
}w��������
��������������� !"#$%&'()+,-./012345<yA|
FI MU

Faculty of Informatics
Masaryk University Brno

Under-Approximation Generation using

Partial Order Reduction

by

Lubo� Brim
Ivana �Cerná

Pavel Moravec
Ji�rí �im�a

FI MU Report Series FIMU-RS-2005-04

Copyright c© 2005, FI MU February 2005

Copyright c© 2005, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/veda/reports/

Further information can obtained by contacting:
Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

Under-Approximation Generation using Partial

Order Reduction

Lubo� Brim∗

brim@�.muni.cz

Ivana �Cerná†

cerna@�.muni.cz

Pavel Moravec∗

xmoravec@�.muni.cz

Ji�rí �im�a†

xsimsa@�.muni.cz

March 1, 2005

Abstract

We propose a new on-the-�y approach which combines partial order reduction with
the under-approximation technique for falsi�cation and veri�cation of LTL_X prop-
erties. It uses sensitivity relation and modi�ed ample conditions to generate a re-
duced state space that is not fully stutter equivalent to the original one and it checks
the desired property using representatives. Widening of under-approximations is
fully automatic and does not rely on any supporting mechanisms like theorem-
provers or SAT solvers.

1 Introduction

The state explosion problem is still a major bottleneck in applying model checking to

large real life systems. Numerous approaches have been proposed to �ght the problem.

Partial order reduction [9, 10, 18, 21] and abstraction [3, 5, 11] are certainly the two most

dominant techniques. Both reduce the size of the model checking problem by reducing

the number of states to be dealt with, hence approximating the original system.

While partial order reduction controls the branching, in the abstraction technique a

set of states is represented by one abstract state. In both cases the size of the state space

∗The author has been supported by the Grant Agency of Czech Republic grant No. 201/03/0509
†The author has been supported by the Academy of Sciences of the Czech Republic grant No.

1ET408050503

1

is reduced, however there is an important difference in terms of modelled behaviours.

Partial order reduction gives a model that has less behaviours than the original one (it

is an under-approximation), while the model reduced by abstraction can have either more

behaviours (it is an over-approximation) [3, 14] or less behaviours [15, 16] depending on

the abstraction technique considered.

Approximations, however, are not always accurate enough to determine whether

the original system satis�es its speci�cation. There is the possibility of false negatives (if

the over-approximation contains violating behaviours that are not part of the system)

and false positives (the under-approximation may not include violating behaviours that

are possible in the system). Thus the result from approximating may be inconclusive.

Over-approximations often only work well for invariant properties, since liveness

properties may be erroneously invalidated by one of the extra behaviours. This high-

lights a drawback of an over-approximation, as it can add behaviours that invalidate a

property in the abstract system while it is true in the concrete one. These spurious er-

rors must then be removed by constraining the over-approximation (re�ning it). Under-

approximations, on the other hand, are often used during model checking of liveness

properties. This is because it can often be shown that the behaviours removed by under-

approximation do not in�uence the veri�cation result. Of course, validity of the prop-

erty in the under-approximated model does not necessary mean the property is true in

the original one and therefore another under-approximation has to be considered (typ-

ically a widening of the previous one).

In this paper, we concentrate on LTL_X (LTL without the next operator) model check-

ing. When reducing the model using partial order technique we end up with an exact

approximation which is stutter equivalent to the model. This means that all LTL_X prop-

erties are preserved in the reducedmodel. As the primary aim of under-approximations

is falsi�cation, we can achieve more massive reduction by lifting the stuttering equiva-

lence requirement.

This work presents an approach that exploits partial order reduction techniques to

compute a series of under-approximations in a fully automatic way. As already pointed

out in [12] partial order reduction algorithms can be used to statically determine be-

haviours to be included into the subset of all behaviours.

Partial order reduction algorithm [4] computes the exact approximation by explor-

ing only a subset of transitions, called an ample set, enabled at each state encountered

during the state space generation. There are two factors that in�uence which transitions

2

are selected: the given property (speci�cation) through visibility of transitions and the

veri�ed model through independence of its transitions. Ample sets are determined

using suitable conditions (C0 to C3). We propose two orthogonal ways to generate a

strictly smaller subset of behaviours than generated by the partial order reduction. The

�rst one uses generalisation of invisibility to determine the set of behaviours in the

under-approximation and works with original conditions C0 to C3. The second one is

based on a suitable modi�cation of the condition C3 and can be combined with the �rst

method as well. As the term invisibility strictly relates to propositions in the speci�-

cation only, we use the notion of insensitivity to refer to transitions that are considered.

In fact, insensitivity will guide the successive generation of under-approximations in

our approach. In both techniques, if the property cannot be falsi�ed on the received

under-approximation we extend the set of sensitive transitions and compute the next

under-approximation. The procedure works on-the-�y and is guaranteed to terminate

as we eventually generate representatives of all possible behaviours.

There are three important points to note. First, the series of under-approximations is

not monotonic with respect to set inclusion of behaviours (strictly speaking we are not

computing a widening of the previous under-approximation). However, it is guaran-

teed that successive under-approximations represent monotonically growing set of be-

haviours of the original model, which is a distinguished feature of our approach. Sec-

ond, we can choose in advance a monotonic sequence of sets of insensitive transitions,

hence put an upper bound on the number of iterations to be performed in the worst

case. Third, the generation of under-approximations is guided purely by a syntactical

information from the system description and no other support, e.g. theorem prover or

SAT solver, is required.

Our technique is related to the approach proposed in [12]. In both cases the under-

approximation is given by partially expanding some states. The difference is both in the

way the subset of all enabled transitions is determined and in the way the widening is

achieved. We discuss the differences in more detail in the related work section.

2 Partial Order Reduction and Under-Approximations

Assume, we are given a modelM and an LTL_X formulaϕ. LetM be the full state space

of the modelM. A state space MU ⊆ M such that MU 6|= ϕ =⇒ M 6|= ϕ is called an

under-approximation. An under-approximation ME ⊆ M such that ME |= ϕ ⇐⇒ M |= ϕ

3

is called an exact approximation. In order to resolve the model checking problem forM
and ϕ, we construct a (�nite) sequence of under-approximations M1, . . . , Mn such, that

Mn is an exact approximation. In the caseMi 6|= ϕ for some i ≤ nwe stop the generation

with the answer M 6|= ϕ. If there is no such i, the answer is M |= ϕ (as Mn is an exact

approximation).

Our approach exploits partial order reduction technique to generate under-

approximations. Before describing the procedure itself we summarise basic concepts

that play role in this paper, for more details see [4, 10, 18].

We consider asynchronous multi-process systems de�ned as a composition of indi-

vidual processes following the standard interleaving semantics. The systems are for-

mally modelled as state transition systems. A state transition system is de�ned as a

tuple M = (S, T, s0, L), where S is a set of states, s0 ∈ S is an initial state, T is a set of

transitions α ⊆ S× S, and L : S → 2AP is a labelling function that assigns to each state a

subset of some set AP of atomic propositions.

A transition α ∈ T is enabled in a state s iff there is a state s ′ such that (s, s ′) ∈ α.

The set of all transitions enabled in a state s is denoted enabled(s). We presuppose that

transitions are deterministic, i.e., for every α and s there is at most one s ′, denoted as

α(s), with (s, s ′) ∈ α. In this case we say that s ′ is a successor of s.

The partial order method exploits the fact that the transitions can be executed con-

currently and interleaved in either order. This can be formalised by de�ning an inde-

pendence relation on pairs of transitions that can execute concurrently.

De�nition 2.1 (indepedence). An independence relation I ⊆ T × T is a symmetric and

anti-re�exive relation, satisfying the following two conditions for each state s ∈ S and for each

(α, β) ∈ I:

1. Enabledness � If α, β ∈ enabled(s) then α ∈ enabled(β(s)).

2. Commutativity � If α, β ∈ enabled(s) then α(β(s)) = β(α(s)).

The dependency relation is the complement of I.

Heuristic methods are utilised for an ef�cient computation of the dependence rela-

tion according to the conditions mentioned above.

The independence relation suggests a potential reduction to the state transition sys-

tem by selecting only one from the independent transitions originating from a state s.

However, this cannot guarantee that the reduced state transition system is a correct re-

placement of the full one as it does not take into account the property to be checked.

4

Also, eliminating one of the states α(s) or β(s) may cause some of its successors (which

may be signi�cant for the veri�cation) not to be explored. This might be advantageous

when building under-approximations but, on the other hand, we would like to build a

�faithful� approximation re�ecting the checked property. Therefore, additional condi-

tions for the correctness of the reduction are needed.

First, the concept of invisibility of a transition formalises what it means that a prop-

erty is taken into account.

De�nition 2.2 (visibility). A transition α ∈ T is invisiblewith respect to a set of propositions

AP ′ ⊆ AP if for each pair of states s, s ′ ∈ S such that α(s, s ′), L(s)∩AP ′ = L(s ′)∩AP ′ holds.

A transition is visible if it is not invisible.

The set AP ′ is usually induced by atomic propositions occurring in the veri�ed for-

mula. As the visibility relation is strictly related to some set of atomic proposition, we

introduce a sensitivity relation to approximate the visibility relation.

De�nition 2.3 (sensitivity). Sensitivity ρ is a unary relation on the set of all transitions. A

transition t is sensitive, insensitive if t ∈ ρ, t /∈ ρ respectively.

Our approach relies on enriching the set of sensitive transitions, which is either sub-

set or superset of the set of visible transitions. The reduced state transition system,

denoted by MR, is generated by a modi�ed generation algorithm, which explores only

a subset of transitions, called an ample set, enabled at each state encountered during

the generation. The ample set can be de�ned in a manner that does not depend on the

particular way the state transition system is generated. This is accomplished by a set

of conditions relating the full state transition system to the corresponding reduced one.

Note, that there could be more than one ample set satisfying the conditions for a given

state. We say that a state s is fully expandedwhenever ample(s) = enabled(s).

De�nition 2.4 (ample conditions). Let AP ′ be a set of atomic propositions and ρ a sensitivity

relation. Ample conditions with respect to ρ are:

C0 ample(s) = ∅ iff enabled(s) = ∅.

C1 Along every path in the full state graph M that starts at s, the following condition holds:

a transition that is dependent on a transition in ample(s) cannot be executed without a

transition in ample(s) occurring �rst.

C2 If enabled(s) 6= ample(s), then every α ∈ ample(s) is insensitive.

5

C3 (cycle closing condition) A cycle in the reduced state graph MR is not allowed if it

contains a state in which some transition α is enabled, but is never included in ample(s)

for any state s on the cycle.

Note that for a sensitivity relation which agrees with visibility (i.e., every visible

transition is sensitive) these conditions characterise the ample sets needed to generate

the reduced state transition systems suf�cient for checking safety and liveness proper-

ties. The reduced state transition system is in this case an exact approximation of the

original one with respect to LTL_X properties.

While the conditions C0 , C1 , and C2 can be checked locally, the condition C3 is a

global one and in practise the condition C3 is checked in constant time using a proviso.

An example of such a proviso is the condition C3-one , which can be used during a

depth-�rst search based generation of the state space.

C3-one If a state s is not fully expanded, then no transition in ample(s) leads to a state

on the search stack.

Our aim is to construct an under-approximation which is as small as possible. The

�rst possibility is to approximate the visibility relation by the sensitivity relation. An-

other possibility is to weaken the condition C3 . To this end we introduce a new condi-

tion C̃3.

C̃3 From all states in the reduced system MR there is a �nite path in MR leading to a

fully expanded state.

By replacing the condition C3 with the condition C̃3 we are able to preserve certain

behaviours. In the next section we give a precise characterisation of such behaviours,

justifying thus formally our approach.

In order to check C̃3 ef�ciently a new proviso is needed. The proviso we use requires

that a state is fully expanded whenever all successor states are already on the stack. The

relation between C̃3 and the new proviso is proved in Section 4.

C̃3-all If a state s is not fully expanded, then not all transitions in ample(s) lead to a

state on the search stack.

Not only does this proviso allow for under-approximation, but it also yields bet-

ter reductions of state spaces. In particular, in models with many cycles almost every

6

possible ample set contains an edge leading back to a search stack enforcing the full ex-

pansion under the proviso C3-one. The new proviso can deliver substantial reduction

in such cases.

Now we are ready to sketch how the partial order method can be employed for

computing under-approximations. Let us assume we are given a modelM and a LTL_X

formula ϕ and an algorithm, which generates a (reduced) state space MR of the model

M such that conditions C0 through either C3 or C̃3 hold. Moreover, let us assume

the sensitivity relation is initially empty. The state space MR is obviously an under-

approximation. We model-check the formula ϕ on MR (in fact we do this on-the-�y

during the state space generation). If MR is an exact approximation or MR 6|= ϕ, we

are done. Otherwise, we mark an insensitive transition t as a sensitive one and recom-

pute the reduced state space. The procedure is guaranteed to terminate as it eventually

generates an exact approximation. We present two algorithms implementing this frame-

work as well as possible strategies for widening of under-approximations in Section 4.

3 Preservation of Properties under C̃3

In this section we show how the reduced state space relates to the original one under

the conditions C0 through C̃3 . Throughout this section we assume that every visible

transition is also a sensitive one.

Let M = (S, T, s0, L) be a state transition system and ρ a sensitivity relation. A path

from a state s in M is a �nite or in�nite sequence σ = s0
α1→ s1

α2→ . . . such that s = s0 and

for every i, (si−1, si) ∈ αi. The length of a �nite path σ, denoted |σ|, is the number of its

transitions.

Let η be a �nite and σ a �nite or in�nite path. Then �rst(σ) is the �rst state of σ and

last(η) is the last state of η. If last(η) = �rst(σ) then η ◦ σ denotes the concatenation of

the paths. For a path σ let trace(σ) denotes the sequence of transitions in σ and sens(σ)

denotes the sequence of sensitive transitions in σ. The length of a sequence of transitions

γ is denoted |γ|.

De�nition 3.1 (stuttering equivalence). Two in�nite paths σ = s0
α1→ s1

α2→ . . . and η =

r0
β1→ r1

β2→ . . . are stutter equivalent, denoted σ ∼st η, if there are two in�nite sequences of

integers 0 = i0 < i1 < i2 < . . . and 0 = j0 < j1 < j2 < . . . such that for every k ≥ 0,

L(sik) = L(sik+1) = . . . L(sik+1−1) = L(rjk) = L(rjk+1) = . . . L(rjk+1−1).

7

Theorem 3.2. Let M be a full state transition system and MR be a reduced system satisfying

the conditions C0 through C̃3. Then for each path σ in M such that |sens(σ)| = ∞ there is a

path η in MR such that σ ∼st η.

There are two key steps to prove Theorem 3.2. The �rst one is the observation that for

the equivalence only paths without so called scattered cycles are important. Informally, a

scattered cycle on a path consists of those transitions which do not in�uence the validity

of LTL_Xformulae over the path.

De�nition 3.3 (scattered cycle). Let M = (S, T, s0, L) be a state transition system and γ =

γ1 · γ2 · . . . · γn be a sequence of insensitive transitions from T . We say that γ is an enabled

cycle if for all s ∈ S such that the transition γi is enabled in the state γi−1(. . . (γ1(s)) . . .),

i = 1, . . . , n, the equality γn(. . . (γ1(s)) . . .) = s holds.

We say that a path σ in M contains a scattered cycle γ if and only if γ is an enabled cycle

and there are paths θ1, . . . , θn+1 such that

σ = θ1 ◦ (last(θ1)
γ1→ �rst(θ2)) ◦ θ2 ◦ . . . ◦ θn ◦ (last(θn)

γn→ �rst(θn+1)) ◦ θn+1

and for all i = 1, . . . , n

• the transition γi is enabled in the state γi−1(. . . (γ1(�rst(θ1))) . . .) and

• all transitions in θ1, θ2, . . . θi are independent on the transition γi.

Lemma 3.4. For each path σ in M with |sens(σ)| = ∞ there is an in�nite path σ ′ in M such

that σ ∼st σ ′, �rst(σ) = �rst(σ ′) and σ ′ does not contain any scattered cycle.

Proof: Let us suppose that σ contains a scattered cycle γ = γ1 · γ2 · . . . γn and σ =

θ1◦(last(θ1)
γ1→ �rst(θ2))◦θ2◦(last(θ2)

γ2→ �rst(θ3))◦. . .◦θn◦(last(θn)
γn→ �rst(θn+1))◦θn+1.

According to the de�nition of the scattered cycle, the transition γ2 is enabled in the

state �rst(θ2) and is independent on all transitions in θ2. Therefore there is a path in M

containing the scattered cycle γ and such that the transition γ2 proceeds all transition

from θ2. Using the same argument iteratively we can conclude that there is a path

θ1 ◦ (last(θ1)
γ1→ . . .

γn→ last(θ1)) ◦ θ ′
2 ◦ . . . θ ′

n ◦ θn+1 in M where trace(θi) = trace(θ ′
i) for

all i = 2, . . . , n. As γ is a scattered cycle, θ1 ◦ θ ′
2 ◦ . . . θ ′

n ◦ θn+1 is a path in M stutter

equivalent to σ. In this way we could iteratively remove all scattered cycles appearing

in σ. However, by removing a scattered cycle from a path we could introduce to this

path a new scattered cycle. To prove the existence of stutter equivalent path without

scattered cycles we have to consider all existing and possible scattered cycles on the

path σ simultaneously.

8

Let δ = δ1 · δ2 · . . . be a (�nite or in�nite) subsequence of trace(σ) such that either δi is

a transition of a scattered cycle in σ or there is a �nite number of scattered cycles which

can be removed from σ (through the above mentioned transformation) and δi becomes

a transition of a scattered cycle in the resulting path.

Let α1 · α2 · . . . be a sequence of transitions which remains in trace(σ) after removing

the subsequence δ. We need to prove that there is an in�nite path σ ′ in M such that

�rst(σ) = �rst(σ ′) and trace(σ ′) = α1 · α2 · . . . These guarantee σ ∼st σ ′.

To prove that σ ′ is a path in M it is suf�cient to prove that

αi ∈ enabled(αi−1(. . . (α1(�rst(σ))) . . .))

for all i. Let δj occurs in σ before αi. Then δj can be removed from the path (together

with the scattered cycle it belongs to) and αi still remains enabled thanks to the argu-

ments mentioned above.

As sens(σ) = sens(σ ′) and |sens(σ)| = ∞, the path σ ′ is in�nite. 2

The second step to prove Theorem 3.2 is the construction of stutter equivalent paths.

Let σ be a path in M without any scattered cycle. We inductively describe a sequence of

paths π0,π1,π2,. . . , where for every i, πi = ηi ◦ θi is a path in M, ηi is a path in MR, and

|ηi| = i. The path η, which is stutter equivalent to σ, is then de�ned as the limit of the

sequence (ηi).

Basic step Let η0 be an empty path and θ0 = σ.

Inductive step Let s0 = last(ηi) = first(θi), θi = s0
α1→ s1

α2→ s2 . . .

There are two possibilities:

A If α1 ∈ ample(s0) then ηi+1 = ηi ◦ (s0
α1→ s1), θi+1 = s1

α2→ s2 . . .

B The case α1 /∈ ample(s0) divides into two sub-cases.

B1 There is k such that αk ∈ ample(s0) and (αj, αk) are independent for

all 1 ≤ j < k. Then ηi+1 = ηi ◦ (s0
αk→ αk(s0)). As transitions αj are

independent, αk(s0)
α1→ αk(s1)

α2→ αk(s2) . . . is a path in M and according

to Lemma 3.4 there is a path δ in M without scattered cycles and stutter

equivalent to αk(s0)
α1→ αk(s1)

α2→ αk(s2) . . . Let θi+1 = δ.

B2 αk /∈ ample(s0) for any k. Then from the condition C1 all transitions in

ample(s0) are independent on all transitions in θi. Let ξ be the shortest

9

path in MR from s0 to a fully expanded state (the existence of such a

path is guaranteed by C̃3) and let β be the �rst transition of ξ. Then

ηi+1 = ηi ◦ (s0
β→ β(s0)), θi+1 = β(s0)

α1→ β(s1)
α2→ β(s2) . . .

Cases B1 and B2 cover all possibilities which match up with C1.

To prove Theorem 3.2 we �rst characterise properties of the path η and then prove

the stuttering equivalence.

Properties of η

Lemma 3.5. For every i, πi = ηi ◦ θi is a path in M, ηi is a path in M', and |ηi| = i.

Proof: By induction. Induction basis for i = 0 holds trivially. In induction step, we �rst

prove that πi is a path in M. It obviously holds for the caseA. In the case B1, (αj, αk) are

independent, for all j < k. Hence there is a path ξ = s0
αk→ αk(s0)

α1→ αk(s1)
α2→ . . .

αk−1→
αk(sk)

αk+1→ sk+2
αk+2→ . . . in M, where αk is moved before α1α2α3 . . . αk−1. Note that

αk(sk) = sk+1. Therefore, αk(sk)
αk+1→ sk+2 is the same as sk+1

αk+1→ sk+2. The correctness

of removing scattered cycles is ensured by Lemma 3.4. In the case B2 we execute a

transition independent on all transitions in θi−1, hence θi is obviously a path in M.

Facts that ηi is a path in M' and |ηi| = i are obvious in all cases, because we append

to ηi−1 exactly one transition from ample(last(ηi−1)). 2

Lemma 3.6. Let η = limi→∞ ηi. Then η is a path in MR.

Proof: By induction to i. 2

Lemma 3.7. For every i, θi does not contain any scattered cycle.

Proof: By induction to i. For θ0 = σ the statement holds trivially. If θi is constructed

applying A or B2 it does not contain any scattered cycle as θi−1 does not contain any. In

case of B1, the desired property is enforced explicitly. 2

Stuttering equivalence

Lemma 3.8. The following holds for all i, j such that j ≥ i ≥ 0.

1. πi ∼st πj.

2. sens(πi) = sens(πj).

10

3. Let ξi be a pre�x of πi and ξj be a pre�x of πj such that sens(ξi) = sens(ξj). Then

L(last(ξi)) = L(last(ξj)).

Proof: It is suf�cient to consider the case where j = i + 1. Consider three ways of

constructing πi+1 from πi. In case A, πi+1 = πi and the statement holds trivially.

In case B1, πi+1 is obtained from πi by executing a insensitive transition αk in πi+1

earlier than it is executed in πi. In this case, we replace the sequence s0
α1→ s1

α2→ . . .
αk−1→

sk−1
αk→ sk by s0

αk→ αk(s0))
α1→ αk(s1)

α2→ . . .
αk−1→ αk(sk−1)). Because αk is insensitive,

corresponding states have the same label, that is, for each 0 < l ≤ k, L(sl) = L(αk(sl)).

Also, the order of the sensitive transitions remains unchanged. Possible deletion of

scattered cycles has no impact to these properties. Parts 1, 2, and 3 follow immediately.

Finally, consider case B2, where the difference between πi and πi+1 is that πi+1 in-

cludes an additional insensitive transitionβ. Thus, we replace some suf�x s0
α1→ s1

α2→ . . .

by s0
β→ β(s0))

α1→ β(s1)
α2→ So, L(sl) = L(β(sl)) for l ≥ 0. Again, the order of sensi-

tive transitions remains unchanged and parts 1, 2, and 3 follow immediately. 2

Lemma 3.9. During the construction of η, the case A is chosen in�nitely often.

Proof: Let us assume that there is an index j such that for the construction of πj, πj+1, . . .

only the rule B is applied. Then either B1 or B2 is applied in�nitely many times.

In case B1 is applied in�nitely many times there is an in�nite sequence of transitions

which are added to the pre�x ηj−1. These transitions are insensitive and independent

on all relevant transitions in θj. From �niteness of the set of states we have that some of

the considered transitions form a enabled cycle, which is moreover a scattered cycle in

θj. This contradicts Lemma 3.7.

This gives us an existence of an index k ≥ j such that for the construction of

πk, πk+1, . . . only the rule B2 is applied. But this is a contradiction to the fact that in

B2we always choose a transition from the shortest path to a fully expanded state. 2

Lemma 3.10. Let α be the �rst transition of θi. Then there exists j > i: α is the last transition

of ηj and ∀k : i ≤ k < j: α is the �rst transition of θk.

Proof: The rules B1 and B2 leave the �rst transition α of θi unchanged, the rule A shifts

the transition α to ηi. Thus it is suf�cient to prove that during the construction of η, the

rule A is applied in�nitely often. This follows from Lemma 3.9. 2

Lemma 3.11. Let δ be the �rst sensitive transition on θi, pre�xδ(θi) be the maximal pre�x of

trace(θi) that does not contain δ. Then

11

either δ is the �rst transition of θi and the last transition of ηi+1

or • δ is the �rst sensitive transition of θi+1 and

• the last transition of ηi+1 is insensitive and

• prefixδ(θi+1) is a subsequence of prefixδ(θi).

Proof: If θi+1 is constructed according to A, then δ is the last transition of ηi+1.

If B1 is applied then an insensitive transition αk from θi is appended to ηi to form

ηi+1 and δ is still the �rst sensitive transition of θi+1. The pre�x prefixδ(θi) is either

unchanged or shortened by the transition αk.

Otherwise an insensitive transition β is appended to ηi to form ηi+1 and

prefixδ(θi+1) = prefixδ(θi). 2

Lemma 3.12. Let v be a pre�x of sens(σ). Then there exists a path ηi such that v = sens(ηi).

Proof: By induction of the length of v. The base holds trivially for |v| = 0. In the

induction step we must prove that if vδ is a pre�x of sens(σ) and there is a path ηi such

that sens(ηi) = v, then there is a path ηj with j > i such that sens(ηi+1) = vδ. Thus,

we need to show that δ will be eventually added to ηj for some j > i, and that no

other sensitive transition will be added to ηk for i < k < j. According to case A in the

construction, we may add a sensitive transition to the end of ηk to form ηk+1 only if it

appears as the �rst transition of θk. Lemma 3.11 shows that δ remains the �rst sensitive

transition in successive paths θk after θi unless it is being added to some ηj. Moreover,

the sequence of transitions before δ can only shrink. Lemma 3.10 shows that the �rst

transition in each θk is eventually removed and added to the end of some ηl for l > k.

Thus, δ as well is eventually added to some sequence ηj. 2

Proof: [of Theorem 3.2]

We will show that the described path η = limi→∞ ηi is stutter equivalent to the orig-

inal path σ.

First note that sens(σ) = sens(η). It follows from Lemma 3.12 that for every pre�x

of σ there is a pre�x of η with the same sequence of sensitive transitions. The opposite

follows from Lemma 3.8.

Next we construct two in�nite sequences of indexes 0 = i0 < i1 < . . . and 0 =

j0 < j1 < . . . that de�ne corresponding stuttering blocks of σ and η, as required in

De�nition 3.1. For every natural n, let in be the length of the smallest pre�x ξin of σ that

contains exactly n sensitive transitions. Let jn be the length of the smallest pre�x ηjn of η

12

that contains the same sequence of sensitive transitions as ξin . Recall that ηjn is a pre�x

of πjn . Then by Lemma 3.8, L(sin) = L(rjn). By the de�nition of sensitive transitions

we also know that if n > 0, for in−1 ≤ k < in − 1, L(sk) = L(sin−1
). This is because

in−1 is the length of the smallest pre�x ξin−1
of σ that contains exactly n − 1 sensitive

transitions. Thus, there is no sensitive transition between in−1 and in − 1. Similarly, for

jn−1 ≤ l < jn − 1, L(rl) = L(rjn−1
). 2

4 Algorithms and Experiments

In this section we describe two model checking algorithms we have designed for LTL_X

model checking using under-approximations. Although both of them have similar

structure, they differ in handling the widening of under-approximations, in the iden-

ti�cation of the exact approximation, and in the conditions they use for the state space

generation.

The �rst algorithm (see Figure 1) is based on the original set of conditionsC0 through

C3. In each iteration it picks at random an insensitive visible transition and marks it

as sensitive. Clearly, after a �nite number of iterations we reach a situation, where all

insensitive transitions are invisible and thus the reduced state space is stutter equivalent

to the original one (i.e., it is an exact approximation).

1 funct A(M, ϕ)

2 compute the set V of visible transitions usingM and ϕ;
3 the set S of insensitive transitions is initially empty;
4 compute the independence relation D usingM;
5 while (true) do
6 MR = Generate(M,D,S);
7 if (ϕ 6|= MR) then return false; �
8 if (S == V) then return true; �
9 let α be a random transition from V \ S;
10 mark transition α as a sensitive;
11 od

Figure 1: Under-approximation algorithm A(M, ϕ)

The second algorithm (see Figure 2) is based on the conditions C0 through C̃3. It

maintains a set C of transitions, which lie on some insensitive cycle (i.e., all transition

on the cycle are insensitive) in labelled transition system of some process (recall that

13

1 funct B(M, ϕ)

2 compute the set V of invisible transitions usingM and ϕ;
3 the set S of insensitive transitions is initially empty;
4 compute the independence relation D usingM;
5 while (S 6= V) do
6 MR = Generate-2(M,D,S);
7 if (ϕ 6|= MR) then return false; �
8 let α is a random transition from V ;
9 mark transition α as a sensitive;
10 od
11 compute the set C;
12 while (true) do
13 MR = Generate-2(M,D,S);
14 if (ϕ 6|= MR) then return false; �
15 if (C == ∅) then return true; �
16 let α is a random transition from C;
17 mark transition α as a sensitive;
18 recompute the set C;
19 od

Figure 2: Under-approximation algorithm B(M, ϕ)

we verify asynchronous multi-process systems). The generation of the next under-

approximation is done in the following manner. It mimics the �rst algorithm until the

condition S == V holds. From that point on it iteratively picks at random a transition

from the set C, marks it as a sensitive one, and updates the set C accordingly. As the

number of all cycles in all processes is �nite, after a �nite number of iterations all cy-

cles in all processes are sensitive. Consequently, every path in the full state space must

contain an in�nite number of sensitive transitions and due to Theorem 3.2 it has a stut-

ter equivalent path in the reduced state space (i.e., the reduced state space is an exact

approximation).

Whereas there aremany knownways of how to resolve themodel checking problem,

it might not be obvious how to generate a reduced state space ful�lling the conditions

C0 through C̃3. Therefore we present a pseudo-code for the algorithm Generate-2 (see

Figure 3). Note that in our implementation we perform LTL_X model checking on-the-

�y during the state space generation.

The algorithm takes as input a model M, an independence relation I, and a set

of sensitive transitions S. It returns a reduced state space. The algorithm uses boolean

14

1 funct Generate-2(M, I,S)

2 begin
3 let s0 be an initial state;
4 stack.push(s0);
5 while (!stack.empty()) do
6 state = stack.top(); expand(state); stack.pop();
7 od
8 return the traversed state space;
9 where
10 funct expand(state)

11 valid = false;
12 let T is a set of all proper subsets of enabled(s) satisfying C0 , C1 and C2 ;
13 foreach T ∈ T do
14 foreach α ∈ T do
15 if (!on_stack(α(state))) then valid = true; �
16 od
17 if (valid) then ample = T ; break; �
18 od
19 if (!valid) then ample = enabled(state); �
20 foreach α ∈ ample do
21 if (!visited(α(state))) then stack.push(α(state)); expand(α(state)); �
22 od
23 end

Figure 3: Algorithm Generate-2(M, I,S)

15

functions on_stack and visited to traverse the state space in the depth-�rst search man-

ner. Given a state, the function on_stack returns true iff the state is on the stack and the

function visited returns true iff the state is on the stack or it was on the stack in the past.

Lemma 4.1. The algorithm Generate-2(M, I,S) generates a reduced state space ful�lling the

conditions C0 through C̃3.

Proof: Conditions C0 , C1 and C2 can be checked locally and their veri�cation is an

implicit part of the algorithm (line 12). The condition C̃3 is ensured using the stack. We

show by induction on the number of states removed from the stack that C̃3 holds for

every state.

Basic step Let s be the �rst state to be removed from the stack. By simple argument

it follows that all of its successors are on the stack. Therefore the state s is fully

expanded as the condition on line 15 does not hold for any successor of s.

Inductive step Let si be the i-th state to be removed from the stack. We want to show

that if a fully expanded state is reachable from all s1, . . . , sn then a fully expanded

state is reachable also from sn+1. Again, by simple argument it follows that all

successors of the state sn+1 are either backtracked or on the stack. There are two

cases:

a) All successors of the state sn+1 are on the stack. Similar arguments as in the basic

step can be used to to show that sn+1 is fully expanded.

b) There is a successor of sn+1 which is not on the stack. Such a successor has been

removed from the stack and by the induction hypothesis, there is a fully expanded

state reachable from it. 2

Experiments

We have implemented both under-approximation algorithms. The implementation has

been done in C++ using tools provided by our own distributed veri�cation environ-

ment DiVinE and the experiments have been performed on the Intel Pentium 4 2.6 GHz

workstation with 1 GB of RAM.

For evaluation of the algorithm A(M, ϕ) (Figure 1), which approximates the visibil-

ity relation through the sensitivity relation, we have considered three different models

16

Model Sat. Full C3 A(M, ϕ) Iter. Ratio

Peterson-6err no 5781294 5781294 3108806 1 100% 54%

LossyProtocol no 1008383 938983 510286 1 93% 51%

Philo10L yes 100014 100014 100014 20 100% 100%

Table 1: Experiments for the under-approximation of visibility

� erroneous version of the Peterson's algorithm, communication protocol with lossy

channels, and dining philosophers. The results are summarised in Table 1.

The �rst three columns identify the type of the model, the validity of the property

being checked, and the size of the full state space respectively. The fourth column gives

the size of the state space reduced using the original partial order reduction [18]. The

next two columns give the size of the state space and the number of iterations needed by

our algorithm in order to resolve the model checking problem. Finally, the last column

gives the reduction ratio of both reduction techniques with respect to the size of the

full state space. For example, to falsify the property the original partial order method

generates 93% of the full state space while our algorithm generates 51% only.

For evaluation of the algorithm B(M, ϕ) (Figure 2), which replaces the condition

C3 with C̃3, we have considered two models for mutual exclusion � the Peterson's and

token algorithm. As we wanted to focus on the in�uence of C̃3 only, we have started

the �rst iteration with the sensitivity relation equal to the visibility relation. The results

are summarised in Table 2.

Model Sat. Full C3 B(M, ϕ) Iter. Ratio

Peterson-4 no 262601 216069 207197 1 82% 79%

Peterson-4 yes 262598 211872 262598 4 81% 100%

Peterson-4L no 132117 132117 103963 1 100% 79%

Token-13 yes 167936 52 167936 13 3 · 10−2% 100%

Token-13L no 167936 167936 52 1 100% 3 · 10−2%

Table 2: Experiments for the condition C̃3

The �rst four columns give the same information as in Table 1. The next two columns

give the size of the state space and the number of iterations needed by the algorithm in

order to resolve the model checking problem. Finally, the last column has the same

meaning as in Table 1.

17

As demonstrated by experiments, both under-approximation methods work very

well in detecting property violations as the computation terminates after the �rst few

iterations (in our experiments always after the �rst one). Consequently, the size of the

generated state spacewas smaller comparing to the one generated by the original partial

order reduction.

The �rst method, based on the condition C3 , is aimed at models with many visible

transitions. The second method, based on the condition C̃3, performs well for models

where the partial order method with the condition C3 does not reduce the state space

signi�cantly.

In the case the veri�ed property is satis�ed, both methods have disadvantages typ-

ical for all approximation methods. The time needed for computing an exact approxi-

mation might be even higher than the time needed for computing the full state space.

Note that as both presented methods are based on partial order reduction, their suc-

cess depends heavily on the dependence relation of the model. One can try to approx-

imate the dependence relation in a similar way we have approximated the visibility

relation. However, this would push themethod out of the partial order reduction frame-

work. Therefore we have not investigated this possibility.

5 Related Work and Conclusions

In this paperwe have proposed a new on-the-�y approachwhich combines partial order

reduction with the under-approximation technique for validation of LTL_X properties.

It uses sensitivity relation and modi�ed cycle closing condition to generate a reduced

state space that is not fully stutter equivalent to the original one and it checks the de-

sired property using representatives. To the best of our knowledge, the presented fully

automatic approach to widening of under-approximations is the �rst one that does not

rely on any supporting mechanisms like theorem-provers or SAT solvers.

Recently, several approaches for the veri�cation that are based on under-

approximations have been proposed. In [1] the authors integrate symmetry reduction

and under-approximation with symbolic model checking. The main objective of the

algorithm is falsi�cation and provides veri�cation only under certain conditions. The

extended algorithm allows checking both safety and liveness properties, however, is not

on-the-�y.

18

Another approach, which is more closer to the technique suggested in this paper,

is [12]. The presented procedure checks models with an increasing set of allowed inter-

leavings of the given set of processes, starting from a single interleaving. The procedure

relies on SAT solvers' ability to produce proofs of unsatis�ability, from these proofs it

derives information that guides the process of adding inter-leavings on the one hand,

and determines termination on the other. The under-approximation widening is fully

automatic in contrast to previous solutions.

Yet another approach is currently being investigated [17]. It builds under-

approximations using predicate abstractions and is dependent on a theorem-prover.

Our procedure has some similarities with the approach taken in [12]. Both meth-

ods are fully automatic and both are based on suitable partial expansions of enabled

transitions. However, there are fundamental differences. While in [12] the under-

approximations are monotonically widened, in our approach the individual under-

approximations are generally different. Unlike [12], the subset of enabled transitions

is not limited to one process, but several processes can perform their transitions. This

gives the possibility for a more �ner re�nement. The other difference is that we do not

need any external support to perform the procedure, the method can be easily incorpo-

rated into existing LTL model checking tools.

For future research, we would like to perform a more extensive study of practical

behaviour of the algorithms. The condition C̃3 is not based on cycle detection, as it uses

reachability only. This gives a good chance to be used in a distributed environment and

we are currently investigating how to combine the new proviso with distributed partial

order reduction and how to parallelise our procedure for under-approximations. The

result achieved so far are quite promising.

References

[1] S. Barner and O. Grumberg. Combining Symmetry Reduction and Upper-

Approximation for Symbolic Model Checking. In Computer Aided Veri�cation

(CAV'02), volume 2404 of LNCS, pages 93�106. Springer, 2002.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided

Abstraction Re�nement for Symbolic Model Checking. J. ACM, 50(5):752�794,

2003.

19

[3] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction.

ACM Transactions on Programming Languages and Systems, 16(5):1512�1542, 1994.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-

bridge, Massachusetts, 1999.

[5] P. Cousot and R. Cousot. Abstract Interpretation: a Uni�ed Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In ACM

Symposium on Principles of Programming Languages (POPL'77), pages 238�252. ACM

Press, 1977.

[6] D. Dill and H. Wong-Toi. Veri�cation of Real-Time Systems by Successive over and

under Approximation. In Computer Aided Veri�cation (CAV'95), volume 939, pages

409�422. Springer, 1995.

[7] D. Dill and H. Wong-Toi. Approximations for Verifying Timing Properties. In

Theories and Experiences for Real-Time SystemDevelopment, volume 2 ofAMAST Series

in Computing, pages 147�176. World Scienti�c Publishing, 1994.

[8] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Check-

ing Software. InACMSymposium on Principles of Programming Languages (POPL'05),

pages 110�121. ACM Press, 2005.

[9] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems - An

Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer, 1996.

[10] P. Godefroid and P. Wolper. A Partial Approach to Model Checking. In IEEE Sym-

posium on Logic in Computer Science, volume 110, pages 305�326. Academic Press,

Inc., 1994.

[11] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS. In Computer

Aided Veri�cation (CAV'97), volume 1254 of LNCS, pages 72�83. Springer, 1997.

[12] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-Guided

Underapproximation-Widening for Multi-Process Systems. In ACM Symposium on

Principles of Programming Languages (POPL'05), pages 122�131. ACM Press, 2005.

[13] G. J. Holzmann and D. Peled. An Improvement in Formal Veri�cation. In

FORTE'94, volume 6, pages 197�211. Chapman & Hall, Ltd., 1994.

20

[14] R. P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press, 1994.

[15] W. Lee, A. Pardo, J-Y. Jang, G. Hachtel, and F. Somenzi. Tearing Based Automatic

Abstraction for CTL Model Checking. In IEEE/ACM International Conference on

Computer-Aided Design (ICCAD'96), pages 76�81. IEEE Computer Society, 1996.

[16] A. Pardo and G. D. Hachtel. Incremental CTL Model Checking using BDD Subset-

ting. In Design Automation Conference (DAC'98), pages 457�462. ACM Press, 1998.

[17] C. Pasareanu, W. Visser, and R. Pelánek. Concrete Model Checking with Abstract

Matching and Re�nement. Submitted, 2005.

[18] D. Peled. All from One, One from All: on Model Checking using Representa-

tives. In Computer Aided Veri�cation (CAV'93), number 697 in LNCS, pages 409�423.

Springer, 1993.

[19] D. Peled. Combining Partial Order Reductions with On-the-Fly Model-Checking.

Formal Methods in System Design, 8(1):39�64, 1996.

[20] D. Peled. Ten Years of Partial Order Reduction. In Computer Aided Veri�cation

(CAV'98), volume 1427 of LNCS, pages 17�28. Springer, 1998.

[21] A. Valmari. Stubborn Sets for Reduced State Space Generation. In Advances in Petri

Nets 1990, volume 483 of LNCS, pages 491�515. Springer, 1991.

21

	Introduction
	Partial Order Reduction and Under-Approximations
	 Preservation of Properties under C3"0365C3
	Algorithms and Experiments
	Related Work and Conclusions

