
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

On Sampled Semantics of Timed Systems

by

Pavel Krčál
Radek Pelánek

FI MU Report Series FIMU-RS-2005-09

Copyright c© 2005, FI MU September 2005

Copyright c© 2005, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/veda/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Reachability Relations and Sampled Semantics
of Timed Systems

Pavel Krčál

Department of Information Technology,

Uppsala University, Sweden

pavelk@it.uu.se

Radek Pelánek

Department of Computer Science, Faculty of Informatics,

Masaryk University Brno, Czech Republic

xpelanek@fi.muni.cz

December 5, 2005

Abstract

Timed systems can be considered with two types of semantics – dense time seman-

tics and discrete time semantics. The most typical examples of both of them are real

semantics and sampled semantics (i.e., discrete semantics with a fixed time step ε). In

this work, we study different aspects of sampled semantics. At first, we study reach-

ability relations between configurations of a timed automaton and provide a novel

effective characterization of reachability relations. This result is used for proving

our main result — decidability of non-emptiness of a timed automaton ω-language

in some sampled semantics (this problem was previously wrongly classified as un-

decidable). Also, we study relations between real semantics and sampled semantics

with respect to different behavioral equivalences. Finaly, we study decidability of

reachability problem for stopwatch automata with sampled semantics.

1 Introduction

In this paper we are concerned with formal verification of timed systems. As models

of timed systems we consider mainly timed automata (TA) [2]; some results are also

1

shown for stopwatch automata (SWA) [17] — an extension of timed automata which

allows clocks to be stopped in some locations.

The semantics of these models can be defined over various time domains. The usual

approach is to use dense time semantics, particularly real time semantics (time domain

is R+
0). From many points of view, this semantics is very plausible. One does not need

to care about the granularity of time during the modeling phase. This semantics leads

to an uncountable structure with a finite quotient (for timed automata) and thus it is

amenable to verification with finite state methods. Moreover, theoretical and often also

practical complexity of problems for dense time semantics is usually the same as for

various discrete semantics.

Discrete semantics, particularly sampled semantics with fixed time step ε ∈ Q+
>0 (time

domain is {k · ε | k ∈ Z+
0 }), is also often considered, e.g., in [10, 9, 6]. One of the advan-

tages is that with the sampled time domain we have a wider choice of representations

for sets of clock valuations, e.g., explicit representation or symbolic representation using

decision diagrams. Another important issue is implementability. If a system is realized

on a hardware then there is always some granularity of time (e.g., clock cycle, sam-

pling period). Therefore, sampled semantics is closer to the implementation then more

abstract dense time semantics.

Dense time semantics can even give us misleading verification results. Assume that

we have a model of a timed system such that it satisfies some property in dense time

semantics. Now the question is whether there is an implementation (realized on a dis-

crete time hardware) such that it preserves this property. Dense time semantics allows

behaviors which are not realizable in any real system. If satisfaction of the property

depends on these behaviors then there might not be an implementation satisfying the

property.

Verification problems can be stated as the (ω-)language non-emptiness. By verifica-

tion of a model A with respect to sampled semantics we mean answering the question

whether there exists ε such that the (ω-)language of A is empty in sampled semantics

with ε as the sampling period. We show that this problem is decidable for timed au-

tomata and that one can also synthesize such ε. This problem for ω-languages was

previously wrongly classified as undecidable [3]. The same problem was studied in

the control setting with slightly different sampled behavior in [11]. The automaton is a

model of a controller with the periodic control loop which always gets a sampled data

and performs a control action. Therefore, the automaton has to perform an action at

2

every sampled time point. This is a difference from our definition of sampled semantics

– the automaton can idle for several sampling periods. The fact that the automaton has

to react at every sampled time point makes the problem undecidable even for the (finite

word) language non-emptiness.

Our proof uses a novel characterization of reachability relations in timed automata.

Representations of reachability relations were studied before: using additive theory of

real numbers [13] and 2n-automata [14]. Our novel representation is based on sim-

ple linear (in)equalities (comparisons of clock differences). This representation is of

independent interest, since it is simpler and more specific then previously considered

characterizations and it gives a better insight into reachability relations.

We also systematically study relations between dense time semantics and sampled

semantics for different timed systems. We study these relations in terms of behavioral

equivalences, as it is well known which verification results are preserved by which

equivalence. These results are summarized in Table 1. For sampled semantics, a given

result means that there exists an ε such that a given equivalence is guaranteed. All

considered equivalences are “untimed” – the only important information for an equiv-

alence are actions performed and not the precise timepoints at which these actions are

taken.

Finally, we summarize the (un)decidability of the reachability problem in timed sys-

tems (Table 2). Particularly, we provide a new undecidability proof for the reachability

problem in sampled semantics for stopwatch automata with diagonal constraints and

one stopwatch. One stopwatch suffices for all undecidability results.

Related Work

There has been a considerable amount of work related to discretization issues and ver-

ifying dense time properties using discrete time methods, e.g., [18, 20, 21, 5]. The main

difference is that usually only a fixed sampling rate and trace equivalence are consid-

ered.

Implementability issues are discussed in conection with robust semantics of timed

automata in [24, 23]. Goal of these works is to decide whether a set of bad states is

reachable if the clock rates drift a little bit or the guards are enlarged a little bit. It is

argued that a real hardware can never produce synchronized clocks and measure them

with infinite precision.

3

Discretization of timed automata preserving reachability has also been studied

in [15]. Authors present an elaborate discretization scheme which preserves reachabil-

ity (and in fact even bisimilarity) for any timed automaton. Our discretization scheme

is just sampling with a fixed rate.

Practical aspects of verification with the use of sampled semantics are discussed

in [10, 9, 6, 7, 4]. These works are concerned mainly with data structures for repre-

senting sets of discrete valuations (e.g., different types of decision diagrams). They do

not consider theoretical problems concerning relations between dense and sampled se-

mantics in greater depth.

The expressive power of stopwatch automata is studied in [12]. The usefullness of

stopwatch automata for modeling scheduling problems is studied in [1, 19].

Table 1: A summary of the equivalences: each field gives the relation to real semantics.

equivalences closed TA TA SWA

rational semantics bisimilar bisimilar trace eq.

sampled semantics similar reachability eq. reachability eq.

Table 2: A summary of decidability results for the reachability problem.

reachability TA diagonal-free SWA SWA

dense semantics PSPACE-complete undecidable undecidable

sampled semantics PSPACE-complete PSPACE-complete undecidable

2 Preliminaries

In this section we define syntax and semantics of the automata. We define a stopwatch

automaton and a timed automaton as a special case of the stopwatch automaton. Se-

mantics is defined as a labeled transition system (LTS). We also define usual untimed

behavioral equivalences on LTS, equivalences on valuations, and a region graph.

4

Labeled Transition Systems

An LTS is a tuple T = (S, Act, →, s0) where S is a set of states, Act is a finite set of actions,

→⊆ S × Act × S is a transition relation, s0 ∈ S is an initial state. A run of T over a trace

w ∈ Act∗ ∪ Act! is a sequence of states π = q0, q1, . . . such that q0 = s0 and qi
w(i)
−→ qi+1.

The set of finite (resp. infinite) traces of the transition system is L(T) = {w ∈ Act∗ | there

exists a run of T over w} (resp. L!(T) = {w ∈ Act! | there exists a run of T over w}).

Equivalences

Let T1 = (S1, Act, →1, s
1
0), T2 = (S2, Act, →2, s

2
0) be two labeled transitions systems. A

relation R ⊆ S1 × S2 is a simulation relation iff for all (s1, s2) ∈ R and s1
a

−→1 s ′1 there

is s2 such that s2
a

−→2 s ′2 and (s ′1, s
′
2) ∈ R. System T1 is simulated by T2 if there exists

a simulation R such that (s10, s
2
0) ∈ R. A relation R is a bisimulation relation iff R is a

symmetric simulation relation. A bisimulation ∼ is the largest bisimulation relation. A

set of reachable actions RA(T) is the set {a ∈ Act | s0 →∗ sn
a

−→ sn+1}. Systems T1, T2 are:

• reachability equivalent iff RA(T1) = RA(T2),

• trace equivalent iff L(T1) = L(T2),

• infinite trace equivalent iff L!(T1) = L!(T2),

• simulation equivalent iff T1 simulates T2 and vice versa,

• bisimulation equivalent (bisimilar) iff s10 ∼ s20.

Syntax

Let C be a set of non-negative real-valued variables called clocks. The set of guards G(C)
is defined by the grammar g := x ./ c | x − y ./ c | g ∧ g where x, y ∈ C, c ∈ N0 and

./∈ {<,≤,≥, >}. A stopwatch automaton is a tuple A = (Q, Act, C, q0, E, stop), where:

• Q is a finite set of locations,

• C is a finite set of clocks,

• q0 ∈ Q is an initial location,

• E ⊆ Q×Act×G(C)× 2C ×Q is a set of edges labeled by an action name, a guard,

and a set of clocks to be reset,

5

• stop : Q → 2C assigns to each location a set of clocks that are stopped at this

location.

A clock x ∈ C is called a stopwatch clock if ∃q ∈ Q : x ∈ stop(q). We use the following

special types of stopwatch automata:

• a timed automaton is a stopwatch automaton such that there are no stopwatch

clocks (i.e., ∀q ∈ Q : stop(q) = ∅),

• a closed automaton uses only guards with {≤,≥},

• a diagonal-free automaton uses only guards defined by g := x ./ c | g ∧ g.

We also consider combinations of these types, e.g., closed timed automaton.

Semantics

Semantics is defined with respect to a given time domain D. We suppose that a time

domain is a subset of real numbers which contains 0 and is closed under addition. A

clock valuation is a function ν : C → D. If δ ∈ D then a valuation ν + δ is such that for

each clock x ∈ C, (ν + δ)(x) = ν(x) + δ. If Y ⊆ C then a valuation ν[Y := 0] is such that

for each clock x ∈ C r Y, ν[Y := 0](x) = ν(x) and for each clock x ∈ Y, ν[Y := 0](x) = 0.

The satisfaction relation ν |= g for g ∈ G(C) is defined in the natural way.

The semantics of a stopwatch automaton A = (Q, Act, C, q0, E, stop) with respect to

the time domain D is an LTS JAKD = (S, Act, →, s0) where S = Q×DC is the set of states,

s0 = (q0, ν0) is the initial state, ν0(x) = 0 for all x ∈ C. Transitions are defined with the

use of two types of basic steps:

• time step: (q, ν)
delay(�)

−−−−−→ (q, ν ′) if δ ∈ D, ∀x ∈ stop(q) : ν ′(x) = ν(x), ∀x ∈ C r
stop(q) : ν ′(x) = ν(x) + δ,

• action step: (q, ν)
action(a)

−−−−−−→ (q ′, ν ′) if there exists (q, a, g, Y, q ′) ∈ E such that ν |=

g, ν ′ = ν[Y := 0].

The transition relation of JAKD is defined by concatenating these two types of steps:

(q, ν)
a

−→ (q ′, ν ′) iff there exists (q ′′, ν ′′) such that (q, ν)
delay(�)

−−−−−→ (q ′′, ν ′′)
action(a)

−−−−−−→
(q ′, ν ′).

We consider the following time domains: R+
0 ,Q+

0 , {k · ε | k ∈ Z+
0 }. The semantics

with respect to the last domain is denoted JAK� (also called sampled semantics). We

use the following shortcut notation: L(A) = L(JAKR+
0
), L!(A) = L!(JAKR+

0
), L�(A) =

L(JAK�), L�!(A) = L!(JAK�).

6

Equivalences on valuations

For any δ ∈ R, int(δ) denotes the integral part of δ and fr(δ) denotes the fractional part of

δ. Let k be an integer constant. We define the following relations on the valuations. The

equivalence ∼=k is a standard region equivalence (its equivalence classes are regions),

the equivalence ∼k is an auxiliary relation which allows us to forget about the clocks

whose values are above k.

• ν ∼=k ν ′ iff all the following conditions hold:

– for all x ∈ C : int(ν(x)) = int(ν ′(x)) or ν(x) > k ∧ ν ′(x) > k,

– for all x, y ∈ C with ν(x) ≤ k and ν(y) ≤ k : fr(ν(x)) ≤ fr(ν(y)) iff fr(ν ′(x)) ≤
fr(ν ′(y)),

– for all x ∈ C with ν(x) ≤ k : fr(ν(x)) = 0 iff fr(ν ′(x)) = 0;

• ν ∼k ν ′ iff for all x ∈ C : ν(x) = ν ′(x) or ν(x) > k ∧ ν ′(x) > k.

Note that ∼k is a refinement of ∼=k, ∼=k has a finite index for all semantics, ∼k has a finite

index for sampled semantics. Let A be a diagonal-free timed automaton and K be a

maximal constant which occurs in some guard in A. For each location l ∈ Q and two

valuations ν ∼=K ν ′ it holds that (l, ν) is bisimilar to (l, ν ′).

Region Graph

In the following we suppose that timed automata are without diagonal constraints and

that each transition resets at most one clock. Each timed automaton can be transformed

into an automaton which satisfies these constraints and which is equivalent to the orig-

inal one with respect to simulation equivalence.

Given a region D (an equivalence class of ∼=K) we define:

• integral(D) is a set of clocks x such that x ≤ K and fr(x) = 0 in D,

• fractional(D) is a set of clocks x such that x ≤ K and fr(x) 6= 0 in D,

• maxfractional(D) is a set of clocks x such that x ≤ K and the fractional part of x is

maximal in D,

• minfractional(D) is a set of clocks x such that x ≤ K and the fractional part of x is

minimal in D,

7

• above(D) is a set of clocks x such that x > K in D,

• D |= g,D ′ = D[Y := 0] are defined naturally.

A region D ′ is an immediate time successor of a region D iff one of the following holds:

• integral(D) 6= ∅ : integral(D ′) = ∅; the ordering of fractional parts is the same

in D ′ as in D; and above(D ′) is the same as above(D) except that it contains x ∈
integral(D) such that D(x) = K, or

• integral(D) = ∅ : integral(D ′) = maxfractional(D), integer values of these clocks

are incremented; ordering of fractional parts in D ′ is the same as in D except for

clocks in maxfractional(D) which become the smallest; above(D ′) = above(D).

A region graph of a timed automaton A is defined as follows1:

• states are tuples (l,D) where l is a location and D is a region such that

integral(D) 6= ∅,

• there is a transition (l,D) → (l ′, D ′) iff one of the following holds

– Time: l = l ′ and there exists D ′′ such that D ′′ is an immediate time successor

of D and D ′ is an immediate time successor of D ′′,

– Reset: there exists a transition (l, a, g, Y, l ′) ∈ E such that D |= g and D ′ =

D[Y := 0],

– Time&Reset: there exists a region D ′′ and a transition (l, a, g, Y, l ′) ∈ E such

that D ′′ is a time successor of D, D ′′ |= g and D ′ = D ′′[Y := 0].

3 Reachability Relations

In this section we study reachability relations and their efficient representations. Reach-

ability relations describe which valuations can be reached from a given valuation. Rep-

resentations of reachability relations were studied before2: using additive theory of real

numbers [13] and 2n-automata [14].
1Note that we use non-standard definition, because for the proof we need to work only with regions

such that integral(D) 6= ∅ and we want to have ’as small steps as possible’.
2Definition of reachability relations in these works is slightly different from ours. This difference is

not significant with respect to results about representations.

8

We present a novel simple representation for reachability relations (called clock dif-

ference relations). We use this characterization in the next section to prove our main

result (Theorem 4.2). The fact that such simple (in)equalities are sufficient to capture the

reachability relations and that these relations can be computed effectively is of indepen-

dent interest and can be used in other applications (as described in [13, 14]).

3.1 Definition, Representation, and Operations

Let (l,D), (l,D ′) be two states in a region graph. Then a reachability relation of the tuple

(l,D), (l,D ′) is a relation on valuations C(l;D)(l ′;D ′) ⊆ D × D ′ such that for each ν ∈
D,ν ′ ∈ D ′:

(ν, ν ′) ∈ C(l;D)(l ′;D ′) ⇐⇒ ∃ν ′′ ∼K ν ′ : (l, ν) →+ (l, ν ′′)

A clock difference relation (CDR) over a set of clocks C is a set of (in)equalities of the

following form:

• x ′ − y ′ ./ u − v

• x ′ − y ′ ./ 1 − (u − v)

where ./∈ {<,>, =}, x, y, u, v ∈ C. The semantics of a CDR B is defined as follows. We

say that a pair of valuations (ν, ν ′) satisfies B ((ν, ν ′) ² B) if and only if:

• if x ′ − y ′ ./ u − v ∈ B then fr(ν ′(x)) − fr(ν ′(y)) ./ fr(ν(u)) − fr(ν(v)),

• if x ′ − y ′ ./ 1 − (u − v) ∈ B then fr(ν ′(x)) − fr(ν ′(y)) ./ 1 − (fr(ν(u)) − fr(ν(v))),

Theorem 3.1 Reachability relations C(l;D)(l ′;D ′) are effectively definable as finite unions of clock

difference relations.

The proof of this theorem is based on the following key facts:

• If there is a transition (l,D) → (l ′, D ′) then the reachability relation can be directly

expressed as a CDR.

• If (l,D) →+ (l ′′, D ′′) → (l ′, D ′) and the reachability relation over (l,D), (l ′′, D ′′)

is expressed as a union of CDRs then the reachability relation over (l,D), (l ′, D ′)

can be expressed as a union of CDRs as well.

9

• Using these two steps, reachability relations can be computed by a standard dy-

namic programming algorithm; termination is guaranteed, because there is only a

finite number of CDRs over a fixed set of clocks; correctness is proved by induction

with respect to the length of a path between (l,D) and (l ′, D ′).

In the rest of this section, we will formalize these facts and prove them. We use the

letter B (possibly with subscripts) to denote a clock difference relation.

Our goal is to show that a reachability relation C(l;D)(l ′;D ′) ⊆ D × D ′ can be repre-

sented by a CDR B in the following way. For a pair of valuations (ν, ν ′) we want that

(ν, ν ′) ∈ C(l;D)(l ′;D ′) if and only iff ν ∈ D,ν ′ ∈ D ′ and (ν, ν ′) |= B. Moreover, we show

that for a given pair of regions (l,D), (l ′, D ′) where at least one unnormalized clock has

zero fractional part we can compute a CDR which represents it. This can be easily ex-

tended to arbitrary regions by observing that a time pass from a region where at least

one clock has zero fractional part to its immediate successor does not change the CDR.

The algorithm for computing a CDR representation is based on two operations: Binit,

which computes the representation for one-step reachability relations, and Bstep, which

computes for a given representation a representation of one step longer paths. The

definition of Binit uses the operation Bstep which is defined below.

Definition 3.2 The set Binit((l,D) → (l ′, D ′)) for a transition (l, D) → (l ′, D ′) in the region

graph is a CDR defined as follows:

• If (l,D) 9 (l ′, D ′) then Binit = ∅.

• Otherwise:

– Add equalities u ′− v ′ = u− v for all u, v ∈ C(D), fr(D(u)) > fr(D(v)) into Bstart.

– Binit = Bstep(Bstart, (l,D)9 (l ′, D ′)).

Now we show how to compute a new CDR for a one step longer path

Bstep(B, (l ′′, D ′′) → (l ′, D ′)) when we have a CDR B and a transition (l ′′, D ′′) → (l ′, D ′).

Based on (in)equalities in B we put different (in)equalities into Bstep according to the

type of the transition (l ′′, D ′′) → (l ′, D ′). Some (in)equalities might be dropped with-

out adding anything into Bstep. Finally, we perform a normalization — all (in)equalities

containing clocks with a value above the maximal constant are removed.

For simplicity of presentation, when we write an inequality of the form x ′−y ′ ./ exp

then we mean both x ′ − y ′ ./ u − v and x ′ − y ′ ./ 1 − (u − v). Also, ./∈ {<,>} and ./-1

10

denotes the reverse inequality, e.g., if ./ is < then ./-1 is >. If one line contains two ./

signs then it means that inequalities are the same in both cases. We will also sometimes

use x ′ − y ′ ≤ exp or x ′ − y ′ ≥ exp when ./∈ {<, =} or ./∈ {>, =}, respectively.

Definition 3.3 Let B be a CDR and (l ′′, D ′′) → (l ′, D ′). Then the step operation

Bstep(B, (l ′′, D ′′) → (l ′, D ′)) is computed as follows:

• Compute the Bstep(B, (l ′′, D ′′) → (l ′, D ′)) clock difference relation according to the Ta-

ble 3.

• Normalize Bstep(B, (l ′′, D ′′) → (l ′, D ′)): remove all (in)equalities containing clocks x ∈
above(D ′) from Bstep(B, (l ′′, D ′′) → (l ′, D ′)).

Table 3: Computation of the one-step clock difference relation according to the type of

the transition (l ′′, D ′′) → (l ′, D ′). Note that y can be also equal to x or z.

Condition Inequality in B Inequality in Bstep

Time, x ∈ integral(D ′′), y ∈ integral(D ′)

u, v ∈ C(D ′′), u, v 6= y u ′ − v ′ ./ exp u ′ − v ′ ./ exp

u ∈ C(D ′), u 6= y y ′ − u ′ ./ exp u ′ − y ′ ./-1 1 − (exp)

Reset, x ∈ integral(D ′′), resetting y

u, v ∈ C(D ′′), u, v 6= y u ′ − v ′ ./ exp u ′ − v ′ ./ exp

u ∈ C(D ′′), u 6= y u ′ − x ′ ./ exp u ′ − y ′ ./ exp

Time&Reset, x ∈ integral(D ′′), z ∈ maxfractional(D ′′), resetting y

u, v ∈ C(D ′′), u, v 6= y u ′ − v ′ ./ exp u ′ − v ′ ./ exp

u ∈ C(D ′′), u 6= x, u 6= y u ′ − x ′ ≥ exp u ′ − y ′ > exp

u ∈ C(D ′′), u 6= z, u 6= y z ′ − u ′ ≥ exp u ′ − y ′ < 1 − (exp)

In the following we write just Binit and Bstep in the case that the arguments are clear

from the context. Also, a valuation ν always belongs to the starting region in Binit. The

below given algorithm computes relations C(l;D)(l ′;D ′) by iteratively taking the step op-

eration. The correctness is proved by showing that by taking the step operation k-times

we compute a CDR representing reachability relations for the paths of the length k.

11

To prove this we need the following lemmas, which establish correctness of operations

Binit and Bstep.

For the proofs we need some technical definitions:

• by ν(exp), where exp = x − y or exp = 1 − (x − y) we mean fr(ν(x)) − fr(ν(y)) or

1 − (fr(ν(x)) − fr(ν(y))) respectively,

• by (ν, ν ′) ²y B, where B is a CDR, ν ′ ∈ D, we mean that there exists ν ′′ ∈ D such

that ν ′′(x) = ν ′(x), ∀x 6= y and (ν, ν ′′) ² B. When B is a singleton then we write

(ν, ν ′) ²y i, i is an (in)equality from a CDR,

• a valuation ν respects a region D for a set of clocks Cl if and only if there is a val-

uation ν ′ ∈ D such that ν(x) = ν ′(x) for all x ∈ Cl and ν(y) = 0 for all other

clocks,

• by saying that an (in)equality i contains x, y as primed variables we mean that i is

of the form x ′ − y ′ ./ exp or y ′ − x ′ ./ exp.

At first, we show that satisfaction of (in)equalities is not changed by the duration of

time when the order of the fractional parts of the clock values is preserved. Also, an

(in)equality can be modified to preserve its satisfaction when the order of the fractional

parts of the clock values changes.

Lemma 3.4 Let ν ′ be a valuation, i an (in)equality from a CDR of the form x ′ − y ′ ./ exp.

1. Let t be a real number such that ν ′ + t has the same order of fractional parts of x and y.

Then (ν, nu ′) ² i ⇔ (ν, ν ′ + t) ² i.

2. Let t be a real number such that ν ′ + t has the opposite order of fractional parts of x and

y. Then (ν, nu ′) ² x ′ − ′ y ./ exp ⇔ (ν, ν ′ + t) ² y ′ − x ′ ./-1 1 − (exp).

Proof

1. The following (in)equalities are equivalent:

fr(ν ′(x)) − fr(ν ′(y)) ./ ν(exp)

fr(ν ′(x)) + t − (fr(ν ′(y)) + t) ./ ν(exp)

fr(ν ′ + t(x)) − fr(ν ′ + t(y)) ./ ν(exp)

2. The following (in)equalities are equivalent:

12

fr(ν ′(x)) − fr(ν ′(y)) ./ ν(exp)

fr(ν ′(x)) + t − (fr(ν ′(y)) + t) ./ ν(exp)

fr(ν ′ + t(x)) − fr(ν ′ + t(y)) − 1 ./ ν(exp) (because int(ν ′ + t(y)) − int(ν ′(y)) =

int(ν ′ + t(x)) − int(ν ′(x)) + 1)

fr(ν ′ + t(y)) − fr(ν ′ + t(x)) ./-1 1 − ν(exp)

¤

3.2 Closure Under Projection

We need to prove that a CDR computed using Binit and Bstep is “closed under projec-

tion” for the correctness proof. We want the following fact to hold true: we can drop

(in)equalities containing some clock x and there will still remain (in)equalities ensur-

ing existence of a valuation for x such that the dropped (in)equalities are satisfied. The

proofs and auxiliary lemmas are rather technical.

Lemma 3.5 Let B be a CDR computed by iterating the Bstep operation on the result of the Binit

operation with the resulting region D.

For each (in)equality i1 ∈ B containing u, y as primed variables and for all clocks v ∈ C(D)

there is an (in)equality i2 ∈ B containing u, v as primed variables such that for all D ′ time

successors of D (D ′ = D + t) where v is integral:

(ν, ν ′) ² i2 ⇒ (ν, ν ′) ²y i1

where ν ′ is a valuation respecting D ′ for u, v, y.

Proof First note that if i1 contains < then the lemma holds trivially for any i2. The proof

is by induction on the number of iterations of Bstep with the basic step for Binit (zero

iterations of Bstep).

Basic step: The equality v ′ − u ′ = v − u guarantees the existence of a valuation for y.

Induction step:

Time: Holds by induction hypothesis and Lemma 3.4.

Reset: All needed (in)equalities are inherited from a clock x (x ∈ integral(D)) by

induction hypothesis.

Time&Reset: There are new inequalities for which we should also get an (in)equality

i2. For an inequality of the form u ′ − y ′ > exp and a clock v there is an (in)equality for

13

u ′ − x ′ > exp or u ′ − x ′ = exp and a clock v (induction hypothesis). Together with the

information from the region (fr(ν(x)) > fr(ν(y)) for any ν ∈ D ′, D ′ is a time successor

of D such that v ∈ integral(D ′)) we know that such (in)equality can be used as i2. For

an inequality of the form u ′ − y ′ < 1 − exp and a clock v there is an (in)equality for

z ′−u ′ > exp or z ′−u ′ = exp, z ∈ maxfractional(D) and a clock v (induction hypothesis).

Together with the Lemma 3.4 and an information from the region (fr(ν(y)) > fr(ν(z))

for any ν ∈ D ′, D ′ is a time successor of D such that v ∈ integral(D ′)) we know that such

(in)equality can be used as i2.

We have to take care about the clock y in the position of the clock v in the lemma. I.e.,

for each (in)equality of the form u ′ − v ′ ./ exp or v ′ − u ′ ./ exp and the clock y there is

an (in)equality u ′−y ′ ./ exp ′ such that the condition from the lemma holds. But there is

an (in)equality u ′−x ′ ./1 exp ′ for the clock x or z ′−u ′ ./2 exp ′ for the clock z instead of

y (induction hypothesis). If ./1, ./2∈ {>, =} then we can use an inequality resulting from

the step operation (u ′ − y ′ > exp ′ or u ′ − y ′ < 1 − exp ′), because each of them implies

the original (in)equality. We have that (ν, ν ′) ² u ′ − y ′ > exp ′ ⇒ (ν, ν ′) ²x u ′ − x ′ ./1

exp ′, ν ′ ∈ D, by the information from the region D, fr(ν ′(x)) > fr(ν ′(y)). Similarly for

the other inequality. It remains to show that the situation where both ./1 and ./2 are <

is not possible in the situation where ./∈ {>,=}. But if fr(ν ′(u)) > fr(ν ′(v)), ν ′ ∈ D then

u ′ − x ′ < exp ′ would not satisfy the induction hypothesis, otherwise z ′ − u ′ < exp ′

would not satisfy the induction hypothesis.

¤
Now we observe that Lemma 3.5 gives us more than just the existence of a valuation

for y when v is integral (not conflicting with u). It gives us the existence of a valuation

for y which does not conflict with any pair of clocks, not necessarily with zero fractional

parts. But we have to add an assumption that it does not conflict with u alone.

Lemma 3.6 Let B be a CDR computed by iterating the Bstep operation on the result of the Binit

operation with the resulting region D.

For each (in)equality i1 ∈ B containing u, y as primed variables and for all clocks v ∈ C(D)

there is an (in)equality i2 ∈ B containing u, v as primed variables such that:

(ν, ν ′) ² i2 ∧ (ν, ν ′) ²y;v i1 ⇒ (ν, ν ′) ²y i1,

where ν ′ respects D for u, v, y.

14

Proof By examination of all possible permutations of three clocks in a region and all

possible (in)equalities. We have to show that either an existence of a valuation for y is

always guaranteed or that i2 is the same as in Lemma 3.5 and in this case the (in)equality

is the correct one (for which there is an i2 according to Lemma 3.5).

Consider a region D where fr(ν(y)) < fr(ν(u)) < fr(ν(v)), ν ∈ D. If u ′−y ′ > exp ∈ B

or u ′ − y ′ = exp ∈ B then there is an (in)equality i2 satisfying Lemma 3.5. Now for

every (ν, ν ′) such that (ν, ν ′) ²y;v u ′ − y ′ ./ exp, ν ′ respecting D for u, y, v we get from

Lemma 3.4 that (ν, ν ′) ² i2 ⇒ (ν, ν ′) ²y u ′ − y ′ ./ exp.

If u ′−y ′ < exp ∈ B then for any (ν, ν ′), ν ′ ∈ D we have that (ν, ν ′) ²y u ′−y ′ < exp.

All other cases are similar. ¤
To summarize the result of Lemma 3.5 and Lemma 3.6, we know that for any

clock y the existence of a valuation for y satisfying an individual (in)equality is en-

sured by other (in)equalities not containing y. In other words, we have shown that

no (in)equality from Bstep conflicts with constraints from a region for valuations satis-

fying other (in)equalities from Bstep. Therefore, it allows us to drop such (in)equality

when necessary, because its “projections” with (in)equalities generated by a region are

contained in a CDR computed by Binit and Bstep.

Lemma 3.7 Let B be a CDR computed by iterating the Bstep operation on the result of the

Binit operation with the resulting region D, Y ⊂ B = {i1, . . . , in} be the greatest set containing

(in)equalities with y as a primed variable:

∀1 ≤ j ≤ n, ν ′ ∈ D.(ν, ν ′) ² B − Y ⇒ (ν, ν ′) ²y ij

Proof There is at least one clock with fractional part equal to zero in D which enables us

to use Lemma 3.5. Its result is then used in Lemma 3.6. All (in)equalities contain two

primed clocks as well as all constraints induced by the region and hence it is enough to

show that the value of any pair of them does not exclude the existence of a valuation for

the third one. ¤
Now we need to show that no two such ij, ik are in conflict.

Lemma 3.8 Let B be a CDR computed by iterating the Bstep operation on the result of the Binit

operation with the resulting region D.

For each (in)equality i1 ∈ B containing u, y as primed variables and an (in)equality i2 ∈ B

containing y, v as primed variables there is an (in)equality i3 ∈ B containing u, v as primed

variables such that:

15

(ν, ν ′) ² i3 ∧ (ν, ν ′) ²y;v i1 ∧ (ν, ν ′) ²y;u i2 ⇒ (ν, ν ′) ²y {i1, i2},

where ν ′ respects D for u, v, y.

Proof The proof is by induction on the number of iterations of Bstep with the basic step

for Binit (zero iterations of Bstep).

Basic step: The equality v ′ − u ′ = v − u guarantees the existence of a valuation for y for

i1 and i2 together.

Induction step:

Time: Holds by induction hypothesis and Lemma 3.4.

Reset: All needed (in)equalities are inherited from a clock x (x ∈ integral(D)) by

induction hypothesis.

Time&Reset: There are new inequalities for which there should also be a corre-

sponding i3.

• Consider a pair of inequalities u ′ − y ′ > e1 and v ′ − y ′ < 1 − e2. These inequalities

were introduced because of inequalities u ′ − x ′ ≥ e1 and z ′ − v ′ ≥ e2. From the

latter (in)equality we can derive that there was also an inequality v ′−x ′ < e3 in the

previous CDR using Lemma 3.6 and the clock x. Then according to the induction

hypothesis, there was also an inequality i3 with u, v as primed variables which is

preserved in B. Now we will show that i3 is the inequality we want to have. Let

ν ′ be a valuation respecting D for x, y, z, u, v.

We know that (ν, ν ′) ²x;y;z u ′ − y ′ > e1 together with constraints from D implies

that (ν, ν ′) ²y;y;z u ′ − x ′ ≥ e1. Also, (ν, ν ′) ²x;y;z v ′ − y ′ < 1 − e2 together with

constraints from D implies that (ν, ν ′) ²x;y;z z ′ − v ′ ≥ e2. Then

(ν, ν ′) ²y;z i3 ∧ (ν, ν ′) ²x;y;z u ′ − y ′ > e1 ∧ (ν, ν ′) ²x;y;z v ′ − y ′ < 1 − e2

implies (the last conjunct is for free)

(ν, ν ′) ²y;z i3 ∧ (ν, ν ′) ²x;y;z u ′ − x ′ ≥ e1 ∧ (ν, ν ′) ²x;y;z v ′ − x ′ < e3

and this implies

(ν, ν ′) ²x;y;z {u ′ − x ′ ≥ e1, v
′ − x ′ < e3}

which implies (we get back to z)

(ν, ν ′) ²x;y;z {u ′ − x ′ ≥ e1, z
′ − v ′ ≥ e2}

16

which finally together with constraints from D implies

(ν, ν ′) ²x;y;z {u ′ − y ′ > e1, v
′ − y ′ < 1 − e2}.

• Consider a pair of (in)equalities u ′ − y ′ > e1 and u ′ − v ′ ≤ e2. The first one was

introduced because of an (in)equality u ′ − x ′ ≥ e1 in the previous CDR. Then,

according to the induction hypothesis there is an (in)equality v ′ − x ′ ≥ e3 in the

previous CDR and due to Bstep operation there is an inequality v ′ − y ′ > e3 in

B. From Lemma 3.4 and region constraints we get that (ν, ν ′) ² v ′ − y ′ > e3 ⇒
(ν, ν ′) ²x v ′ − x ′ ≥ e3, ν ′ respecting D for v, y, x.

Because x has the smallest non-zero fractional part in D and it is not constrained

from below by v ′−x ′ ≥ e3, we have that (ν, ν ′) ²u;x u ′−x ′ ≥ e1 for a ν ′ respecting

D for u, x, v, y. Therefore, (ν, ν ′) ² v ′−y ′ > e3∧(ν, ν ′) ²u u ′−v ′ ≤ e3∧(ν, ν ′) ²u;x
u ′ − x ′ ≥ e1 ⇒ (ν, ν ′) ²u;x {u ′ − v ′ ≤ e2, u

′ − x ′ > e1}. But this together with the

region constraints implies (ν, ν ′) ²u {u ′ − v ′ ≤ e2, u
′ − y ′ > e1}.

• The argument is exactly the same for a pair of (in)equalities u ′ − y ′ > e1 and

v ′ − u ′ ≥ e2.

• For pairs of (in)equalities u ′ − y ′ > e1 and u ′ − v ′ > e2 or u ′ − y ′ > e1 and

v ′ − u ′ < e2 there is always a valuation for u such that the constraints are satisfied

together (when they are satisfied separately). Therefore, i3 is any (in)equality.

• Consider a pair of (in)equalities u ′ − y ′ < 1 − e1 and v ′ − u ′ ≤ e2. The first one

was introduced because of an (in)equality z ′ − u ′ ≥ e1 in the previous CDR. Then,

according to the induction hypothesis there is an (in)equality z ′ − v ′ ≥ e3 in the

previous CDR and due to Bstep operation there is an inequality v ′ − y ′ < 1 − e3

in B. The argument that v ′ − y ′ < 1 − e3 is the inequality we want is the same as

above.

• The argument is exactly the same for a pair of (in)equalities u ′ − y ′ < 1 − e1 and

u ′ − v ′ ≥ e2.

• For pairs of (in)equalities u ′ − y ′ < 1 − e1 and u ′ − v ′ < e2 or u ′ − y ′ < 1 − e1 and

v ′ − u ′ > e2 there is always a valuation for u such that the constraints are satisfied

together (when they are satisfied separately). Therefore, i3 is any (in)equality.

17

¤
Finally, the following lemma summarizes all the results. Here we abuse the notation,

because we want to find a valuation where a clock which was reset has its value before

the reset. Such a clock can have a different position in the region before and after the

reset. We assume that the valuation respects the region before the reset for these clocks

(they need not have the fractional part equal to zero).

Lemma 3.9 Let B be a CDR computed by iterating the Bstep operation on the result of the

Binit operation with the resulting region D, Y = {i1, . . . , in} be the greatest set containing

(in)equalities with x, y, . . . , z as a primed variables which were removed during the Bstep oper-

ation (due to either reset or normalization). Then

∀ν ′ ∈ D.(ν, ν ′) ² B ⇒ (ν, ν ′) ²x;y;:::;z Y.

Proof Follows from the lemmas above.

¤

3.3 Correctness of Binit and Bstep

Now we can state and prove the correctness of the operations Bstep and Binit.

Lemma 3.10 (Correctness of Binit)

The set represented by Binit((l,D) → (l ′, D ′)) is equal to {(ν, ν ′) | ν ∈ D,ν ′ ∈ D ′, ∃ν̄ ∼K

ν ′.(l, ν) → (l, ν̄)}.

Proof

We show that the set represented by Bstart (i.e., after the first two steps of the con-

struction) is equal to the set {(ν, ν ′) | ν = ν ′}. The rest follows from the correctness of

the Bstep operation.

“⊆”:

We know that there is a clock x ∈ integral(D). Equalities y ′ − x ′ = y − x ensure that

only (ν, ν) satisfy Bstart.

“⊇”:

Holds trivially.

¤

18

Lemma 3.11 (Correctness of Bstep)

Let C ⊆ {(ν, ν ′) | ν ∈ D,ν ′ ∈ D ′′} be a set represented by a CDR B(l;D);(l ′′;D ′′) ob-

tained by iterating Bstep on a result of Binit with initial region (l, D) and final region (l ′′, D ′′)

and (l ′′, D ′′) → (l ′, D ′) be a transition in the region graph. Then the set represented by

Bstep(B(l;D);(l ′′;D ′′), (l
′′, D ′′) → (l ′, D ′)) is equal to {(ν, ν ′) | ν ∈ D,ν ′ ∈ D ′, ∃ν ′′ ∈

D ′′, ∃ν̄ ∼K ν ′.(ν, ν ′′) ∈ C ∧ (l ′′, ν ′′) → (l ′, ν̄)}.

Proof

We keep the notation from the Table 3., i.e., x ∈ integral(D ′′), z ∈ maxfractional(D ′′),

and either y ∈ integral(D ′) or y is reset by the transition. We show the equivalence by

proving the two inclusions. For each inclusion we give separate argumentation for each

possible type of transition (l ′′, D ′′) → (l ′, D ′).

“⊆”:

Time: Let us set ν ′′ = ν̄ − t for some t, where ν̄(v) = K + t for all v ∈ integral(D ′′) ∪
above(D ′) and ν̄(v) = ν ′(v) otherwise. We need to show that there exists t such that

(ν, ν ′′) ∈ B.

If at least one w ∈ integral(D ′′) was not normalized in D ′ then t = ν ′(w) − bν ′(w)c.
Otherwise, let w ∈ minfractional(D ′). We choose t s.t. 0 < t < ν ′(w) − bν ′(w)c and for

all (in)equalities v ′ − x ′ ./ exp ∈ B holds that fr(ν ′(v)) − t ./ ν(exp). Existence of such t

follows from Lemma 3.9.

Obviously, (l ′′, ν ′′) → (l ′, ν ′). The fact that (ν, ν ′′) ∈ B follows from Lemma 3.4.

Reset: Existence of a valuation ν ′′ such that (l ′′, ν ′′) → (l ′, ν ′) and (ν, ν ′′) ² B follows

from Lemma 3.4.

Time& Reset: We define ν ′′ as follows. We first define ν̄ as ν̄(v) = K + t1 for all

v ∈ integral(D ′′) ∩ above(D ′) and for some t1 and ν̄(v) = ν ′(v) otherwise. Now ν ′′(w) =

ν̄(w) − t1 for w which was not reset and ν ′′(y) = t2 and for some t2.

Obviously, (l ′′, ν ′′) → (l ′, ν ′). We need to show that there exist t1, t2 such that

(ν, ν ′′) ∈ B.

Let us define t1 similarly as for the Time transition. If at least one w ∈
integral(D ′′) was not normalized in D ′ then t1 = ν ′(w) − bν ′(w)c. Otherwise, let

w ∈ minfractional(D ′). We choose a t1 s.t. 0 < t1 < ν ′(w) − bν ′(w)c and for all

(in)equalities v ′ − x ′ ./ exp ∈ B holds that fr(ν ′(v)) − t ./ ν(exp).

Existence of such t1 and t2 follows from Lemma 3.9.

“⊇”:

Time: Follows directly from Lemma 3.4.

19

Reset: Trivially, (ν, ν ′) satisfies all (in)equalities that are in both B and Bstep. It also

satisfied new (in)equalities u ′ − y ′ ./ exp because u ′ − x ′ ./ exp was satisfied by ν, ν ′′

and ν ′(y) = ν ′′(x).

Time&Reset: Let t be such that ν̄ = ν ′′ + t. Assume that there is some (in)equality

u ′ − v ′ ./ exp in Bstep such that it is not satisfied by (ν, ν ′).

• For the first rule it follows from Lemma 3.4.

• For the other rules, fr(ν ′(u)) > fr(ν ′(u)) − t = fr(ν ′′(u)). So (ν, ν ′′) does not satisfy

B.

• For the fourth and the fifth rule, we know that t < 1− fr(ν ′′(z)). From the assump-

tion, fr(ν ′(u)) ≥ 1 − ν(exp). The following inequalities are equivalent:

fr(ν ′(u)) ≥ 1 − ν(exp)

fr(ν ′(u) − t) ≥ (1 − t) − ν(exp)

fr(ν ′′(u)) ≥ (1 − t) − ν(exp)

fr(ν ′′(u)) > fr(ν ′′(z)) − ν(exp) (because t < 1 − fr(ν ′′(z)))

fr(ν ′′(z)) − fr(ν ′′(u)) < ν(exp)

¤

3.4 Computing Reachability Relations

With the operations Binit, Bstep it is easy to compute reachability relations and finish the

proof of Theorem 4.2.

Proof [of Theorem 3.1] Representations can be computed by the algorithm in Figure 1

(a data structure B is used to denote sets of CDRs; the operation Bstep is extended for

this case in a natural way). The behavior of the algorithm is ’monotonous’ (the size

of sets B is only increased) and there is only finite number of CDRs over a fixed set of

clocks. Therefore the algorithm will eventually terminate. Now we need to show that

the computed sets are the reachability relations C(l;D)(l ′;D ′).

We show by induction with respect to k that “For each (l,D), (l ′, D ′), ν ∈ D,ν ′ ∈
D ′ : ∃ν̄ ∼K ν ′, (l, ν) →k (l, ν̄) iff (ν, ν ′) ∈ Bk(l;D)(l ′;D ′)”. The basic step follows from

Lemma 3.10. The induction step follows from Lemma 3.11. ¤

20

1. i = 1

2. For each pair of states (l,D), (l ′, D ′) in region graph:

B1(l;D)(l ′;D ′) := Binit(l;D)(l ′;D ′)

3. For each pair of states (l,D), (l ′, D ′) in region graph such that (l ′, D ′′) → (l ′, D ′):

Bi+1(l;D)(l ′;D ′) := Bi(l;D)(l ′;D ′) ∪ Bstep(B(l;D)(l ′;D ′), (l
′′, D ′′) → (l ′, D ′))

4. If some Bi+1(l;D)(l ′;D ′) 6= Bi(l;D)(l ′;D ′) then i := i + 1 and go to step 3.

Figure 1: Algorithm for computing reachability relations

4 Non-emptiness of ω-language in Sampled Semantics

In this section we use the characterization of reachability relations (Theorem 3.1) to

prove our main results: decidability of the existence of ε such that the (ω-)language

of A is empty in sampled semantics with ε as the sampling period.

Examples in Figure 2 demonstrate that there are timed automata such that L!(A)

is non-empty whereas for all ε the language L�!(A) is empty. Non-emptiness is an im-

portant problem, because verification of liveness properties can be reduced to checking

non-emptiness of an ω-language. Non-emptiness implies existence of a behavior which

violates the given liveness property. But as examples in Figure 2 demonstrates, it may

happen that all infinite traces are non-realizable. Therefore, on a real system the prop-

erty would be satisfied.

(a) (b)

//GFED@ABCl1

a;y>0^x<1;y:=0

¯¯
//GFED@ABCl1

a;y=1;y:=0
,,GFED@ABCl2

b;x>1;x:=0

ll

Figure 2: Difference between dense and sampled semantics (example (b) is taken

from [3]).

What we really want is not the non-emptiness of L!(A) but non-emptiness of L�!(A)

for some ε. We show that the problem of deciding whether such an ε exists is decidable.

21

This problem was considered in a survey paper [3], where it is claimed that the problem

is undecidable, with a reference to [11]. The work [11], however, deals with a slightly

different problem: it is required that the timed automaton performs an action step after

each discrete time step (this requirement is motivated by control theory).

Our proof is based on the classical region construction [2] together with the reacha-

bility relations. The region graph can be directly used for ω-language emptiness check-

ing in dense semantics — the ω-language is non-empty if and only if there is a cycle

in the region graph. This is, however, not true for sampled semantics, as illustrated by

examples in Figure 2.

Intuitively, the problem is the following. The fact, that tere is a cycle in the region

graph from a region (l,D) to itself means that there are some valuations ν, ν ′ ∈ D

such that (l, ν) →+ (l, ν ′). These valuations may be constrained, e.g., in example in

Figure 2(b) the constraint on paths from state (l1, [x = 0, 0 < y < 1]) to itself is that

1 > ν ′(y) > ν(y) > 0. In dense semantics we can have an infinite run which satisfies

this constraint, but in sampled semantics we cannot. In sampled semantics we need

a path (l, ν) →+ (l, ν ′) such that ν ∼k ν ′ (valuations may differ only in clocks above

constants).

Lemma 4.1 There exists an ε such that L�!(A) is non-empty if and only if there exists a reach-

able state (l,D) in the region graph of A such that the following condition is satisfiable:

∃ν, ν ′ ∈ D : (ν0, ν) ∈ C(l0;D0)(l;D) ∧ (ν, ν ′) ∈ C(l;D)(l;D) ∧ ν ∼K ν ′

Proof At first, suppose that the condition is satisfiable. Due to Theorem 3.1, the condition

can be expressed as boolean combination of linear inequalities. The set of solutions is

an union of convex polyhedrons and therefore there must be a rational solution ν, ν ′.

From the definition of reachability relations we get that there is a ν ′′ ∼K ν such that

(l0, ν0) →+ (l, ν) →+ (l, ν ′′) in the real semantics. Since real and rational semantics are

bisimilar, there is such a path in rational semantics as well. We take ε as the greatest

common divisor of time steps on this path. Thus the path (l0, ν0) →+ (l, ν) →+ (l, ν ′′)

is executable in JAK� and since ν ′′ is bisimilar to ν (because ν ∼K ν ′′) we can construct

an infinite run. Therefore, L�!(A) is non-empty.

On the other hand, if L�!(A) is non-empty then there is an infinite run (l0, ν0) →
(l1, ν1) → (l2, ν2) → Since ∼K has a finite index (over sampled semantics) there

must be i, j such that li = lj, νi ∼K νj. These valuations demonstrate the satisfiability of

the condition. ¤

22

Now, we can easily prove the main result :

Theorem 4.2 Let A be a timed automaton. The problem of deciding whether
⋃
� L�!(A) 6= ∅ is

decidable.

Proof The result now directly follows from Lemma 4.1, since the condition given in

this lemma can be expressed by a clock difference relation (due to Theorem 3.1) and

satisfiability of a clock difference relation can be decided (it is a special case of linear

programming). ¤

5 Dense vs. Sampled Semantics

In this section, we present a set of results about relations between dense time semantics

and sampled semantics of timed systems showing the limits of using discrete time ver-

ification methods for the dense time. We start with relations between real and rational

semantics as it creates a connection between dense and sampled semantics. For timed

automata, real and rational semantics are clearly bisimilar. For stopwatch automata,

however, we can guarantee only trace equivalence — we show that there exists an SWA

which has infinite traces realizable in real semantics, but not in rational one.

Lemma 5.1 Let A be an SWA. Then JAKQ+
0

is trace equivalent to JAKR+
0

.

Proof Let us consider a run π in JAKR+
0

. We can consider the delays on this run as param-

eters δ1, . . . , δn. The set of values of these parameters, which enable execution through

the same sequence of location and over the same trace is described by a system of lin-

ear inequalities in δ1, . . . , δn — these inequalities are obtained by substituting sums of

δ1, . . . , δn for ν(x) in guards. The set of solutions of this system of linear inequalities is

a non-empty convex polyhedron and it has a rational solution. Therefore, there exists a

run π ′ in JAKQ+
0

over the same trace as π. ¤

Lemma 5.2 There is an SWA A such that JAKQ+
0

is not infinite trace equivalent to JAKR+
0

.

Proof [sketch] A skeleton of the example illustrating this observation is given in Figure 3.

The operations x = x − 1 and x = 2 · x are not valid operations of SWA, but can be sim-

ulated using several locations and (stopwatch) clocks (see, e.g., [17]). The automaton in

the first step non-deterministically chooses a value between 0 and 2 and then it accepts

a sequence of a, b corresponding to the binary expansion of the chosen value. Note, that

23

//GFED@ABCl1
0<x<2 //GFED@ABCl2

a;x≥1;}x=x-1}
++

b;x<1

33GFED@ABCl3

BC@A
}x=2·x}

OO

Figure 3: Stopwatch automaton for binary expansion. Clock x is stopped in the locations

l2 and l3.

for this automaton, there is no countably branching LTS which would be infinite trace

equivalent to JAKR+
0

. ¤

Now we study relations between dense time and sampled semantics. We show that

for a closed TA we can guarantee the simulation equivalence (i.e., that there is an ε such

that JAKR+
0

is simulation equivalent to JAK�), but not bisimilarity. For general TA (as

well as for SWA) the best what we can guarantee is the reachability equivalence (i.e.,

that there is an ε such that JAKR+
0

is reachability equivalent to JAK�).

Lemma 5.3 Let A be a closed TA and ε is the greatest common divisor of constants in A. Then

JAK� is simulation equivalent to JAKR+
0

.

Proof Let A ′ is an automaton obtained from A by dividing all constants by ε. Then JAK�
is bisimilar to JA ′K1. Therefore, it is sufficient to prove the claim for ε = 1.

Let ν be a clock valuation and [ν] denote a valuation such that [ν](x) = bν(x)c or

[ν](x) = dν(x)e for all clocks x. Consider the relation:

S = {(ν, [ν]) | ∀x, y.(([ν](x) = bν(x)c) ∧ ([ν](y) = dν(y)e)) ⇒ fr(ν(x)) < fr(ν(y))}

Informally, (ν, ν ′) ∈ S if and only if ν ′ is a corner point of a region containing ν. If A is

closed then S is a simulation relation on JAKR+
0

and JAKZ+
0

.

We show that S is a simulation relation. If a guard is enabled for ν and (ν, ν ′) ∈ S

then this guard is enabled also for ν ′, since A is closed. If A performs an action step

resetting clocks in Y then obviously (ν[Y := 0], ν ′[Y := 0]) ∈ S. We show that S is

preserved by two special delay steps (immediate time successor) such that any delay

step can be composed of them.

The first delay step changes a valuation where some clocks have their fractional part

equal to zero to a valuation where all clocks have non-zero fractional parts, but the

24

integral parts are the same. If A performs such a delay step in dense time semantics, we

do not do anything in the sampled time semantics.

The second delay step changes a valuation where all fractional parts are non-zero

and x has the greatest fractional part to a valuation νdelay where νdelay(x) = dν(x)e. If

ν ′(x) = dν(x)e then ν ′delay = ν ′, otherwise ν ′delay = ν ′ + 1. Note, that (νdelay, ν
′ + 1) ∈ S

because x had a greatest fractional part and thus for all other clocks y it holds that

ν ′(y) = bν(y)c.
¤

Lemma 5.4 There is a closed TA A such that JAKR+
0

is not bisimilar to JAK� for any ε.

//GFED@ABCl1
a;0≤x≤1;x:=0 //GFED@ABCl2

e;x=0^y=1

²²

b;0≤y≤1;z:=0 //GFED@ABCl3
c;x=0^z=0 //

d;y=1^z=0

²²

GFED@ABCl4

GFED@ABCl6 GFED@ABCl5

Figure 4: An automaton for which there is no ε such that discrete and dense semantics

are bisimilar.

Proof Figure 4 shows an automaton for which there is no ε such that dense time and

sampled semantics are bisimilar. For the proof we use a characterization of bisimulation

in terms of a game between Challenger and Defender. We assume that ε divides 1 (i.e.,

there is an n ∈ N such that n · ε = 1). Otherwise, the automaton could be rescaled.

Consider the following play of the bisimulation game. Let Challenger plays with the

sampled semantics, delays for 1 − ε and then takes a transition. Defender can delay for

0 ≤ δ < 1 and then take a transition. If Defender delays for 1 time unit then Challenger

will take e transition, which Defender cannot take.

Now Challenger plays with dense time semantics, delays for (1 − δ)/2 and then

takes b transition. Defender can either delay for 0 or for ε and then take b transition.

Challenger plays with sampled semantics again in the next step, delays for 0 and takes

a transition according to the previous move of Defender. If Defender delayed for 0 then

Challenger takes c transition, otherwise he takes d transition. Defender has no answer.

¤

Lemma 5.5 Let A be an SWA. Then there exists ε such that JAKR+
0

is reachability equivalent to

JAK�.

25

Proof From Lemma 5.1 we have that for each reachable action a there is a finite run

πa which contains action a and which has only rational delays. Let εa be the greatest

common divisor of all delays on πa. Let ε be the greatest common divisor of all εa

where a is a reachable action. Then, clearly, each action is reachable in JAK� if and only

if it is reachable in JAKR+
0

. ¤

Lemma 5.6 There is a TA A such that JAKR+
0

is not trace equivalent to JAK� for any ε.

Such an automaton could be easily obtained by enabling zeno behavior (arbitrary

number of events in finite time), see Figure 2(a). Zeno behavior cannot be obtained

in the sampled semantics. But there are also non-zeno automata which are not trace

equivalent in dense and sampled domains, see Figure 2(b).

All results are summarized in Table 1. For the sampled semantics, a given result

means that there exists an ε such that the given equivalence is guaranteed. In the case

of closed TA, such ε can be easily constructed from the syntax of the automaton (as the

greatest common divisor of all constants). For general TA, such ε can be constructed,

but it requires to explore the region graph corresponding to the automaton. For SWA,

such ε cannot be constructed algorithmically (because we do not know which actions

are reachable).

6 Reachability Problem for Stopwatch Automata in Sam-

pled Semantics

The reachability problem is to determine, for a given automaton A and an action a,

whether a is reachable in JAK (for a given semantics). This is a fundamental problem,

because verification of the most common type of properties (safety properties) can be

reduced to the reachability problem. It is well-known that for timed automata the prob-

lem is PSPACE-complete and that the complexity depends neither on the time domain

which we use nor on the choice of the type of constraints (diagonal-free, non-strict) [2].

The type of constraints becomes important if we allow more general updates in the reset

operation [8].

Here we show that for stopwatch automata the choice of the time domain and the

type of constraints are important. With dense semantics, the problem is known to be

undecidable even for diagonal-free constraints and one stopwatch [17]. We show that

26

in sampled semantics, the problem is decidable for SWA with diagonal-free constraints.

However, if we allow diagonal constraints, the reachability problem becomes undecid-

able again. We have to use a different reduction than in the dense case, but, surprisingly,

only one stopwatch suffices even in the case of sampled semantics.

Lemma 6.1 Let A be a diagonal-free SWA and ε a given sampling period. Then the reachability

problem in sampled semantics JAK� is PSPACE-complete.

Proof We use a standard ’normalization’ approach — it is easy to check that the rela-

tion ∼K induces bisimulation on JAK� (K is the largest constant occurring in guards) for a

diagonal-free SWA. We can easily obtain unique representant of each bisimulation class

(by ’normalizing’ all clock values larger than K to value K + 1) and thus we can easily

perform the search over the bisimulation collapse.

Complexity: PSPACE-membership follows from the algorithm (search in an ex-

ponential graph can be done in polynomial space), PSPACE-hardness follows from

PSPACE-hardness for timed automata. ¤

Lemma 6.2 Let A be an SWA with one stopwatch. Then the reachability problem in sampled

semantics JAK� is undecidable.

Proof We show the undecidability by reduction from the halting problem for a two

counter machine M. Since this is usual approach in this area (see e.g., [17, 11, 8]),

we just describe the main idea — how to encode counter values and perform incre-

ment/decrement.

The value of a counter i is represented as the difference between two clocks: xi −

yi. Before the start of the simulation of M the simulating SWA non-deterministically

guesses the maximal value c of the counters during a computation of M and sets the

stopwatch to the value c+1. From this moment on the stopwatch is stopped for the rest

of the computation with the value c + 1.

Values of the clocks are kept in the interval [0, c + 1] all the time. Whenever the

value of a clock reaches c + 1, the clock is reseted. Testing the value of a counter for

zero is straightforward: just testing xi = yi. Decrementing a counter i is performed by

postponing the reset of a clock xi by 1 time unit. Incrementing a counter i is performed

by postponing the reset of a clock yi by 1 time unit. During the increment we have to

check for an ’overflow’ — if the difference xi − yi equals to c and we should perform

27

increment then it means that the initial non-deterministic guess was wrong and the

simulation should not continue.

Note that the stopwatch is used in a very limited fashion: it is stopped once and then

keeps a constant value. ¤

7 Future Work

Sampled semantics gives natural under-approximations of timed systems, where

the choice of sampling period ε can nicely tune the size of a state space of the

under-approximation. This makes sampled semantics plausible as a base for under-

approximation refinement scheme. This scheme starts with coarse-grained under-

approximation of the systems and refines it until an error is found or the approximation

is exact [16, 22]. This approach is suitable particularly for falsification (defect detection).

From a theoretical point of view, a successful application of the under-approximation

refinement scheme based on sampled semantics has many obstacles. Complexity (de-

cidability) of verification problems remains usually the same for sampled semantics as

it is for dense semantics. Moreover, it is even not possible to efficiently decide whether

ε-sampled and dense semantics are equivalent. Nevertheless, we believe that for prac-

tical examples this approach can give better results than classical complete methods (at

least for the defect detection). One possible direction for future work is an experimental

evaluation of this approach on real-life case studies.

Another direction for future work is provided by the decidability result for non-

emptiness of ω-language in some sampled semantics. The result leads to standard ques-

tions about complexity of the problem and about the existence of a practically feasible

algorithm.

References

[1] Y. Abdeddaïm and O. Maler. Preemptive job-shop scheduling using stopwatch

automata. In Proc. of Tools and Algorithms for Construction and Analysis of Systems

(TACASt’02), volume 2280 of LNCS, pages 113–126. Springer, 2002.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

28

[3] R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.

In Formal Methods for the Design of Real-Time Systems, volume 3185 of LNCS, pages

1–24. Springer, 2004.

[4] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data-structures

for the verification of timed automata. In Proc. of Hybrid and Real-Time Systems

(HART’97), pages 346–360. Springer, 1997.

[5] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata

and digital circuits. In Proc. of Conference on Concurrency Theory (CONCUR’98), vol-

ume 1466 of LNCS, pages 470–484. Springer, 1998.

[6] D. Beyer. Improvements in BDD-based reachability analysis of timed automata. In

Proc. of Formal Methods Europe (FME 2001), volume 2021 of LNCS, pages 318–343.

Springer, 2001.

[7] D. Bosnacki. Digitization of timed automata. In Proc. of Formal Methods for Industrial

Critical Systems (FMICS’99), pages 283–302, 1999.

[8] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable? In

Proc. of Computer Aided Verification (CAV 2000), volume 1855 of LNCS, pages 464–

479. Springer, 2000.

[9] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some Progress in the Symbolic Verifi-

cation of Timed Automata. In Proc. of Computer Aided Verification (CAV’97), volume

1254 of LNCS, pages 179–190. Springer, June 1997.

[10] M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata using

dense and discrete time semantics. In Proc. of Charme’99, volume 1703 of LNCS,

pages 125–141. Springer, 1999.

[11] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems for

timed and hybrid systems. In Proc. of the Hybrid Systems: Computation and Control,

volume 2289 of LNCS, pages 134–148. Springer, 2002.

[12] F. Cassez and K. G. Larsen. The impressive power of stopwatches. In Proc. of

Conference on Concurrency Theory (CONCUR 2000), number 1877 in LNCS, pages

138–152. Springer, 2000.

29

[13] H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In Proc.

of Conference on Concurrency Theory (CONCUR’99), volume 1664 of LNCS, pages

242–257. Springer, 1999.

[14] C. Dima. Computing reachability relations in timed automata. In Proc. of Symp. on

Logic in Computer Science (LICS 2002). IEEE Computer Society Press, 2002.

[15] A. Gollu, A. Puri, and P. Varaiya. Discretization of timed automata. In Proc. of

Conferene on Decision and Control, pages 957–958, 1994.

[16] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided

underapproximation-widening for multi-process systems. In Proc. of Principles of

programming languages (POPL’05), pages 122–131. ACM Press, 2005.

[17] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata? In Proc. of ACM symposium on Theory of computing (STOC’95),

pages 373–382. ACM Press, 1995.

[18] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proc.

of Colloquium on Automata, Languages and Programming (ICALP’92), volume 623 of

LNCS, pages 545–558. Springer, 1992.

[19] P. Krčál and W. Yi. Decidable and undecidable problems in schedulability analysis

using timed automata. In Proc. of Tools and Algorithms for Construction and Analysis

of Systems (TACAS’04), volume 2988 of LNCS, pages 236–250. Springer, 2004.

[20] K. G. Larsen and W. Yi. Time-abstracted bisimulation: Implicit specifications and

decidability. Information and Computation, 134(2):75–101, 1997.

[21] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability for

timed automata. In Proc. of IEEE Symp. on Logic in Computer Science (LICS 2003),

pages 198–207. IEEE Computer Society Press, 2003.

[22] C. Pasareanu, R. Pelánek, and W. Visser. Concrete search with abstract matching

and refinement. In Proc. of Computer Aided Verification (CAV 2005), LNCS. Springer,

2005. To appear.

[23] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Sys-

tems, 10(1-2):87–113, 2000.

30

[24] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed mod-

els to timed implementations. In Proc. of Hybrid Systems: Computation and Control

(HSCC’04), volume 2993 of LNCS, pages 296–310. Springer, 2004.

31

