
}w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University Brno

VCD: A Visual Formalism
for Specification of Heterogeneous

Software Architectures

by

David Šafránek
Jiří Šimša

FI MU Report Series FIMU-RS-2004-11

Copyright c© 2004, FI MU December 2004



Copyright c© 2004, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW:

http://www.fi.muni.cz/veda/reports/

Further information can obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic



VCD: A Visual Formalism for Specification of
Heterogeneous Software Architectures∗†

David Šafránek and Jiří Šimša

Faculty of Informatics, Masaryk University Brno

Czech Republic

{xsafran1,xsimsa}@fi.muni.cz

Abstract

A visual formalism called Visual Coordination Diagrams (VCD) for high-level de-

sign of heterogeneous systems is presented in this paper. The language is based on a

state-transition operational semantics, which allows application of formal methods

to software design. Formal definition of VCD is included in the paper. Moreover,

an example of use of the language is also given.

1 Introduction

The importance of visual modeling languages such as UML [14] is very significant in

the domain of software engineering. The desired properties of such an universal visual

design language are heterogeneity, hierarchy and component-based structure. Addi-

tionally, to be able to analyze the software design using formal methods, some unam-

biguous formal semantics is required. Unfortunately, there is no formal semantics of

UML [8].

In this paper we present Visual Coordination Diagrams (VCD) – a visual formalism

for specification of component-based distributed systems, based on the idea of GCCS [4]

and its extensions [20]. The VCD formalism can be viewed as static architecture dia-

grams for specification of connections among components. The key property of VCD is

its two-level heterogeneity. The first level of this heterogeneity is based on the possibility

∗This work has been supported by the Grant Agency of Czech Republic grant No. 201/03/0509.
†This is a full version of SOFSEM 2005 paper.

1



of combination of various coordination models (both synchronous and asynchronous)

in a particular specification. The second level of the heterogeneity is the variability of

specification of behavioral aspects. This can be done in various notations which have to

be, in some well-defined sense, compatible with the supported coordination models.

The work on VCD is practically motivated by the formal verification project Liber-

outer [2]. In this project, we have to deal with formal modeling of a complex system

composed of heterogeneous SW/HW units [9].

1.1 Background and Related Work

There is a group of visual languages for concurrent systems in which the classical state

transition diagrams have been extended to fulfill the needs of design of complex sys-

tems. Combining the concept of geometric inclusion with the concept of hi-graphs, the

hierarchy of states has been added, leading to Harel’s Statecharts [6]. The complexity

of the syntactic richness of Statecharts has shown that reaching a compositional formal

semantics for such a powerful language is impracticable. Various sub-dialects of State-

charts have been defined to achieve required semantic properties [12]. The concept of

Statecharts was also incorporated in UML [19], [7].

Another group of visual languages is based on the concept of message flow graphs.

They are employed to visually describe partial message passing interaction among con-

current processes. The high level message flow diagrams called Message Sequence

Charts are based on this concept [10]. This notation does not support hierarchical de-

sign. For its simple nature, it is widely used in telecommunication industry and it is

also a part of UML.

VCD extends and generalizes ideas of the work on Graphical calculus of commu-

nicating systems (GCCS) [4] and its synchronous extension SGCCS [20], which adopt

the process algebraic approach as the underlying semantic model. In these languages,

a very tight relation to the underlying process algebraic semantic model limits the het-

erogeneity of both coordination and behavioral layers. I.e., it is difficult to incorporate

Statechart-like formalisms into GCCS. In VCD we try to overcome these inconveniences

by using of a more general semantic model.

There is another architectural language, which is, similarly to VCD, based on the

idea of GCCS. It is called Architectural Interaction Diagrams (AID) [17]. VCD and AID

both achieve some level of heterogeneity by avoiding the tight relation with the CCS

process algebra [13]. One of the significant differences between these two formalisms

2



is in the underlying semantic model. AID is aimed to be used for specification of in-

teractive systems while in VCD the interactive aspects can be additionally mixed with

reactivity. At the behavioral layer, VCD supports more expressive formalisms than AID,

and thus allows more heterogeneity at this level.

Similarly to some of the classical textual architecture description languages (ADLs)

like Wright [1] or UniCON [18], VCD are based on the idea of taking connectors and

computational components as different elements of system architecture. Moreover, this

concept is further refined in VCD. In contrast to Wright, where the semantics of connec-

tors is defined in terms of CSP processes, which are based on handshake-style coordina-

tion, in VCD more complex coordination mechanisms, e.g. multi-cast, can be modeled

more conveniently. It is mainly due to fact of semantic modeling of any coordination

event, e.g. a broad-cast communication, as one atomic transition of a connector model.

In the domain of ADLs, there are some languages which support dynamic changes of

system structure, i.e. Darwin [11] or SOFA [16]. Unlike these languages, VCD does

not support dynamism. VCD is aimed to be a simple visual formalism for hierarchical

description of coordination of system components.

The main reason for developing VCD is our belief in importance of building a formal

framework for coordination of various kinds of Statecharts and other visual formalisms

for specification of component behavior. We would like to establish a simple syntac-

tic visual notation with suitable underlying formal semantics. The chosen semantic

model is based on composition of local transition systems, which represent particular

components, resulting in one global transition system formally representing the whole

architecture description.

2 Overview of VCD

VCD is aimed to be a formal language for specification of communication relationships

in component-based systems. An example of a simple VCD is depicted in Fig. 1. Basic

elements of the VCD formalism are component interfaces. Each interface contains input

and output ports. Interfaces are organized in so called networks in which they can be

connected by links to buses.

Buses represent connectors of components. They are used for specification of vari-

ous types of coordination mechanisms. Different types of buses can be mixed together

in a particular network. Consequently, systems with heterogeneous coordination mech-

3



out
in C1 B C2

in
out

component interfaces

bus

Figure 1: A network of components C1 and C2 connected to bus B

anisms can be effectively specified using a single uniform formalism. In VCD there is a

concept of bus classes, which allows to specify generic templates for various coordination

media.

The key concept of VCD is in its hierarchical network structure, which unfolds the

coordination layer. This is achieved by the possibility of taking networks as components

of other networks (higher-level networks). The relation between a network and its en-

closing interface is defined by a gate. Gate maps ports of the lower-level network to

ports of the enclosing interface in the higher-level network. An example of a network

hierarchy is given in Fig. 2.

At the bottom-most level, behavior of system components has to be specified explic-

itly. There is no direct visual notation for behavioral specification in VCD. Instead of

that, the formal semantic framework of so called VCD leaves is defined. It is called be-

havioral layer. The behavioral layer is based on the semantic model given by the notion

of input/output labeled transition system (LTS) with sets of input and output actions

taken as labels. This allows any language with semantics defined in the domain of LTS

to be used for behavioral specification of system components. This property makes

VCD heterogeneous also at the behavioral layer. Heterogeneity at this level is achieved

with respect to the set of semantically compatible, but notationally different languages,

which can be incorporated to VCD for the purpose of behavioral description. As exam-

ples of supported languages variants of Statecharts or Petri-Nets can be mentioned.

Semantics of VCD is based on a state transition model. By traversing the network hi-

erarchy, it relies on a formal mechanism of combining component state transition mod-

els into one resulting state transition model of the top-most network. This is done with

respect to the communication relationships specified by buses. Semantics of a particular

bus class represents behavior of a specific communication media.

4



3 Syntax and Semantics of VCD

In this section, the formal syntax of VCD is defined and its semantics given.

3.1 Syntax

VCD networks are formally represented as VCD terms. Before capturing them formally

we will build some basic notation.

3.1.1 Ports and Interfaces

The most basic elements of the coordination layer are interfaces with ports. We fix W a

countable set of write ports and R a countable set of read ports. Interface I is defined as a

pair consisting of a finite set of input ports and a finite set of output ports — I = 〈W,R〉,
W ⊆ W , R ⊆ R, W ∩ R = ∅. We mark projections IW = W the write-interface, IR = R the

read-interface, respectively.

3.1.2 Buses and Bus Classes

The key construct of the coordination layer is bus. As it has been mentioned in the previ-

ous section, buses represent coordination mechanisms. Particular types of coordination

mechanisms are represented as bus classes, which are formally defined as input/output

labeled transition systems (I/O LTS).

Definition 3.1. Bus class B is a tuple 〈Q, T, q0〉 where

• Q is a finite set of states,

• q0 ∈ Q an initial state,

• T ⊆ Q× 2W × 2R ×Q a (countable) transition relation.

Any bus class can be instantiated as a particular bus and used for specification of

concrete connections among components in a network. The bus interface is determined

by the set of links which connect the bus to the ports of surrounding components. The

finiteness of the bus interface puts a finite bound to the transition relation of a bus in-

stance. Formal definition of bus instance, given by its interface and its class, is the

following.

5



C2
inout

C1
in out

oB1B2C3
ib

a

lower−level network gate

Figure 2: Network hierarchy

Definition 3.2. Bus instance B of a bus class B is a tuple B = 〈I,B〉, where I is an interface

and B a bus class.

The interface of the bus instance B will be denoted as I(B).

3.1.3 Gates, Networks and Leaves

Now we are going to define terms which formally represent VCD network diagrams. In

the network depicted in Fig. 2 there are dashed lines which connect ports of subsystem

interfaces to ports of the surrounding network interface. Later on in this subsection,

these dashed links will be formalized as the notion of gate.

Definition 3.3. A VCD term is:

1. VCD leaf – behavioral model specified in any LTS-compatible language

2. VCD network N = 〈C̄, M̄, L〉, where

(a) C̄ = 〈C1, . . . , Cn〉 – vector of components

(b) ∀i : Ci = 〈Si, Ii, Gi〉

• Si . . . VCD term

• Ii . . . interface

• Gi . . . gate (see definition below)

(c) M̄ = 〈M1, . . . ,Mk〉 – vector of busses

(d) ∀j :Mj = 〈Ij,Bj〉

• Ij . . . interface of a busMj

• Bj . . . class of a busMj

6



(e) L ⊆ ({1, . . . , n}× (W ∪R))× ({1, . . . , k}× (W ∪R)) a set of links satisfying:

if 〈〈i, p1〉, 〈j, p2〉〉 ∈ L then:

i. p1 ∈ W ⇔ p2 ∈ R

ii. p1 ∈ IWi ∪ IRi
iii. p2 ∈ IW(Mj) ∪ IR(Mj)

iv. 〈〈l, p ′1〉, 〈j, p2〉〉 ∈ L ⇔ l = i∧ p ′1 = p1

v. 〈〈i, p1〉, 〈l, p ′2〉〉 ∈ L ⇔ l = j∧ p ′2 = p2

The set of all VCD terms will be denoted by S.

To formalize the feature of embedding a network into a higher-level network, we set

up a function εR (εW) which for any VCD network returns a set of all its read (write)

ports which have no connection to any bus. We call such ports free ports. To overcome

ambiguity of port names in the context of a network, we index all the component in-

terfaces in the scope of a particular network, and mark each port with the index of its

interface.

Definition 3.4. Let N = 〈C̄, M̄, L〉 be a network.

• εW(N) = {〈i,w〉 |w ∈ IWi ∧ ∀j,w ′ : 〈〈i,w〉, 〈j,w ′〉〉 /∈ L}

• εR(N) = {〈i, r〉 | r ∈ IRi ∧ ∀j, r ′ : 〈〈i, r〉, 〈j, r ′〉〉 /∈ L}

We define interface of network N as a pair I(N) = 〈εW(N), εR(N)〉.
Gate is formally defined as a partial function relating ports of a particular component

interface to free ports of the network which is nested in that interface. In the case when

the nested structure is a leaf, the gate maps interface ports to eponymous actions of the

nested process.

Definition 3.5. Let I be an interface.

1. Let S be a VCD leaf encapsulated in the interface I. Let ports(S) ⊆ W ∪R be a set of all

actions of S. We define a gate of the leaf S as the identity functionG : IW∪IR → ports(S),

∀x ∈ IW ∪ IR. G(x) = x.

2. Let S = 〈〈〈S1, I1, G1〉, ..., 〈Sn, In, Gn〉〉, 〈M1, ...,Mk〉, L〉 be a VCD network embedded in

interface I. We define a gate of the network S as the partial function G : IW ∪ IR → I(S)

satisfying:

• ∀w ∈ IW. G(w) = 〈i,w ′〉 ∧ 〈i,w ′〉 ∈ εW(S)

• ∀r ∈ IR. G(r) = 〈i, r ′〉 ∧ 〈i, r ′〉 ∈ εR(S)

7



3.2 Semantics

Before we present the formal semantics of VCD, we establish some notation. Let N be

a network containing just n > 0 components. Further let Ii be the interface of the ith

component of N and Γ ⊆ Ii some set of its ports. We will denote 〈i, Γ〉 = {〈i,w〉 |w ∈ Γ }
the set of ports indexed by the ith component in the network N. Note that if Γ = ∅ then

also 〈i, Γ〉 = ∅.

As a semantic domain a classL of input/output labeled transition systems (I/O LTS)

with sets of input and output actions in transition labels is used. Formally, the semantics

is defined as a mapping ψ : S → L which assigns an I/O LTS to each VCD term.

First of all, we define the notion of I/O LTS, which makes the semantic domain for

both the behavioral and the coordination layer.

Definition 3.6. An I/O LTS is a tuple 〈Q, T, q0〉 where

• Q is a finite set of states,

• q0 ∈ Q an initial state,

• T ⊆ Q× 2R × 2W ×Q a transition relation.

At the behavioral layer, the state transition semantics captures the dynamics of

atomic components. As VCD does not include any predefined syntactic construct for

the behavioral layer, this I/O LTS is the structure in which the formalisms for behav-

ioral description have to be encoded.

At the coordination layer, the semantics of a VCD network is defined as a global I/O

LTS which composes transitions of local I/O LTSs representing the semantics of network

components. This composition is realized with respect to the coordination model given

by the specific bus classes instantiated in the network. States of the global I/O LTS are

represented as network configurations. They respect the hierarchical structure of network

terms. The formal definition of a network configuration is the following.

Definition 3.7. Let N = 〈〈C1, ..., Cn〉, 〈M1, ...,Mk〉, L〉 be a network. We

define its configuration 〈s̄, b̄〉 as a vector of component and bus states

〈〈s1, ..., sn〉, 〈b1, ..., bn〉〉 where ∀i ∈ {1, ..., n}. si is a state of a component Ci and

∀j ∈ {1, ..., k}. bj is a state of a busMj.

A network configuration contains a vector of current states of components and a

vector of current states of buses. Such network configurations determine states of the

8



resulting I/O LTS. Transitions of the global I/O LTS are defined with respect to the

network hierarchy using Plotkin-style inference rules.

Formally, let N = 〈C̄, M̄, L〉 be a network term. We define its semantics ψ(N) as an

I/O LTS ψ(N) = 〈QN, TN,Q0N
〉 ∈ L in which:

• The set of states QN is given by all the network configurations.

• Q0N
is a set of initial states – these are the configurations in which at least one of

the substates is initial state of some network component.

• The transition relation TN ⊆ QN × 2N×R × 2N×W × QN is defined using Plotkin-

style inference rules, which combine transitions of subsystems with respect to the

network hierarchy.

SC:

Figure 3: Subsystem S embedded in a component C

In figure 3, there is a scheme how the component C is built by embedding of the

subsystem S into a component interface. The subsystem S can be either a leaf or a

network. Transition system of the component C is derived from the transition system

of the embedded subsystem with respect to ports in the interface. Actions of S which

have no ports in the interface of component C are hidden. The structure of the relevant

inference rule for the situation when S is a leaf is the following.

Let C = 〈S, I,G〉 be a component of the networkN. We suppose that TS is a transition

relation of the VCD term S. We define the transition relation TC ⊆ QC × 2IR × 2IW ×QC

of the network component C. It is derived from TS with respect to the interface I and

the gate G. There are two cases of which type the subsystem S can be. With respect to

this situation, the derivation of TC from TS is defined by one of the following inference

rules.

1. In the case when S is a VCD leave, S = 〈QS, TS, q0S
〉, the transition relation TC is

derived directly from TS as stated in the following rule:

TS : q Γ

−→
∆

q ′ (Γ ⊆ ports(S) ∩R and ∆ ⊆ ports(S) ∩W)

TC : q
IR∩Γ

−−→
IW∩∆

q ′

9



The only difference between TS and TC is that events of TS which are not in the

component interface are abstracted in TC by deleting them. Note that this rule also

lifts internal leaf q ∅
−→
∅
q ′ transitions to internal component transitions.

2. For S = 〈C̄, M̄, L〉 a network term we have the rule:

TS : 〈s̄, b̄〉 Γ×

−→
∆×
〈s̄ ′, b̄ ′〉

TC : 〈s̄, b̄〉 G−1(Γ×)

−−−−→
G−1(∆×)

〈s̄[i := q ′i], b̄〉

Notation Γ× ⊆ {〈i,w〉 | , i ∈ N , w ∈ W} denotes a set of indexed input events.

Similarly, ∆× ⊆ {〈i, r〉 | i ∈ N , r ∈ R} denotes a set of indexed output events.

G−1(Γ×) stands for the set of ports in network interface I with which events in

Γ× are related by the gate G. Analogously, similar notation is also used for the

indexed output events ∆×. s̄[i := q ′i] is the state vector which was constructed

from s̄ by replacing its ith component with the state q ′i.

In the same way like the previous rule, this rule also propagates the internal events

and abstracts from those events of the network S which are not assigned to any

port of the interface I.

Now we are going to establish inference rules which define the transition relation

TN of network configurations. It will be derived from the component transition rela-

tions TCi
and the transitions of buses. The key feature of these rules is building of net-

work configurations (global state vectors) from component configurations (local state

vectors).

N:
C1:

M1 Mm
Cn:

Figure 4: Components C1. . .Cn and busesM1. . .Mm embedded in a network N

In figure 4, there is a scheme of a network with n components arbitrarily connected

to m buses. For simplification, the links are not depicted. To define a global transition

system for the network N, transition systems of the components and buses have to be

composed. There are two different situations:

10



• Stand-alone components — their transitions are interleaved.

• Components connected to buses — their transitions are interleaved or synchro-

nized w.r.t. semantics of instantiated bus classes.

To resolve the first situation, we add to TN all the component transitions which are

totally independent of any bus interconnections. The following rule defines interleaving

behavior of components in the network N.

3.
TCi

: s̄[i] Γ

−→
∆

q ′i 〈i, Γ〉 ⊆ εR(N), 〈i, ∆〉 ⊆ εW(N)

TN : 〈s̄, b̄〉 〈i,Γ〉
−→
〈i,∆〉

〈s̄[i := q ′i], b̄〉

Notation s̄[i] denotes the state configuration of the ith component of N. Note that

internal component events are lifted by this rule too.

Finally, we are approaching to the last inference rule, which is the most complex one.

It puts together transitions of buses and transitions of components and evaluates their

relationships given by the network links. According to the evaluated result it can then

coordinate some components by firing their transitions synchronously with transitions

of some buses. Before we will define such a coordination rule, we have to look deeper

into the structure of the network.

Let N = 〈〈C1, ..., Cn〉, 〈M1, ...,Mm〉, L〉 be a network for some m,n ∈ N . With re-

spect to the link relation L some strongly connected blocks of components may be dis-

tinguished in the network. For each such a block of components we will define a syn-

chronizing coordination rule. From the semantical point of view, any such a separated

block of components can internally synchronize while different blocks put together may

only mutually interleave. In other words, these blocks are the maximal groups of com-

ponents with potential synchronous behavior.

To capture the partitioning idea formally, we define a relation R,

R ⊆ {1, ..., n}× {1, ..., n}:

〈i, j〉 ∈ R df⇔ i = j∨ ∃k ∈ {1, ...,m}, pi ∈ Ii, pk ∈ I(Mk), pj ∈ Ij.
〈〈i, pi〉, 〈k, pk〉〉 ∈ L∧ 〈〈j, pj〉, 〈k, pk〉〉 ∈ L

It is worth noting that R is an equivalence. We will note {1, ..., n}|R ⊆ 2{1,...,n} set of all

classes of equivalence over the set of component indexes {1, ..., n}.

LetΩ ∈ {1, ..., n}|R . We will denoteΩ ′ ⊆ {1, ...,m} a set of indexes of buses which are

connected to components indexed byΩ. Precisely,

Ω ′ = {i ∈ {1, ...,m} |∃k ∈ Ω,pk ∈ Ik, pi ∈ I(Mi). 〈〈k, pk〉, 〈i, pi〉〉 ∈ L}.

11



Now let q ≡ 〈s̄, b̄〉 be an actual configuration of network N. We define sets ETΩ(q)

and ETΩ ′(q) of all transitions starting in q and indexed by their component (respectively

bus) indexes:

ETΩ(q) = {〈i, t〉 | ∀i ∈ Ω. t ∈ TCi
, src(t) = s̄[i]}

ETΩ ′(q) = {〈i, t〉 | ∀i ∈ Ω ′, t ∈ T(Mi). src(t) = b̄[i]}

The notation src(t) denotes the source state of the transition t and T(Mi) denotes the

transition relation of the busMi.

To precisely characterize the set of all component transitions which can be syn-

chronized with buses resulting in the one global network transition, we have to put

some constraints on ETΩ(q) and ETΩ ′(q). Firstly, we require that for each source state

only one transition is included. Formally, we say ETΩ(q) is consistent if and only if

∀i, j, t, t ′. 〈i, t〉 ∈ ETΩ(q) ∧ 〈j, t ′〉 ∈ ETΩ(q) ⇒ i 6= j.

Further we define a triggering relation among component and bus transitions of a

particular partition of current network configuration. Firstly we extract some sets of

events from the sets of component (bus) transitions ETΩ(q) and ETΩ ′(q). In the follow-

ing definitions, the notations ∆(t) and Γ(t) denote all the output (input) events which

occur in the label of the transition t.

• E∆(Ω) = {〈i,w〉 | ∃〈i, t〉 ∈ ETΩ(q).w ∈ ∆(t) ∧ 〈i,w〉 ∈ εW(N)}

• EΓ (Ω) = {〈i, r〉 | ∃〈i, t〉 ∈ ETΩ(q).r ∈ Γ(t) ∧ 〈i, r〉 ∈ εR(N)}

• F∆(Ω) = {〈j,w ′〉 | ∃i ∈ Ω,w ∈ W, 〈i, t〉 ∈ ETΩ(q). 〈〈i,w〉, 〈j,w ′〉〉 ∈ L
∧w ∈ ∆(t)}

• FΓ (Ω) = {〈j, r ′〉 | ∃i ∈ Γ, r ∈ R, 〈i, t〉 ∈ ETΩ(q). 〈〈i, r〉, 〈j, r ′〉〉 ∈ L
∧r ∈ Γ(t)}

• A∆(Ω ′) = {〈i,w〉 | ∃〈i, t〉 ∈ ETΩ ′(q). w ∈ ∆(t)}

• AΓ (Ω
′) = {〈i,w〉 | ∃〈i, t〉 ∈ ETΩ ′(q). w ∈ Γ(t)}

We say ETΩ(q) triggers ETΩ ′(q) iff the following two conditions hold:

1. AΓ (Ω
′) = F∆(Ω)

2. A∆(Ω ′) = FΓ (Ω)

12



For each partitionΩwe now define the final coordination rule:

4.
ETΩ(〈s̄, b̄〉) and ETΩ ′(〈s̄, b̄〉) consistent, ETΩ(〈s̄, b̄〉) triggers ETΩ ′(〈s̄, b̄〉)

TN : 〈s̄, b̄〉 EΓ (Ω)

−−→
E∆(Ω)

〈s̄ ′, b̄ ′〉

where:

s̄ ′[i] =s ′i, if ∃t ∈ TCi
. t ∈ ETΩ(〈s̄, b̄〉) so that trg(t) = s ′i

s̄[i], otherwise

b̄ ′[i] =b ′i, if ∃t ∈ T(Mi). t ∈ ETΩ ′(〈s̄, b̄〉) so that trg(t) = b ′i

b̄[i], otherwise

The notation trg(t) denotes the target state of the transition t.

4 Behavioral Equivalence of VCD Specifications and

Architectural Compatibility

In the last section the notion of VCD terms was defined and its semantics was given in

structural operational manner. In this section, observational equivalence relation on the

set of VCD terms is defined. Finally, the notion of architectural compatibility of VCD

specifications is established.

4.1 Weak bisimulation

At first, we define the notion of weak bisimulation equivalence on states of VCD leaves.

Afterwards, we will extend it to deal with VCD network terms.

Note that according to the semantics of VCD components IOLTSs can perform inter-

nal transitions in the form
∅
−→
∅

. These transitions can appear as consequences of several

situations. Firstly, they can be a result of network level synchronization. Secondly, they

can be implicit in behavior of VCD leaves. Lastly, they can appear in consequence of so

called hiding when the network or a VCD leaf is inserted into an interface which does

not include ports for all events contained in subsystem’s transitions. To refine the notion

of equivalence to be insensitive to this kind of events we define the weak (observational)

bisimulation equivalence.

Definition 4.1. Let 〈Q, T, q〉 be a configuration of an IOLTS. Further let t ∈ (2R × 2W)∗,

t = 〈Γ1, ∆1〉〈Γ2, ∆2〉 · · · 〈Γn, ∆n〉, n ≥ 0 be sequence of read/write event sets of some trace such

13



that ∃q1, ..., qn ∈ Q.q
Γ1−→
∆1
q1

Γ2−→
∆2
· · ·

Γn−→
∆n
qn. To shorten our notation we denote this situation

simply as q t→ qn.

1. We define t̂ ∈ (2R\{∅}×2W\{∅})∗ a trace sequence taken from t by deleting all occurrences

of subsequences of the form 〈∅, ∅〉 occurring at any position of the trace t.

2. Let t̂ ∈ (2R \ {∅} × 2W \ {∅})∗. We write q t⇒ q ′ if there exists t ′ such that q t ′→ q ′ and

t = t̂ ′. We call the transition t⇒ the weak transition.

In the following definition we use the notation 〈Q, T, q1〉 to represent a configuration

of an IOLTS which is currently in the state q1. Respective VCD leave term can be taken

then as a special case of this notation when the term represents an initial configuration

of the IOLTS.

Now we define the weak bisimulation equivalence for configurations of VCD leaves.

Definition 4.2. Let 〈Q1, T1, q1〉 and 〈Q2, T2, q2〉 be VCD leaves. We say they are weakly

(observationally) bisimilar (〈Q1, T1, q1〉 ≈ 〈Q2, T2, q2〉) if and only if there exists a relation

R ⊆ Q1 ×Q2 such that (q1, q2) ∈ R satisfying:

if (q1, q2) ∈ R then:

1. q1

Γ

−→
∆
q ′1 ∈ T1 ⇒ ∃q ′2. q2

t̂⇒ q ′2 ∈ T2 and (q ′1, q
′
2) ∈ R

2. q2

Γ

−→
∆
q ′2 ∈ T2 ⇒ ∃q ′1. q1

t̂⇒ q ′1 ∈ T1 and (q ′1, q
′
2) ∈ R where t = 〈Γ, ∆〉.

We aim to extend the definition of weak bisimulation equivalence to network terms.

Recall from the last section that the transition relation over network terms expects in-

dexed sets of input and output events. The following definition extends the notion of

weak transition to deal with indexed input and output event sets.

Definition 4.3. Let 〈Q, T, q〉 be a configuration of an IOLTS. Further let t ∈ ((N × 2R) ×
(N × 2W))∗, t = 〈Γ×1 , ∆×1 〉〈Γ×2 , ∆×2 〉 · · · 〈Γ×n , ∆×n〉, n ≥ 0 be sequence of read/write event sets of

some trace such that ∃q1, ..., qn ∈ Q.q
Γ×
1−→

∆×
1

q1

Γ×
2−→

∆×
2

· · ·
Γ×n−→
∆×

n
qn. To shorten our notation we denote

this situation simply as q t→ qn.

1. We define t̂ ∈ ((N ×2R \{∅})×(N ×2W \{∅}))∗ a trace sequence taken from t by deleting

all occurrences of subsequences of the form 〈∅, ∅〉 occurring at any position of the trace t.

2. Let t̂ ∈ ((N × 2R \ {∅})× (N × 2W \ {∅}))∗. We write q t⇒ q ′ if there exists t ′ such that

q
t ′→ q ′ and t = t̂ ′.

14



Finally, we extend the definition of weak bisimulation equivalence to the set of net-

work configurations.

Definition 4.4. Let 〈s̄, b̄〉 = 〈〈s1, ..., sn〉, 〈b1, ..., bm〉〉 and 〈s̄ ′, b̄ ′〉 = 〈〈s ′1, ..., s ′n ′〉,
〈b ′1, ..., b ′m ′〉〉 be network configurations, where m,m ′, n, n ′ ≥ 1. We say they are (weakly)

bisimilar (〈s̄, b̄〉 ≈ 〈s̄ ′, b̄ ′〉) if and only if there exists a relation R ⊆ ((S1 × ...× Sn)× (M1 ×
...×Mm))× ((S ′1 × ...× S ′n ′)× (M ′

1 × ...×M ′
m ′)) such that (〈s̄, b̄〉, 〈s̄ ′, b̄ ′〉) ∈ R satisfying:

if (q1, q2) ∈ R then:

1. q1

Γ×

−→
∆× q

′
1 ∈ T1 ⇒ ∃q ′2. q2

t̂⇒ q ′2 ∈ T2 and (q ′1, q
′
2) ∈ R

2. q2

Γ×

−→
∆× q

′
2 ∈ T2 ⇒ ∃q ′1. q1

t̂⇒ q ′1 ∈ T1 and (q ′1, q
′
2) ∈ R where t = 〈Γ×, ∆×〉.

To set up a congruence based on the weak bisimulation, we have to slightly modify

the definition of weak bisimulation to establish an observational congruence.

Definition 4.5. Let 〈Q1, T1, q1〉 and 〈Q2, T2, q2〉 be VCD leaves. We say they are weakly

(observationally) congruent (〈Q1, T1, q1〉 ≈C 〈Q2, T2, q2〉) if and only if there exists a relation

R ⊆ Q1 ×Q2 so that (q1, q2) ∈ R and satisfying:

if (q1, q2) ∈ R then:

1. q1

Γ

−→
∆
q ′1 ∈ T1 ⇒ ∃q ′2. q2

t⇒ q ′2 ∈ T2 and q ′1 ≈ q ′2

2. q2

Γ

−→
∆
q ′2 ∈ T2 ⇒ ∃q ′1. q1

t⇒ q ′1 ∈ T1 and q ′1 ≈ q ′2) where t = 〈Γ, ∆〉.

The observational congruence can be extended to network terms in the same way

like the weak bisimulation.

Now we can state a theorem concerning the required congruence property for our

newly setup equivalence.

Theorem 4.6. Let N = 〈〈C1, ..., Ci, ..., Cn〉, 〈M1, ...,Mm〉, L〉 and N ′ = 〈〈C1, ..., C
′
i, ..., Cn〉,

〈M1, ...,Mm〉, L〉 be VCD network terms which differs only in the ith component. Further

let Si and S ′i be arbitrary VCD terms for some 0 < i ≤ n, satisfying Ci = 〈Si, Ii, Gi〉 and

C ′i = 〈S ′i, Ii, Gi〉 for some interface Ii and gate Gi. Then the following holds:

If Si ≈C S
′
i then also N ≈C N

′.

Proof. By induction w.r.t. structure of configurations of VCD terms.

We assume Si ≈C S
′
i.

Let qN = 〈s̄, b̄〉 be an arbitrary configuration of network N. There are several possi-

bilities for the transition qN

Γ×

−→
∆× q

′
N for some Γ ⊂ R, ∆ ⊂ W .

15



1. qN = 〈〈s1, ..., sj, ..., sn〉, 〈b1, ..., bm〉〉
q ′N = 〈〈s1, ..., s ′j, ..., sn〉, 〈b1, ..., bm〉〉, where 0 < j ≤ n and j 6= i

The only way in which this network transition could happen is the inference rule

(3):

TCj
: s̄[j] Γ

−→
∆

q ′j 〈j, Γ〉 ⊆ εR(N), 〈j, ∆〉 ⊆ εW(N)

TN : qN
〈j,Γ〉
−→
〈j,∆〉

〈s̄[j := q ′j], b̄〉

Due to fact that Cj is a component contained also in the network N ′, the same

transition is enabled also in the configuration qN ′ of the network N ′:

TCj
: s̄[j] Γ

−→
∆

q ′j 〈j, Γ〉 ⊆ εR(N), 〈j, ∆〉 ⊆ εW(N)

TN ′ : qN ′
〈j,Γ〉
−→
〈j,∆〉

〈s̄[j := q ′j], b̄〉

In consequence, both configurations qN and qN ′ lead by the transition
Γ×

−→
∆× to the

structurally simpler resulting network configurations q ′N, q ′N ′ . Applying the in-

duction assumption, we have q ′N ≈ q ′N ′ .

2. qN = 〈〈s1, ..., si, ..., sn〉, 〈b1, ..., bm〉〉
q ′N = 〈〈s1, ..., s ′i, ..., sn〉, 〈b1, ..., bm〉〉

Analogously to the previous situation, the inference rule (3) is the only one which

could cause the transition from qN to q ′N.

TCi
: s̄[i] Γ

−→
∆

q ′i 〈i, Γ〉 ⊆ εR(N), 〈i, ∆〉 ⊆ εW(N)

TN : qN
〈i,Γ〉
−→
〈i,∆〉

〈s̄[i := q ′i], b̄〉

In contrary to the previous case, N differs from N ′ just in the ith component in

which the investigated transition takes place. We have to evolve this transition

with respect to one of the inference rules (1) or (2). It depends on the form of the

Si term, which one has to be chosen.

Suppose Si is a leaf. Then the following rule is applied:

TSi
: qSi

Γ

−→
∆

q ′Si
(Γ ⊆ ports(Si) ∩R and ∆ ⊆ ports(Si) ∩W)

TCi
: qCi

IR∩Γ

−−→
IW∩∆

q ′Ci

16



We know that Si ≈C S
′
i. In consequence, there exists a transition qS ′

i

t̂⇒ q ′S ′
i
, t =

〈Γ, ∆〉 such that q ′S ′
i
≈ q ′Si

. The following rule can be applied now to infer a weak

transition of the component C ′i:

TS ′
i
: qS ′

i

t̂⇒q ′S ′
i

TC ′
i
: qC ′

i
t̂ ′⇒q ′C ′

i

where t ′ = 〈IR ∩ Γ, IW ∩ ∆〉. Note that both components Ci and C ′i have the same

interface I.

Now the following weak transition of the network configuration qN ′ can be in-

ferred:

TC ′
i
: s̄[i] t̂ ′⇒q ′i 〈i, Γ〉 ⊆ εR(N), 〈i, ∆〉 ⊆ εW(N)

TN ′ : qN ′ t̂ ′′⇒〈s̄[i := q ′i], b̄〉

where t ′′ = 〈〈i, IR ∩ Γ〉, 〈i, IW ∩ ∆〉〉.

3. qN = 〈〈s1, ..., si, ..., sn〉, 〈b1, ..., bm〉〉
q ′N = 〈〈s ′1, ..., s ′i, ..., s ′n〉, 〈b ′1, ..., b ′m〉〉, where 0 < j ≤ n

This case deal with the synchronization transition. The only possible way how it

could be inferred is with respect to the rule (4):

ETΩ(〈s̄, b̄〉) and ETΩ ′(〈s̄, b̄〉) consistent, ETΩ(〈s̄, b̄〉) triggers ETΩ ′(〈s̄, b̄〉)
TN : 〈s̄, b̄〉 EΓ (Ω)

−−→
E∆(Ω)

〈s̄ ′, b̄ ′〉

There exist several cases how the ith component can influence the synchroniza-

tion.

(a) If i /∈ Ω then there is no influence and the network N ′ can do just the same

transitions as the network N from the current configuration qN. Hence, the

result is trivial.

(b) If i ∈ Ω then the transition of component Ci has influence on the synchro-

nization. Let qCi

Γ

−→
∆
q ′Ci

be such a transition. The only way how it could be

inferred is application of the rule (1) or (2) similarly as in the previous case

(for presentation here we choose the situation of a leaf component form):

TSi
: qSi

Γ

−→
∆

q ′Si
(Γ ⊆ ports(Si) ∩R and ∆ ⊆ ports(Si) ∩W)

TCi
: qCi

IR∩Γ

−−→
IW∩∆

q ′Ci

17



We know Si ≈C S
′
i. It implies that there exists a transition q ′S ′

i

t̂⇒ q ′S ′
i
, t = 〈Γ, ∆〉

such that q ′S ′
i
≈ q ′Si

. The following scheme1 can be applied now to infer a

weak transition of the component C ′i:

TS ′
i
: qS ′

i

t̂⇒q ′S ′
i

TC ′
i
: qC ′

i
t̂ ′⇒q ′C ′

i

where t ′ = 〈IR ∩ Γ, IW ∩ ∆〉.

In consequence, the component C ′i is capable of firing a transition with iden-

tical label sets as the transition of the component Ci which influences the

synchronization of a network cluster Ω. This fact implies the required result

that networkN ′ can fire from its current configuration qN ′ the same synchro-

nization transition as the network N from its current configuration qN.

Analogously the symmetric case can be proved to fulfill all the requirements of

bisimulation.

We defined the notion of weak bisimulation equivalence inspired by the classical

work of [13] and we customized it to the setting of VCD terms. In the next subsection,

the notion of weak bisimulation equivalence will be used as a base for establishing a

framework for checking of architectural compatibility of VCD specifications.

4.2 Architectural compatibility in VCD

In Wright [1], the notion of so called architectural compatibility was established. The

question stated there is to ensure formally if a component can safely communicate

through a particular connector.

In the setting of VCD diagrams we take this notion in the way of mutual compatibil-

ity of components and bus instances in VCD networks. For a particular network we say

that it satisfies the property of architectural compatibility if each pair of a component

and a bus instance in the network is compatible. Compatibility of a pair of a component

and a bus instance is ensured if all possible behavior of a bus instance which is responsi-

ble for communication with a component is equivalent to the communication behavior

of that component.
1This is not a correct rule of VCD semantics, but a shorten form representing a sequence of VCD rules

with respect to decomposition of ⇒-transitions.

18



N:
Ci:

Mj

Figure 5: Scheme of compatibility of a component and a bus instance pair

Formally we define compatibility of a component and a bus instance using the no-

tion of weak bisimulation. In Fig. 5 there is a scheme of a network in which we are

interested in compatibility of one of its components (Ci = 〈Si, Ii, Gi〉) with one of its bus

instances (Mj = 〈I,B〉, for some bus class B). We suppose that the component Ci has

interface Ii = 〈Wi, Ri〉, Wi ⊂ W and Ri ⊂ R. Further we suppose that there is some

nonempty set P ⊆ Wi ∪ Ri of ports for which there exist links to a bus instance Mj (so

that also P ⊆ IW(Mj) ∪ IR(Mj)).

It is worth noting that the bus instance Mj is semantically represented as an IOLTS.

In consequence, the notion of weak bisimulation equivalence can be reasonably estab-

lished between this IOLTS and an IOLTS Si which represents the semantics of a compo-

nent Ci.

To take only the relevant ports (the set P) into account, we create an abstract compo-

nent C ′i of a component Ci in the following manner.

C ′i := 〈Si, P,G
′
i〉

where

• G ′
i(x) = Gi(x), if x ∈ P

• G ′
i(x) =⊥, otherwise

Similar abstraction has to be applied to the bus instance Mj = 〈Ij,B〉. The construc-

tion of this abstraction is based on the idea of hiding of all irrelevant transitions of the

underlying IOLTS. Formally we define the abstract bus instanceM ′
j as follows.

Let Lj = 〈Q, T, q0〉 be the finite state IOLTS which represents the bus instance Mj.

We define its abstraction by hiding from its transitions the events which are out of the

scope of the set of ports P.

L ′j := 〈Q, T ′, q0〉

where T ′ is derived from T according in terms of the following schema:

19



outReceiver
in

outReceiver
in

in
out

Sender BUF

Figure 6: Example of a concrete VCD network

•
T : q ∆

−→
Γ

q ′

T ′ : q
PW∩∆

−→
PR∩Γ

q ′

To complete setting of preconditions for definition of the notion of compatibility we

have to recall that the semantic function ψ, which has been defined in the section 3.2,

returns an IOLTS for any VCD term.

Finally, we say that a component Ci is architecturally compatible with a bus instance

Mj iff ψ(C ′i) ≈ L ′j.

5 An Example of Architectural Specification in VCD

In this section we will demonstrate on a very simple example how the VCD formal-

ism, especially the concept of bus classes, can be used for specification of a distributed

software architecture.

In distributed software architectures, components of systems interact most typically

in asynchronous way. One of the coordination mechanisms which captures this flavor of

interaction is asynchronous message passing. In figure 6 there is a simple VCD network

which specifies a distributed system with three components. It can be taken as a part

of the specification of some communication protocol. There are one sender and two

receiver components in the system. The intended behavior of the sender is to pass the

output information to the communication media and continue some inner computation.

On the other side, the behavior of any receiver is to take the information from the media

asynchronously with computations of the sender.

To model this kind of interaction in the VCD framework, we establish a class Bamp

of asynchronous message passing buses. It can be formally defined as the I/O LTS

Bamp = 〈Q, T, q0〉 where:

• Q = {qw |w ∈ W} ∪ q0

20



out/−

−/in1

−/in2

BUF

Figure 7: Instance of asynchronous message-passing bus class

• T is defined by disjunction of the following expressions:

1. ∀w ∈ W. 〈q0, {w}, ∅, qw〉 ∈ T

2. ∀qx ∈ Q. 〈qx, ∅, {x}, q0〉 ∈ T

3. ∀qx ∈ Q. 〈qx, ∅, ∅, qx〉 ∈ T

The first expression defines the reaction of the bus to incoming write-actions. In

the second expression, the interaction with receiver components is solved. The last ex-

pression adds the empty self-transitions, which allow the interactions to be potentially

asynchronous.

The countable transition relation, which is the part of the bus class defined above,

is made finite by the process of instantiation. In the example depicted in figure 6, the

bus class Bamp is instantiated and placed in the context of three components. Thus, the

number of transitions is bounded by the number of links which interconnect the bus

with the surrounding components. In figure 7, there is the resulting transition system

which represents this bus instance.

More complex types of bus classes modeling both synchronous and asynchronous

coordination models can be defined following the scenario presented above. Together

with the possibility of instancing different bus classes in the context of one particular

network, this example demonstrates the heterogeneity of the VCD coordination layer.

Applying the notion of architectural compatibility, we can check whether the system

is locally deadlock free with respect to the interaction of a particular component with

the bus instance it is connected to. In the example of the specification of ABP protocol,

it can be checked, that the component Sender and each of the Receiver components is

compatible with the bus instance BUF.

21



Figure 8: Main window of VCD editor

6 Tool support

We are currently implementing a prototype of an multiplatform editor for VCD dia-

grams. It is being implemented in Java. In fig. 8 there is a screenshot of the editor. The

key features of the actual version of this editor are the following:

• Support for well arranged graphical specification of hierarchy of VCD networks.

This is achieved by the notion of so called tree explorer, in which the hierarchy of

networks can be easily viewed and managed.

• Support for checking of correctness of network dependencies at syntactic level.

The editor contains a list of input and output ports of each network in the hierar-

chy and gives the user a help to bind the right subsystem ports to the higher ports

in the network hierarchy.

• Reusing of already defined VCD networks. Together with architectural compati-

bility checking it will allow to easily define new VCD models by composing com-

ponents which were already defined.

22



The actual version of the software is only a prototype which supports editing of the

VCD syntax together with checking of syntactic correctness. We are currently working

on implementation of the semantics defined in this paper.

7 Conclusions and Future Work

In this paper we have presented the formalism VCD for hierarchical specification of

heterogeneous system architectures. The key concept of the language are buses which

represent coordination models used in system architectures.

We see the main contributions of our work in three ways. First of all, the component-

based character of VCD together with its hierarchical structure based on precise oper-

ational semantics allows to join the traditional design methods with the formal meth-

ods known from the theory of process algebras (e.g., refinement, equivalence or model

checking [5]). On the other hand, the both syntactical and semantical separation of mod-

eling the coordination aspects from modeling the behavioral aspects makes it possible

to define a static communication infrastructure of a system independently of modeling

the behavioral parts (the exogenous model [3]). Finally, heterogeneity supported in both

behavioral and coordination layers of the language allows not only mixing of various

coordination models in one specification, but also using of different models for behav-

ioral description of components. For example, it is possible to put components defined

as Statecharts together with components defined as Petri Nets and specify coordination

relations among them using the constructs of the VCD coordination layer.

In our future work, we would like to add the typed value-passing support to VCD.

We also aim to make a precise analysis of relations of our language with other for-

malisms, especially with process algebras. We would like to bring the notion of equiv-

alences known from process algebraic theories and adapt them to VCD. In the future

work on tool support, we aim to connect the editor of VCD with the distributed verifi-

cation environment DiVinE [15].

23



References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol., 6(3):213–249, 1997.

[2] D. Antoš, O. Fučík, and J. Novotný. Project of IPv6 Router with FPGA Hardware

Accelerator. In Proceeding of 13th International Conference on Field-Programmable Logic

and Applications, volume 2778, pages 964–967. LNCS, Springer-Verlag, 2003.

[3] P. Ciancarini. Coordination Models and Languages as Software Integrators. ACM

Computing Surveys, 28(2):300, 1996.

[4] R. Cleaveland, X. Du, and S. A. Smolka. GCCS: A Graphical Coordination Lan-

guage for System Specification. In Proceedings of COORD’00. LNCS, Springer Ver-

lag, 2000.

[5] Orna Grumberg Edmund M. Clarke and Doron A. Peled. Model Checking. Cam-

bridge : MIT Press, 1999.

[6] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Technical report,

The Weizmann Institute, 1987.

[7] D. Harel and H. Kugler. The Rhapsody Semantics of Statecharts (or, On the Ex-

ecutable Core of the UML). In Proc. of 3rd Int. Workshop on Integration of Software

Specification Techniques for Applications in Engineering, volume 3147, pages 325–354.

LNCS, Springer-Verlag, 2004.

[8] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and All That

Stuff. Technical Report MSC00-16, Weizman Institute of Science, 2000.

[9] J. Holeček Jan, T. Kratochvíla, V. Řehák, D. Šafránek, and P. Šimecek. How to

Formalize FPGA Hardware Design. Technical Report 4/2004, CESNET z.s.p.o.,

2004.

[10] S. Leue. Methods and Semantics for Telecommunications Systems Engineering. PhD

thesis, University of Berne, 1994.

[11] J. Magee and J. Kramer. Dynamic Structure in Software Architectures. SIGSOFT

Softw. Eng. Notes, 21(6):3–14, 1996.

24



[12] A. Maggiolo-Schettini, A. Peron, and S. Tini. A Comparison of Statecharts Step

Semantics. Theoretical Computer Science, 290, 2003.

[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] OMG. Unified Modeling Language. Version 2.0. OMG, 2003.

[15] ParaDiSe Lab, Masaryk University Brno. DiVinE project home page, 2004.

[16] F. Plášil, D. Bálek, and R. Janeček. SOFA/DCUP: Architecture for Component Trad-

ing and Dynamic Updating. In Proceedings of the International Conference on Config-

urable Distributed Systems, page 43. IEEE Computer Society, 1998.

[17] A. Ray and R. Cleaveland. Architectural Interaction Diagrams: AIDs for System

Modeling. In Proc. of ICSE 2003. IEEE, 2003.

[18] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstrac-

tions for Software Architecture and Tools to Support Them. IEEE Trans. Softw. Eng.,

21(4):314–335, 1995.

[19] Michael von der Beeck. Formalization of UML-Statecharts. In Proceedings of UML

2001, LNCS. Springer-Verlag, 2001.

[20] D. Šafránek. SGCCS: A Graphical Language for Real-Time Coordination. In Pro-

ceedings of FOCLASA’02, volume 68 of ENTCS. Elsevier Science, 2002.

25


	Introduction
	Background and Related Work

	Overview of VCD
	Syntax and Semantics of VCD
	Syntax
	Ports and Interfaces
	Buses and Bus Classes
	Gates, Networks and Leaves

	Semantics

	Behavioral Equivalence of VCD Specifications andArchitectural Compatibility
	Weak bisimulation
	Architectural compatibility in VCD

	An Example of Architectural Specification in VCD
	Tool support
	Conclusions and Future Work

