

Beside this classification, models in BEEM are also classified according to the ’com-

plexity’ of the model. We use the same classification as in our previous work [16]:

• toy examples: very simple examples which are usually used for teaching or as an

explanatory examples in research papers; these models can be specified in just few

lines of code,
6Note that the current version of DiVinE supports an extended version of the language which includes

some higher lever constructs like committed states and buffered channels. Nevertheless, BEEM is kept in

the basic version of the language.
7http://www.gnu.org/software/m4/
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process Cache_0 {

byte value = 0; int m,m2 = -1;

state invalid, i_bus_req, i_app_read, i_app_write, iv1, iv2, id1, set_value,

valid, v_bus_req, v_app_read, v_app_write, wait_bus_ack,

dirty, d_bus_req, d_app_read, error_st;

init valid;

trans

invalid -> i_bus_req { sync bus_0?m; },

i_bus_req -> invalid { guard m == 1 || m == 2; sync bus_0!-1; },

i_bus_req -> invalid { guard m == 3; },

invalid -> i_app_read {sync read_0?m; },

i_app_read -> iv1 { sync bus_0!1; },

iv1 -> iv2 { sync bus_0?value; },

iv2 -> valid { sync answer_0!((value & (1<<m))/(1<<m)); },

invalid -> i_app_write {sync write_0?m;},

i_app_write -> id1 { sync bus_0!2;},

id1 -> set_value {sync bus_0?value;},

set_value -> dirty {

sync answer_0!-1;

effect value = value - (value & (1<<((m/16)))) + ((m%16) * (1<<((m/16)))); },

valid -> v_bus_req { sync bus_0?m; },

v_bus_req -> valid { guard m == 1; sync bus_0!-1;},

v_bus_req -> invalid { guard m == 3; },

v_bus_req -> invalid { guard m == 2; sync bus_0!-1; },

valid -> v_app_read { sync read_0?m; },

v_app_read -> valid { sync answer_0!((value & (1<<m))/(1<<m)); },

valid -> v_app_write { sync write_0?m; },

v_app_write -> wait_bus_ack { sync bus_0!3; },

wait_bus_ack -> set_value { sync bus_0?m2; },

dirty -> d_bus_req {sync bus_0?m; },

d_bus_req -> valid { guard m == 1; sync bus_0!value; },

d_bus_req -> invalid { guard m == 2; sync bus_0!value; },

d_bus_req -> error_st { guard m == 3; },

dirty -> d_app_read { sync read_0?m; },

d_app_read -> dirty { sync answer_0!((value & (1<<m))/(1<<m)); },

dirty -> set_value { sync write_0?m; };

}

Figure 2: An example of a DVE code: Synapse cache coherence protocol, code of a

process modeling one cache.
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• simple models: non-trivial models inspired by real systems, but very simplified,

• complex case studies: models used in case studies to reason about some real sys-

tem; the description of the system have more than 100 lines of code.

The goal of this classification is to test to what extent do experimental results differ

for models of different complexity (see Section 4).

2.4 Overview of Models

Here we provide description of types of models and we also models list currently in-

cluded in the benchmark set.

2.4.1 Mutual Exclusion Algorithms

The goal of a mutual exclusion algorithm is to ensure an exclusive access to a shared re-

source. Models of these algorithms usually consist of several nearly identical processes

which communicate via shared variables.

Models currently included in the set: Anderson’s queue lock algorithm, Alur-

Taubenfeld’s algorithm, Bakery algorithm, Dining philosophers problem, Driving

philosophers problem, Fischer’s algorithm, Lamport’s algorithms, MCS queue lock al-

gorithm, Peterson’s algorithm, and Szymanski’s algorithm.

2.4.2 Communication Protocols

The goal of communication protocols is to ensure communication over an unreliable

medium. The core of a model of a communication protocol usually comprise of a sender

process, a receiver process, and a bus/medium. Processes communicate by handshake;

shared variables are not used.

Models currently included in the set: Bounded retransmission protocol, Cambridge

ring protocol, Collision avoidance protocol, Layer link protocol of the IEEE-1394, Slid-

ing window protocol, Pragmatic general multicast protocol, and Rether protocol.

2.4.3 Leader Election Algorithms

The goal of leader election algorithms is to choose a unique leader from a set of nodes.

Models consist of a set of (nearly) identical processes connected in a ring, tree, or arbi-

trary graph; communication is via (buffered) channels.
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Models currently included in the set: Algorithms based on extinction and on filters,

Firewire (IEEE 1394) tree identification protocol, Lann leader election algorithm for to-

ken ring, and leader election algorithm on unidirectional ring by Dolev et al.

2.4.4 Controllers

Models of controllers usually have centralized architecture: a controller process com-

municates with processes representing individual parts of the system. The communica-

tion can be both by shared variables and handshake communication.

Models currently included in the set: Audio/video power controller, Elevator con-

troller, Gear controller, Distributed system for lifting trucks, Programmable logic con-

troller program, Production cell case study, Train-gate controller.

2.4.5 Puzzles, Planning, Scheduling

Planning and scheduling problems and puzzles are not the main application domain of

explicit model checkers. Nevertheless, there are good reasons to include (some of these

problems) in our benchmark set:

• These examples are often used for teaching and as explanatory examples in re-

search papers (for example [19]).

• These examples can be easily modeled by the same formalisms as asynchronous

systems.

• Recently, there have been interest in applying model checking methods in artificial

intelligence.

Models currently included in the set: Blocks world, Scheduling machines for pro-

duction, Bridge puzzle, Peg solitaire puzzle, sliding block puzzles (Rushhour, Sokoban).

2.4.6 Other

The set includes several other models, which are not directly covered by any of the

above mentioned categories, for example: Milner’s cyclic scheduler, Telecommunica-

tion service protocol, Needham-Schroeder public key authentication protocol, Sharing

SRAM and CAM by lookup processors, Synapse cache coherence protocol.
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3 The Web Portal

In order to make BEEM more accessible and usable, we have built a web portal over it.

This section present the web portal and its realization.

3.1 Functionality

The web portal provides the following functionality:

• a listing of all models and their classification,

• detailed information about each model:

– description of a modeled system,

– reference to the original source of the model,

– description of parameters,

– correctness properties,

– list of instances included in BEEM ,

• additional information for each specified instance:

– size of the state space,

– details about properties of the state space (only for instances with a small

state space),

– verification results for the instance including lengths of counterexamples,

– Promela model, which is automatically generated from DVE source code,

• summary information about properties of state spaces (distribution of numerical

values: histograms, quartiles, mean),

• instance generator, which can generate both DVE models and Promela models for

given parameter values,

• selection of instances according to a given criteria; this should facilitate the selec-

tion of examples for experiments; the user can choose instances according to size

and results of verification.

The benchmark set (including model descriptions) is also available for download.
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3.2 Properties of State Spaces

The web portal includes information about properties of state space — this follows the

line of our previous research [16]. Information about state space properties can be useful

for explanation of results of experiments, therefore we consider it important to include

it in the web portal.

For each state space we report the following information (for description of these

properties see [16]):

• size of the state space: number of states, edges,

• degree information: average degree, distribution of in-degrees and out-degrees,

• structure of strongly connected components: number of components, size and po-

sition of the largest component, number of trivial components, height of the SCC

quotient graph,

• breadth and depth first search information: maximal size of queue/stack, number

of BFS levels, number of back/cross/front edges,

• information about local structure: number of diamonds, clustering coefficient,

• information about labels of states,

• visualization of parts of the state space.

Information about properties of a state space is given for each model instance which

have state space smaller than a given fixed limit (60,000). Summary information about

the distribution of numerical values is also provided. For model instances with state

space larger then the given limit we provide only the number of states and edges.

3.3 Realization of the System

Now we briefly describe the implementation of the web portal. Figure 3 presents sketch

of relations among different parts of the system.

3.3.1 Example Description

For each example we have a description file in XML format. This file contains the fol-

lowing informations:

14



statistics
summary

summary
info

st. space
info

model
MDVE

description
XML

verification

model
info

list of
instances

results

model
DVE

state
space

st. space
statistics

state space
generator

analyzator

preprocessor

verification

reachability

Manually
created

Automatically
generated

Web
interface

R

model
Promela

Figure 3: Overview of the realization of the web portal.
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• classification of the example (see Section 2.3),

• description of the example, source of the example (e.g., reference to a research

paper),

• description of model parameters,

• definition and description of atomic propositions and correctness properties (see

Section 2.2),

• definition of specific instances of the model (concrete values of parameters).

Figure 4 gives an example of a model description file.

3.3.2 Programs for Automatic Processing

For each model, the administrator of the web portal provides only an MDVE source

code and an XML file with a description of the model. All other files and informations

are automatically generated:

• DVE and Promela source codes for instances: generated by m4 preprocessor and

dve2promela translator,

• informations about a model and its state space, verification results for specified

correctness properties: generated by programs implemented in C++ with the use

of the DiVinE library; results are stored as XML files,

• graphical representation of the informations and summary statistics about state

spaces: generated using dot, R, and gnuplot.

Scripts for batch execution and processing of models are implemented in Perl.

3.3.3 Web Interface

Both the manually provided data and informations computed by programs are repre-

sented as XML files. This information is presented to the user by web interface, which

is implemented as CGI scripts in Perl.
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<model type="other-protocol" classification="complex">

<short-description>Synapse cache coherence protocol</short-description>

<long-description>Synapse cache coherence protocol: several caches are

connected by a bus, the goal of the protocol is to keep the content of the

caches coherent. </long-description>

<source>Manually translated from Promela source code (included in SPIN

distribution).</source>

<parameter-description>

<par-name>Lines</par-name>

<par-description>Number of lines in a cache</par-description>

</parameter-description>

<parameter-description>

<par-name>N</par-name>

<par-description>Number of applications and caches</par-description>

</parameter-description>

<ap> <ap-name>cerror</ap-name>

<ap-expression>Cache_0.error_st</ap-expression> </ap>

<ap> <ap-name>write11</ap-name>

<ap-expression>written_line==1 &amp;&amp; written_value==1</ap-expression></ap>

...

<property id="1" prop-type="reachability">

<formula>cerror</formula>

<description>Cache gets into an error state.</description>

</property>

...

<property id="3" prop-type="LTL">

<formula> G (write11 -> ((G ! write10) || ((! read10) U (write10)) ))</formula>

<description>If we write 1 to line 1 and do not override it until

next reading then the next reading from this line is 1. </description>

</property>

<instance id="1">

<parameters>Lines=2,N=2</parameters>

</instance>

...

</model>

Figure 4: An example of a description file: Synapse cache coherence protocol. Note that

only some parts of the XML file are listed.
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void search() {

Wait.push(init);

States.insert(init);

while (! Wait.empty()) {

state_t q = Wait.front(); Wait.pop();

System.get_enabled_trans(q, trans);

for (enabled_trans_container_t::iterator i = trans.begin();

i != trans.end(); i++) {

state_t r;

System.get_enabled_trans_succ(q,*i, r);

if (! States.is_stored(r)) {

Wait.push(r);

States.insert(r);

}

}

delete_state(q);

}

}

Figure 5: DiVinE implementation of the basic explicit search from Figure 1.

4 Experimental Applications

In this section we demonstrate an example of application of BEEM to an experimental

study of a basic sequential and distributed reachability analysis. This analysis demon-

strates the dependence of a model checker on an input model. It also illustrates that

performance results can differ for toy and complex problems.

Algorithms were implemented in the DiVinE library [3]. The library provides basic

primitives for implementation of (distributed) model checking algorithms, so the imple-

mentation is very close to the pseudocode of the algorithm (see Figure 5 and compare it

with Figure 1). Experiments were run on 2.60GHz processor with 4 GB RAM memory,

distributed experiments were run on a cluster of 20 dedicated workstations connected

by 1GB Ethernet.
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4.1 Sequential Reachability

At first, we study the performance of sequential reachability. We are concerned with the

speed of exploration, i.e., the number of states generated per second. We have run the

reachability on 210 instances and obtained the following results (see Figure 6):

• The speed of exploration depends quite significantly on the model. The typical

value is between 50,000 and 100,000 states per second, extremes are at 7,000 and

230,000, i.e., the difference in the speed on different models can be as large as 30

times.

• The model checker is slower for complex models.

We have also done some profiling of the code. It is a well known rule of thumb that

90% of the execution time of a program is spent in 10% of the code. Since the reachability

analysis consist of very large number of repetitions of a simple cycle, this general “90/10

law” demonstrates itself very strongly in this case. Therefore, it is a good idea to target

any optimization efforts to a particular part of code.

However, it shows up that the part of code that is most prominently used also de-

pends on a specific model. Here we present only summary analysis that shows the

main trend. Operations during the reachability analysis can be roughly divided into

two main classes: successor computation operations (e.g., get_enabled_trans) and op-

erations for manipulation with storage (e.g, insert and is_stored). Figure 7 shows

the ratio between time spent by these two types of operations. The figure demonstrates

that the ratio vary quite significantly and that the time spent by successor generation is

higher for complex models.

4.2 Distributed Reachability

At second, we study the performance of distributed reachability. In this case the basic

performance parameter in which we are interested is the speedup, i.e., how many times

is the computation faster on n workstations than on one workstation. Optimally, we

would like to get near to a linear speedup, but this is not realistic due to a communica-

tion overhead8.
8Nevertheless, sometimes one can get even superlinear speedup. This can happen in the case that the

computation on one workstation uses too small hash table or it starts swapping.
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Figure 6: The speed of state generation during the state space search. The histogram

shows the number of instances over which the state space generator’s speed is in the

given interval. The second graph shows the speed according to the type of the model

using the boxplot method (minimum, quartiles, and maximum are shown).
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Figure 9: Speedup on 20 workstations. The same type of presentation as in Figure 6 is

used.
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Figure 10: Correlation between speed and speedup.

Figure 8 shows the speedup for several sample models for 1 to 20 workstations

(we have run the experiment for more models, these are representative results). The

achieved speedup depends on the model, but for a given model it is consistent — it

keeps increasing linearly as we add more workstations.

Figure 9 reports speedup achieved on 20 workstations (experiments were run on 120

instances with sufficiently large state space). The speedup vary quite significantly: from

2 to 12, the typical speedup is between 4 and 6. The figure also demonstrates that the

type of an input model is again important: for complex models we get a better speedup.

This suggests that there may be correlation between speed and speedup.

Figure 10 shows the relation between speed of state generation (as studied above)

and the speedup. The correlation is quite clear; the correlation coefficient is −0.68. For

models, where the speed is low, the communication overhead is not so significant and

thus the speedup is better.

5 Conclusions and Future Work

This report present BEEM — a benchmark set for explicit model checkers. Compared to

other similar benchmarks sets, our set has two main advantages:
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1. The set is large and contains diverse set of models.

2. The set has a good web support which facilities application of the set.

The report also briefly demonstrates how this benchmark set can be used to get bet-

ter insight into the behaviour of model checking algorithms.

In future we plan to further extend BEEM and the web portal. Specifically, we would

like to do the following:

• add more models,

• add more correctness properties and model variants (particularly more erroneous

variants) to existing models,

• add fairness requirements to correctness properties,

• improve the automatic translation to Promela and add other translators (e.g. into

LOTOS, Uppaal input language),

• incorporate compact visualization of the whole state space [11],

• create more sophisticated support for experimental analysis.

This benchmark set gives many possibilities for future experimental research, for

example:

• thorough comparison of competitive model checking algorithms (e.g., distributed

LTL model checking algorithms),

• analysis of practical usefulness of reduction techniques,

• performance analysis of model checking algorithms, with the goal to identify

which model/state space attributes (parameters) influence the performance most

significantly.
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A Syntax and Semantics of a DVE Modeling Language

We define an abstract syntax and semantics of the DVE modeling language. The con-

crete syntax is a natural one (see Figure 2 and source codes of models in the benchmark

set).

A.1 Abstract Syntax

A.1.1 Expressions

Let V be a set of variables. We treat all variables as one dimensional array variables of

a bounded length — scalar variables are treated as a special case of array variables of

length 1, more dimensional arrays can be easily simulated by one dimensional.

Set of all expressions over V is denoted Expr(V) and is defined as:

e := i | V[e] | −e | e intop e | e relop e | ¬e | e boolop e

where:

• intop is an integer operator (+, −, /, ·, . . .)

• boolop is a boolean operator (∧, ∨)

• relop is a relation operator (<,>,≤,≥, =)

Expressions are used both as integer values (in assignments) and as boolean values

(in guards).

A.1.2 Effects

Set of all effects over V is denoted Eff (V) and is defined as follows (a ∈ V, e ∈ Expr(V)):

Eff := a[e] = e | Eff ; Eff

A.1.3 Synchronization

Let Σ be a finite set of communication channels and τ a special channel not included in

Σ. Then the set of all synchronizations over Σ and V is denoted S(Σ,V) and is defined

as follows:
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S := τ | Σ! | Σ? | Σ?V [Expr(V)] | Σ!Expr(V)

A.1.4 Extended Finite State Machines

Extended Finite State Machine (EFSM) over V and Σ is a tuple A = (Q,q0, E) where Q

is a set of states, q0 ∈ Q is an initial state, and E ⊆ Q× Expr(V)× S(Σ,V)× Eff (V)×Q

is a set of edges. In the concrete syntax we allow machines (processes) to have local

variables.

A.1.5 Network

Network of EFSMs over V and Σ is a tuple N = (A1, . . . , An, dom, length, γ0), where

• Ai = (Qi, qi
0, E

i) are automata over V and Σ

• dom : V → I(Z) assign to each array variable its domain (an interval in Z)

• length : V → N assign to each array variable its length (i.e. the size of the array)

• γ0 is an initial valuation

A.2 Semantics

Let us suppose that we have a network N = (A1, . . . , An, dom, length, γ0). Variables are

interpreted over Z⊥ – integer numbers extended with ⊥ (undefined). Any operation

with ⊥ yields ⊥. A valuation is a function γ : V → (N → Z⊥), such that ∀a ∈ V : (∀0 ≤
i < length(a) : γ(a)(i) ∈ dom(a) ∧ ∀i ≥ length(a) : γ(a)(i) =⊥). Let Γ be a set of all

valuations for given V, dom, length.

A.2.1 Expressions

Evaluation of an expression e with respect to a valuation γ ∈ Γ is denoted JeKγ and is

defined as follows:

• JnumberKγ = number

• Ja[e]Kγ =





γ(a)(JeKγ) a ∈ V, 0 ≤ JeKγ < length(a)

⊥ otherwise
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• J−eKγ = −JeKγ

• Je1 intop e2Kγ = Je1Kγ intop Je2Kγ

• Je1 relop e2Kγ =





1 Je1Kγ relop Je2Kγ
0 otherwise

• J¬eKγ =





1 JeKγ = 0

0 otherwise

• Je1 boolop e2Kγ =





1 (Je1Kγ 6= 0) boolop (Je2Kγ 6= 0)

0 otherwise

As expressions are used in guards as boolean values, we use the notation γ |= e with

the meaning JeKγ 6= 0.

A.2.2 Effects

Effects are interpreted as functions Γ → (Γ ∪ error), i.e. effect applied to valuation yields

either ’updated’ valuation or an error.

• Ja[e1] = e2K(γ) =





γ[a(Je1Kγ) 7→ Je2Kγ] 0 ≤ Je1Kγ < length(a), Je2Kγ ∈ dom(a)

error otherwise

• Jeff 1; eff 2K(γ) = Jeff 1K(Jeff 2K(γ))

where γ[a(x) 7→ y] is a valuation γ ′ such that γ ′ differs from γ only in value of a(x).

A.2.3 Network

The semantics of a network is a transition system JN K = (S, s0, −→), with a finite set of

states S, an initial state s0, and transition relation −→⊆ S× S, where:

• S = (Q1 × . . .×Qn)× (Γ ∪ error)

• s0 = (q1
0, . . . , q

n
0 , γ0)

We use the following notation: ~q is a vector of states (q1, . . . , qn), ~q[x/y] for a state

vector ~q with state x substituted for y, γ ∈ Γ . There is a transition (~q, γ) −→ (~q ′, γ ′) iff

γ 6= error and one of the following conditions is satisfied:
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1. There exists an edge (q1, g, τ, eff , q2) ∈ Ei such that:

• ~q ′ = ~q[q2/q1]

• (~q, γ) |= g

• γ ′ = Jeff K(γ)

2. There exists edges (q1
1, g1, c!, eff 1, q

2
1) ∈ Ei, (q1

2, g2, c?, eff 2, q
2
2) ∈ Ej such that:

• i 6= j

• ~q ′ = ~q[q2
1/q1

1, q
2
2/q1

2]

• (~q, γ) |= g1 ∧ g2

• γ ′ = Jeff 1K(Jeff 2K(γ))

3. There exists edges (q1
1, g1, c!e1, eff 1, q

2
1) ∈ Ei, (q1

2, g2, c?a[e2], eff 2, q
2
2) ∈ Ej such that:

• i 6= j

• ~q ′ = ~q[q2
1/q1

1, q
2
2/q1

2]

• (~q, γ) |= g1 ∧ g2

• γ ′ = Jeff 1K(Jeff 2K(Ja[e2] = e1K(γ)))
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B Quality of Experiments: Classification of Papers

In this appendix we provide a list of publication used in Section 1 to study quality of

experimental work in model checking publications.

Publications with Experiments of Quality Q1

• R. Alur and B.-Y. Wang. Next heuristic for on-the-fly model checking. In In-

ternational Conference on Concurrency Theory, volume 1664 of LNCS, pages 98–113.

Springer, 1999.

• B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the alternation

free µ-calculus. In Proc. of Tools and Algorithms for the Construction and Analysis of

Systems (TACAS 2001), volume 2031 of LNCS, pages 543–558. Springer, 2001.

• Benedikt Bollig, Martin Leucker, and Michael Weber. Local parallel model check-

ing for the alternation-free µ-calculus. In Proceedings of the 9th International SPIN

Workshop on Model checking of Software (SPIN ’02). Springer-Verlag Inc., 2002.

• Sébastien Bornot, Rémi Morin, Peter Niebert, and Sarah Zennou. Black box un-

folding with local first search. In TACAS, Lecture Notes in Computer Science,

pages 386–400. Springer, 2002.

• Dragan Bosnacki. A light-weight algorithm for model checking with symmetry

reduction and weak fairness. In SPIN, volume 2648 of Lecture Notes in Computer

Science, pages 89–103. Springer, 2003.

• L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed ltl model checking based on

negative cycle detection. In Proc. Foundations of Software Technology and Theoretical

Computer Science (FST TCS 2001), volume 2245 of LNCS, pages 96–107. Springer,

2001.

• Stefan Edelkamp and Shahid Jabbar. Large-scale directed model checking ltl. In

SPIN, volume 3925 of Lecture Notes in Computer Science, pages 1–18. Springer, 2006.

• J. C. Fernandez, M. Bozga, and L. Ghirvu. State space reduction based on live

variables analysis. Journal of Science of Computer Programming (SCP), 47(2-3):203–

220, 2003.

31



• M. D. Jones and J. Sorber. Parallel search for ltl violations. Software Tools for

Technology Transfer (STTT), 7(1):31–42, 2005.

• Victor Khomenko and Maciej Koutny. Branching processes of high-level petri

nets. In TACAS, volume 2619 of Lecture Notes in Computer Science, pages 458–472.

Springer, 2003.

• Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics ap-

proach to the clock explosion problem of timed automata. In TACAS, volume

2988 of Lecture Notes in Computer Science, pages 296–311. Springer, 2004.

• Hillel Miller and Shmuel Katz. Saving space by fully exploiting invisible transi-

tions. In CAV, volume 1102 of Lecture Notes in Computer Science, pages 336–347.

Springer, 1996.

• Karsten Schmidt. Using petri net invariants in state space construction. In TACAS,

volume 2619 of Lecture Notes in Computer Science, pages 473–488. Springer, 2003.

• Karsten Schmidt. Automated generation of a progress measure for the sweep-

line method. In TACAS, volume 2988 of Lecture Notes in Computer Science, pages

192–204. Springer, 2004.

• A. Prasad Sistla and Patrice Godefroid. Symmetry and reduced symmetry in

model checking. In CAV, volume 2102 of Lecture Notes in Computer Science, pages

91–103, 2001.

• Scott D. Stoller, Leena Unnikrishnan, and Yanhong A. Liu. Efficient detection of

global properties in distributed systems using partial-order methods. In Computer

Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages 264–279.

Springer, 2000.

• H. van der Schoot. Partial-order verification in spin can be more efficient. In Proc.

of SPIN Workshop. Twente University, 1997.

• Frank Wallner. Model checking ltl using net unforldings. In CAV, volume 1427 of

Lecture Notes in Computer Science, pages 207–218. Springer, 1998.
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Publications with Experiments of Quality Q2

• T. Basten and D. Bosnacki. Enhancing partial-order reduction via process cluster-

ing. In Proc. of Automated Software Engineering, 2001.

• G. Behrmann, P. Bouyer, E. Fleury, and Kim G. Larsen. Static guard analysis in

timed automata verification. In Proc. of Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’2003), volume 2619 of LNCS, pages 254–277. Springer,

2003.

• Dragan Bosnacki, Natalia Ioustinova, and Natalia Sidorova. Using fairness to

make abstractions work. In SPIN, volume 2989 of Lecture Notes in Computer Science,

pages 198–215, 2004.

• E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction us-

ing partial order techniques. International Journal on Software Tools for Technology

Transfer (STTT), 2(3):279–287, November 1999.

• Rance Cleaveland, Gerald Lüttgen, V. Natarajan, and Steve Sims. Priorities for

modeling and verifying distributed systems. In TACAS, Lecture Notes in Com-

puter Science, pages 278–297. Springer, 1996.

• C. Daws and S. Tripakis. Model-checking of real-time reachability properties us-

ing abstractions. In Proc. of Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’98), volume 1384 of LNCS, pages 313–329. Springer, 1998.

• Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of mcmillan’s

unfolding algorithm. In TACAS, volume 1055 of Lecture Notes in Computer Science,

pages 87–106. Springer, 1996.

• C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model check-

ing software. In Proc. of Principles of programming languages (POPL’05), pages

110–121. ACM Press, 2005.

• P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic

algorithms. In Proc. of Tools and Algorithms for Construction and Analysis of Systems

(TACAS 2002), volume 2280 of LNCS, pages 266–280. Springer, 2002.
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• Jaco Geldenhuys and Antti Valmari. A nearly memory-optimal data structure for

sets and mappings. In SPIN, volume 2648 of Lecture Notes in Computer Science,

pages 136–150. Springer, 2003.

• G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction

strategies for reachability analysis. In Proc. of Protocol Specification, Testing, and

Verification, 1992.

• Gerard J. Holzmann. The engineering of a model checker: The gnu i-protocol case

study revisited. In SPIN, pages 232–244, 1999.

• C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in

System Design, 9(1–2):41–75, 1996.

• Radu Iosif. Symmetry reduction criteria for software model checking. In SPIN,

volume 2318 of Lecture Notes in Computer Science, pages 22–41. Springer, 2002.

• Radu Iosif and Riccardo Sisto. Using garbage collection in model checking. In

SPIN, Lecture Notes in Computer Science, pages 20–33. Springer, 2000.

• J.P. Krimm and L. Mounier. Compositional state space generation from Lotos

programs. In Proc. Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 1997), volume 1217 of LNCS, pages 239–258. Springer, 1997.

• R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigun. Static partial order

reduction. In Proc. Tools and Algorithms for Construction and Analysis of Systems

(TACAS 1998), volume 1384 of LNCS, pages 345 – 357. Springer, 1998.

• Ilkka Kokkarinen, Doron Peled, and Antti Valmari. Relaxed visibility enhances

partial order reduction. In CAV, volume 1254 of Lecture Notes in Computer Science,

pages 328–339. Springer, 1997.

• Bengi Karaçali and Kuo-Chung Tai. Model checking based on simultaneous reach-

ability analysis. In SPIN, pages 34–53, 2000.

• F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Proc. of

SPIN workshop, volume 1680 of LNCS. Springer, 1999.

• Thomas Mailund and Michael Westergaard. Obtaining memory-efficient reach-

ability graph representations using the sweep-line method. In TACAS, volume

2988 of Lecture Notes in Computer Science, pages 177–191. Springer, 2004.
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• Atanas N. Parashkevov and Jay Yantchev. Space efficient reachability analysis

through use of pseudo-root states. In TACAS, volume 1217 of Lecture Notes in

Computer Science, pages 50–64. Springer, 1997.

• Karsten Schmidt. Integrating low level symmetries into reachability analysis. In

TACAS, Lecture Notes in Computer Science, pages 315–330. Springer, 2000.

Publications with Experiments of Quality Q3

• D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. In Proc. of SPIN

Workshop, volume 1885 of LNCS, pages 1–19. Springer, 2000.

• Dragan Bosnacki and Gerard J. Holzmann. Improving spin’s partial-order reduc-

tion for breadth-first search. In SPIN, volume 3639 of Lecture Notes in Computer

Science, pages 91–105. Springer, 2005.

• Tonglaga Bao and Mike Jones. Time-efficient model checking with magnetic

disk. In TACAS, volume 3440 of Lecture Notes in Computer Science, pages 526–540.

Springer, 2005.
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