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Abstract

We propose a parallel distributed memory on-the-fly algorithm for enumerative LTL

model checking. The algorithm is designed for network of workstations commu-

nicating via MPI. The detection of cycles (faulty runs) effectively employs the so

called back-level edges. In particular, a parallel level synchronized breadth first

search of the graph is performed to discover all back-level edges and for each level

the back-level edges are checked in parallel by a nested search procedure to confirm

or refute the presence of a cycle. Several optimizations of the basic algorithm are

presented and advantages and drawbacks of their application to distributed LTL

model-checking are discussed. Experimental evaluation of the algorithm is pre-

sented.
�Research supported by the Grant Agency of Czech Republic grant No. 201/03/0509
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1 Introduction

With the increase in complexity of computer systems, it becomes important to develop

formal methods for ensuring their quality. Various techniques for automated and semi-

automated analysis and verification of computer systems are routinely used in software

engineering practice. In particular, model checking has become a very practical tech-

nique due to its push-button character.

Model checking is a fully automated formal technique for the verification of concur-

rent software. It is based on representation of the system being analyzed as a (finite

state) transition system (Kripke model), while system requirements are typically ex-

pressed as properties in temporal logics. Deciding whether a system satisfies a given

property amounts to checking if the corresponding temporal formula is true in the

Kripke model.

Although model checking has been applied fairly successfully to verification of sev-

eral real life systems, its applicability to a wider class of practical systems has been

hampered by the state explosion problem (i.e. the enormous increase in the size of the

state space).

The use of distributed memory and/or parallel processing to combat the state explo-

sion problem gained interest in recent years. For large industrial models, the state space

does not completely fit into the main memory of a computer and hence model checking

algorithm becomes very slow as soon as the memory is exhausted and system starts

swapping. A possible approach to dealing with these practical limitations is to increase

the computational power (especially random access memory) by building a powerful

parallel computer as a network (cluster) of workstations. Individual workstations com-

municate through message passing interface. From outside a cluster appears as a single

parallel computer with high computing power and huge amount of memory.

In this paper we present a novel distributed memory approach to explicit-state (enu-

merative) model checking for linear temporal logic (LTL). LTL is a major logic used in

formal verification known for very efficient sequential solution based on automata [13]

and successful implementation within several verification tools.

The best sequential algorithm for the LTL model checking problem is the Nested

DFS. Unfortunately, it employs the crucial DFS postorder to perform the cycle detec-

tion which is not maintained any more if the algorithm is adopted to the distributed

memory parallel environment. Since all the solutions suggested up to now build on the
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Nested DFS, they all have to cope with this problem. While one algorithmic solution

significantly restricts the partition function used for dividing the Kripke model among

participating workstations (let alone the token based solution that prevent parallelism

at all), the other one maintains complex additional data structure.

We propose a completely different algorithmic solution that avoids the problematic

DFS postorder but employs so called back-level edges to perform the cycle detection. In

short, a back-level edge is any transition in the graph that does not increase the breadth

first search distance from the initial state. Note that any cycle in the graph has to con-

tain at least one back-level edge. Obviously, the breadth first search distances can be

computed by a breadth first search (BFS) which can be, contrary to the DFS, reasonably

parallelized. The idea of the new algorithm is to perform a distributed memory level-

synchronized breadth first search of the graph to discover all the back-level edges and

to check each back-level edge for being a part of a cycle.

The rest of the paper is organized as follows. Section 2 gives a brief recapitulation of

the LTL model-checking problem including the explanation of so called state explosion

problem and partial order reduction technique. Section 3 introduces the main idea of the

parallel algorithm. Focus is on the distributed discovering of back-level edges. Section 4

presents a technique for detection of cycles. Section 5 elaborates various optimizations

of the cycle detection algorithm. Section 6 describes how to modify the algorithm to

detect accepting cycles. Section 7 adds counterexample generation capability to the

algorithm. Section 8 combines the algorithm with the partial order reduction technique.

Section 11 focuses on the complexity issues. Section 9 summarizes case-studies and

experiments we have conducted and finally, in Section 10 we relate our approach to

the other work on distributed LTL model-checking, give some conclusions and outline

future work.

2 LTL Model Checking

Formulas of a linear temporal logic are made of atomic propositions and boolean and

temporal operators. The basic commonly used LTL temporal operators are G – globally,

F – eventually, and U – until. For example, the formula GF(x > 1) means that at every

moment (G) during a system execution there is a future moment (F) in the execution

such that (x > 1) holds. Each LTL formula thus defines a set of executions. A set of

executions can be equivalently represented as a Büchi automaton. A Büchi automaton is a

3



finite automaton accepting infinite words by passing through an accepting state infinitely

many times. Therefore, a language (of infinite words) accepted by a Büchi automaton

is non-empty (the automaton accepts at least one infinite word) if and only if there is

at least one cycle containing an accepting state reachable from the initial state in its

underlying graph.

In the automata-theoretic approach to LTL model-checking [13] the set of all system

executions is represented as a Büchi automaton as well. A system meets a property if

and only if all possible executions of the system satisfy the property given by an LTL

formula. The decision procedure is as follows. First, the verified formula is negated

and a Büchi automaton representing all invalid (property-breaking) executions is built.

It is called a negative claim automaton. Then a new Büchi automaton corresponding to

the synchronous product of the Büchi automaton representing the system behavior and

the negative claim autmaton is constructed. Obviously, the language of the new product

automaton is empty if and only if the system does not contain an invalid execution.

Hence, the LTL model-checking problem is reduced to the emptiness problem for Büchi

automata.

A straightforward approach to solving the emptiness problem is to decompose the

underlying graph into strongly connected components (SCCs) which can be done in

time linear in the size of the graph using Tarjan’s algorithm [12]. However, construct-

ing SCCs is not memory efficient since the states in the components must be stored

explicitly during the procedure. Courcoubetis et al. [7] have proposed an elegant way

to avoid the explicit computation of SCCs. The idea is to use a nested depth first search –

Nested DFS to find accepting states that are reachable from themselves (to compute ac-

cepting cycles). The first search (primary) is used to search for reachable accepting states

while the second one (nested), initiated for each discovered accepting state, tries to de-

tect reachability of the accepting state from itself proving thus existence of an accepting

cycle. Each individual nested search need not visit states already visited by previous

nested searches resulting thus in linear time complexity, however, to ensure the correct-

ness of the algorithm the nested searches have to be performed in the DFS postorder.

This makes the algorithm “inherently sequential”, hence unsuitable for usage in parallel

and distributed environment.

Finally, we briefly recall one of the other successful techniques for fighting the state

space explosion problem. It is called partial order reduction [5]. This technique in-

volves verification of representative executions only instead of the whole system be-
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havior. These representatives are chosen somehow automatically during the traversal

of the graph by exploring only a subset of all possible successors of a state. Moreover,

to ensure the correctness of the reduction at least one state on every cycle has to be fully

exapnded.

Since LTL model checking can be reduced to the detection of (accepting) cycles in the

graph, we sometimes use graph notation. In particular, we do not distinguish between

states and vertices and between edges and transitions. We use the notions as it suits us.

3 Back-level edge concept

Before presenting the distributed memory algorithm for back-level edge detection we

give the formal definition of the back-level edge concept and introduce some notation.

Definition 3.1. Let G = (V;E) be a graph with the source vertex s and let u 2 V be its

vertex. By d(u) we denote the distance of the vertex u from the source vertex s. Let � =

s=s0; s1; s2; : : : ; sn-1; sn=u be the shortest path from s to u, then d(u) = n. The set of vertices

with the same distance is called level, the set fu 2 V j d(u) = kg) is denoted by level(k).

Definition 3.2. Let G = (V;E) be a graph with the source vertex s. An edge (u; v) 2 E is

called a back-level edge if and only if d(u) � d(v). The vertex u is called start vertex of the

back-level edge, v is called destination vertex.

The relation between cycles in a graph and the back-level edges is stated in the fol-

lowing lemmas.

Lemma 3.3. Any cycle in the graph G contains at least one back-level edge.

Proof: Let � = v0; : : : ; vn; n � 0 be a cycle in the graph G such that it does not contain

a back-level edge. As the length of the path is at least one we have d(v0) < d(vn). But

v0 = vn (the path is a cycle), hence d(v0) = d(vn) which is a contradiction. �

Lemma 3.4. For each cycle � = v0; : : : ; vn; n � 0 there exists j : 0 � j � n such that

d(vj) � d(vi) for all i : 0 � i � n. Furthermore, any edge in the cycle � emanating from the

state vj is a back-level edge. Denote d(vj) by maxdepth(�).

Proof: A cycle is a finite path, hence the existence of the maximal value maxdepth(�)

for vertices in the cycle is obvious. Consider an edge (v; u) of the cycle � such that

d(v) = maxdepth (�). Suppose (v; u) is not a back-level edge. Then d(v) < d(u) and
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maxdepth (�) < d(u). This is in contradiction with the maximality of maxdepth (�).

�

Note that a cycle can contain several back-level edges and also more than one back-

level edge of “maximal depth”.

In a sequential case the back-level edges can be easily identified by a slightly modi-

fied breadth first search of the graph. Breadth-first search is a simple algorithm that for

a given graph G = (V;E) and a source vertex s 2 V systematically explores the edges of

G to discover every vertex reachable from s. It expands the frontier between discovered

and undiscovered vertices uniformly across the breadth of the graph (hence the name).

An important well known property of a breadth first search is given in the following

lemma.

Lemma 3.5. Let G = (V;E) be a graph with the initial state s and let u 2 V be its state. If a

breadth first search algorithm expands a state u whose distance is d(u) then all the states v such

that d(v) < d(u) have already been expanded by the algorithm.

The modification of the breadth first search we employ to detect back-level edges is

actually known as a single source shortest path algorithm [6]. The SSSP algorithm is able

to compute the distance as defined above for all the reachable states in such a way that

the distance of a state is computed and assigned to the state before the state is expanded

and edges emanating from it explored. This is important since we intend to build an

algorithm that works on-the-fly. To distinguish states that have already been expanded

(and so the distance have been assigned to them) from the other ones the algorithm

maintains the set of visited states.

Having computed the distances for already explored states we can easily check each

edge for being a back-level edge immediately during its exploration. In particular, the

three following cases are possible (suppose that the explored edge is (u; v))

� d(v) is not computed yet — (u; v) is not a back-level edge,

� d(v) is already computed but d(v) > d(u) — (u; v) is not a back-level edge,

� d(v) is already computed and d(v) � d(u) — (u; v) is a back-level edge.

The pseudo-code of the sequential algorithm for detection of back-level edges is

given in Figure 1.
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1 proc BL-EDGE-DETECTION

2 u := Finit()

3 d(u) := 0

4 Queue := ;

5 enqueue(Queue; u)

6 Visited= fug

7 while (Queue 6= ;) do

8 u := dequeue(queue)

9 foreach v 2 Fsuccs(u) do

10 if v 62 Visited

11 then d(v) = d(u) + 1

12 enqueue(Queue; v)

13 Visited := Visited[ fvg

14 else if d(v) � d(u)

15 then Print(�Back-level edge (u,v)�)

16 fi

17 fi

18 od

19 od

20 end

Figure 1: Sequential algorithm for back-level edge detection

If we want to perform the algorithm BL-EDGE-DETECTION in a distributed memory

environment, several additional facts have to be taken into account. The graph is dis-

tributed among workstations in the standard way. Thus each workstation explores only

states that it owns, i.e. those successors of a currently explored state that are local are

enqueued to the local queue and those successors that are remote are sent to the queues

of relevant workstations. The main problem of such a distributed memory algorithm

is that the “breadth first search frontier” can get split, i.e. there may be a state that is

expanded before all the states with lower distance, which obviously breaks the property

given in Lemma 3.5. This is due to different speeds of participating workstations and

delays caused by the network communication. As a result some back-level edges might

remain undetected and vice versa. We can illustrate the case on the graph in Figure 2.
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Figure 2: Wrongly detected Back-Level Edges

Suppose that the graph is partitioned between workstations I and II and that A is the

initial state of the graph. Due to the network communication delay we can be almost

sure that the state G will be visited by the distributed memory breadth first search algo-

rithm through the path A;B;C;D;G (performed entirely on the workstation I) before it

is encountered through the path A; F;G whose part is computed on the workstation II.

Hence, the distance assigned to the state G will be greater than the distance assigned to

the state F and the back-level edge (F;G) will not be revealed. Moreover, the distance

assigned to the state H will be greater than the distance assigned to the state E which

means that the edge (H; E) will be erroneously reported as a back-level edge.

Several solutions are at hand. The common one exploits the fact that the algorithm is

able to detect a state that is assigned an invalid distance value. In particular, whenever

the difference between the distance of the source state of an edge and the distance of

the destination state of the edge is greater than one then the distance associated to the

destination state is invalid. Obviously, it can be improved to the value of the distance of

the source state plus one. To compute the distances correctly it suffices to initiate a new

exploration at the source state of the edge and let it propagate the new improved dis-

tances to all relevant successors. However, this requires reexploration of some states. To

show this let us consider again the situation given in Figure 2. The distance associated

to the state F is 1 but the distance associated to the state G is 4 when the edge (F;G) is

explored. It must be the case that the distance associated to the state G is invalid. There-

fore, it is fixed to keep the value of 2 and reexploration of states below G is initiated. In

our case, it fixes only the distance associated to the state H.

If we use this solution, we can be sure that the correct distance value will be eventu-

ally assigned to all the states, but unfortunately the set of back-level edges as generated

by such an algorithm is quite useless. To get a meaningful set of back-level edges we
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can postpone searching for back-level edges until the graph is completely explored and

distances are fixed. However, this is not a good solution because it requires two ex-

plorations of the graph and prevents on-the-fly detection of back-level edges (and so

cycles). Hence, for our distributed memory algorithm we chose a different solution that

requires some synchronization but does not suffer from the mentioned disadvantages.

The chosen solution builds on preventing the breadth first search frontier from get-

ting split. In particular, every workstation in the distributed memory algorithm orga-

nizes states from its part of the frontier into two queues, the current level queue (CLQ)

and the next level queue (NLQ). See Figure 3 for graphical illustration of the levels.

Each workstation processes states from the current level queue only. Note that parallel

processing of states from current level queues of different workstations does not break

the property given in Lemma 3.5. When a workstation generate a new state, the state

is inserted in the next level queue. Naturally, the remote states are not stored in local

next level queue but they are sent to the owning workstations at first and stored to the

next level queue there. Workstations participating the distributed memory computa-

tion synchronize (by calling SYNCHRONIZE()) as soon as all their current level queues

are empty. After the synchronization each workstation moves all the states from the

next level queue to the current level queue (hence the next level queue is cleared) and

continues with the exploration of states from the current level queue.

Note that it is difficult in the distributed computation to compute the distance for

a newly generated state if its relevant predecessor is not local to the same worksta-

tion. In such a case the workstation cannot access the distance value of the predecessor.

However, if we perform level synchronized breadth first search it is easier to count the

number of synchronizations to obtain the distance of a state than to compute it from the
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1 proc DISTRIBUTED-MEMORY-BL-EDGE-DETECTION(WorkstationId)

2 CLQ = ;; NLQ = ;; Visited = ;; Level = 0

3 initstate := Finit(); finished := false

4 if (WorkstationId= Owner(initstate))

5 then enqueue(NLQ ; (-; initstate))

6 fi

7 while (:finished) do

8 swap(NLQ ;CLQ)

9 while (CLQ 6= ;) do

10 (p; v) := dequeue(CLQ)

11 if (v 62 Visited)

12 then Visited := Visited [ fvg

13 d(v) := Level ;

14 foreach t 2 Fsuccs(v) do

15 if (Owner(t) 6= WorkstationId )

16 then SendTo(Owner(t); enqueue(NLQ ; (v; t)))

17 else enqueue(NLQ ; (v; t))

18 fi

19 od

20 else if (d(v) < Level )

21 then Print (“Back-level edge (p,v)”)

22 fi

23 fi

24 od

25 Synchronize(finished := (all NLQ = ;))

26 Level = Level + 1

27 od

28 end

Figure 4: Distributed memory algorithm for back-level edge detection
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distance of its predecessor. The distributed memory algorithm uses the variable Level

to count the synchronizations and to set the distances.

Similarly, it is difficult to report a back-level edge if the distributed memory compu-

tation is considered. A back-level edge is detected and reported when its destination

state is reached. Alas, the source state of the edge may be remote to the workstation

that detected the back-level edge and thus locally inaccessible. To solve this problem

we have to modify slightly the contents of the curent level and next level queues. While

in the sequential algorithm the objects enqueued to the queue representing the frontier

are single states, in the distributed memory algorithm the objects enqueued to both cur-

rent level and next level queues are the explored edges. Each edge is actually a pair of

states that contains the state to be expanded and its predecessor. Naturally, this also

requires to enlarge remote state network messages to bear not only the state to be ex-

panded but also the corresponding predecessor. The pseudo-code of the distributed

memory back-level edge detection algorithm is given in Figure 4.

Finally, we note that the distributed computation is terminated if no workstation

has a state in its next level queue after the synchronization. This can be detected by ex-

changing several additional messages among the workstations when the workstations

are synchronized. However, we do not give these in the pseudo-code but suppose the

procedure Synchronize() to perform this check and to set the variable finished prop-

erly.

Lemma 3.6. Let G = (V;E) be a graph with an initial state s. The algorithm given in Figure 4

if executed on the graph computes the correct distances d(u) for all the reachable states u 2 V.

Proof: Let us denote by d̂(u) the real distance of a state u from the initial state and by

d(u) the distance as computed by the algorithm. Note that once the algorithm assigns to

a state u some value d(u), then d(u) is never changed. This is because u gets into the set

Visited which prevents u from being reexpanded and thus d(u) from being changed.

Also note that the variable Level changes its value monotonically.

In the following we use the mathematical induction with respect to the real distance

of a state from the initial state to show that each state u is assigned the correct distances

d(u). As the base of the induction let us consider the initial state s. We can easily

conclude from the pseudo-code that d(s) = 0 when the algorihm finishes and so that

d(s) = d̂(s). Now let us suppose that for all states uwith d̂(u) � n we have d(u) = d̂(u)

and let us consider a state v such that d̂(v) = n+ 1.
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At first we will show that the state v cannot be expanded before the variable Level

reaches the value of n+ 1. If it expanded before then there would be an immediate pre-

decessor t of the state v such that d(t) < (n+1)-1 = n = d̂(t) which is in contradiction

to the induction assumption. Hence, we have that v is at first expanded when Level

reaches n + 1. Now we will show that d(v) = n + 1.

Since d̂(v) = n + 1 we know that there is at least one immediate predecessors p of

the state v that have d̂(p) = n. From the induction assumption we know that d(p) = n

and thus we can conclude that there was at least one edge (p; v) inserted in the next

level queue on the workstation owning v when the variable Level equaled to n. Since

we know that the state v could not be expanded earlier we can conclude that it will be

expanded after the next synchronization, i.e. when the variable Level equals to n + 1.

From which we have that d(v) = n+ 1. �

Lemma 3.7. Let G be a graph with an initial state. If the algorithm given in Figure 4 is executed

on the graph then it reports exactly all the back-level edges of the graph.

Proof: We can conclude from the pseudo-code of the algorithm and from Lemma 3.6

that when an edge (p; v) is extracted from the current level queue then d(p) = Level-1.

From the pseudo-code we can also see that a back-level edge is reported only if d(v) <

Level. Together we have that if the edge is reported then d(p) > d(v) - 1 which satisfy

the definition of the back-level edge.

It remains to show that if (p; v) is a back-level edge then it is reported by the algo-

rithm. At first we need to show that the state v has already been expanded when the

edge is dequeud from the current level queue. But this is obvious, because in the other

case the state v would be assigned distance d(v) = d(p) + 1, hence d(v) > d(p) which is

due to Lemma 3.6 in the contradiction to the assupmtion that (p; v) is a back-level edge.

When the edge (p; v) is extracted from the current level queue we know that d(p) =

Level - 1. Since we have that d(v) � d(p), we also have that d(v) < Level. The state v

has alredy been explored before the edge (p; v) is dequeued and thus it is present in the

set Visited. These facts are sufficient to conclude from the pseudo-code that the edge

(p; v) will be reported by the algorithm. �

Lemma 3.8. Let G be a finite graph with an initial state. If the algorithm given in Figure 4 is

executed on the graph then it finishes eventually.
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Proof: We can see from the pseudo-code of the algorithm that it stores all the states

that has already been expanded to the set Visisted. Once a state is inserted to this set

it is never expanded again. Hence, from the finiteness of the graph we can be sure

that there are only finitely many states enqueued to a queue NLQ, thus there are only

finitely many states that are dequeued from a queue CLQ from which we can conclude

that the inner while cycle finishes everytime. Since the contents of the queues NLQ and

CLQ is swapped always after the queue CLQ is emptied and a state may be inserted

in a queue NLQ only finitely many times it is obvious that there is an iteration of the

outer while cycle after which all the local queues NLQ empty. This is detected by the

Synchronized() procedure and the outer while cycle is terminated. Hence, the algo-

rithm finishes eventually. �

4 Cycle detection

To complete the distributed memory algorithm we have to describe how we employ

the back-level edges for cycle detection. In general, a sufficient technique to decide

about the presence of a cycle in a graph is to check each state of the graph for its self-

reachability, i.e. the reachability of the state from itself. This can be done by performing

as many search procedures as there are the states in the graph (each procedure checking

one state). Obviously, such an approach is too expensive to be used for cycle detection

in practice. However, the idea of testing self-reachability is not bad. (It is used by the

standard Nested DFS algorithm as well.) The main problem of this approach is that

there have to be too many search procedures executed in order to detect a cycle. In the

algorithm suggested in this section we build on the approach of self-reachability tests

but we fairly limit the number of the search procedures that are needed to reveal a cycle

in the graph.

Actually, to reveal a cycle it is enough to perform self-reachability test for only one

state on a cycle. We showed in Lemma 3.3 that every cycle contains at least one back-

level edge, hence if the self-reachability test is performed for all the states that are source

states of at least one back-level edge, then at least one state from a cycle is checked and

so there is no cycle that could be missed.

In Lemma 3.4 we showed another interesting fact we use for cycle detection. The

Lemma says that any cycle contains such a back-level edge that all the states on the

cycle have the distance less or equal to the distance of the source state of the back-level
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edge. Hence, when testing a source state of some back-level edge for self-reachability,

we can restrict the search to explore only the states that have distances less or equal to

the distance of the source state of the back-level edge. If the tested source state is on

a cycle but it is not in the maximal depth of the cycle then the cycle is not detected.

However, in such a case the cycle is detected by the search procedure that checks for

self-reachability the source state of a back-level edge that lies in the maximal depth of

the cycle.

Now we can describe the basic version of the distributed memory BFS based cycle detec-

tion algorithm. The algorithm performs alternately two phases. The task of the first phase

(henceforth called primary) is to reveal all back-level edges while the task of the second

phase (henceforth called nested) is to test each discovered back-level edge for being a

part of a cycle. The primary phase employs the level synchronized breadth first search

of the graph as it was described in the previous subsection. As soon as the primary

search synchronizes after expanding all states on a current level the primary phase of

the algorithm is interrupted and the nested phase begins. In particular, self-reachability

testing procedures (henceforth nested procedures) are initiated for source states of all the

back-level edges that were discovered during the exploration of the current level. Let us

call the back-level edges discovered during the exploration of the current level current

back-level edges. Note that the source states of current back-level edges are on the level

that precedes the current level, hence their disatence from the initial state of the graph is

Level-1. The goal of each nested procedure is to hit the source state of a back-level edge

from which it was initiated (so called target). If at least one nested procedure succeeds

then the presence of a cycle is ensured and the algorithm is terminated. Otherwise,

the nested phase of the algorithm finishes without discovering a cycle and the primary

search procedure continues with the exploration of the next level. Since there are many

nested procedures performed concurrently, the target of each nested procedure cannot

be maintained in a single variable (as in the case of the Nested DFS algorithm) but has

to be propagated by the nested procedures. Note that contrary to the standard breadth

first search states are not marked as visited by nested procedures and thus may be reex-

panded many times.

The pseudo-code of the BFS based cycle detection algorithm is given in Figure 5.

The algorithm consists of two procedures, both of them are performed on all partici-

pating workstations. The procedure BFS-BASED-CYCLE-DETECTION corresponds to the

primary phase of the algorithm, hence it performs the back-level edge detection. Obvi-
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1 proc BFS-BASED-CYCLE-DETECTION(WorkstationId )

2 CLQ := NLQ := BLQ := Visited := ;; Level := 0

3 initstate := Finit(); finished := false

4 if (WorkstationId = Owner(initstate))

5 then enqueue(NLQ ; (-; initstate))

6 fi

7 while (:finished ) do

8 swap(NLQ ;CLQ)

9 while (CLQ 6= ;) do

10 (p; v) := dequeue(CLQ)

11 if (v 62 Visited)

12 then Visited := Visited [ fvg; d (v) := Level

13 foreach t 2 Fsuccs(v) do

14 if (Owner(t) 6= WorkstationId )

15 then SendTo(Owner(t); enqueue(NLQ ; (v; t)))

16 else enqueue(NLQ ; (v; t))

17 fi

18 od

19 else if (d(v) < Level )

20 then enqueue(BLQ ; (p; v))

21 fi

22 fi

23 od

24 Synchronize(finished := (all NLQ = ;))

25 CHECK-BL-EDGES(WorkstationId )

26 Level = Level + 1

27 od

28 end
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1 proc CHECK-BL-EDGES(WorkstationId )

2 while (:Synchronize() _ BLQ 6= ;) do

3 if (BLQ 6= ;)

4 then (target ; q) := dequeue(BLQ)

5 if d (q) < Level

6 then if (q = target ) then Report(“Cycle-Detected”)

7 fi

8 foreach t 2 Fsuccs(q) do

9 if (Owner(t) 6= WorkstationId )

10 then SendTo(Owner(t); enqueue(BLQ ; (target ; t)))

11 else enqueue(BLQ ; (target ; t))

12 fi

13 od

14 fi

15 fi

16 od

17 end

Figure 5: BFS based cycle detection algorithm
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ously, it is quite similar to the distributed memory back-level edge detection algorithm

given in Figure 4. The only difference is that instead of reporting the back-level edges

the procedure stores them in a local queue BLQ. Everytime a level of the graph is com-

pletely explored the workstations synchronize. Before proceeding to the next level all

the local procedures CHECK-BL-EDGES are initiated.

The procedures CHECK-BL-EDGES perform the nested phase of the algorithm, i.e.

they implement the nested searches for all the back-level edge source states revealed.

In general, each individual nested procedure needs to know two states to be able to

perform its task. These are the state to be expanded (q) and the state to be hit (target).

When a back-level edge that commences a new nested procedure is dequeued from

the queue BLQ the source state of the edge is considered to be the target of the nested

procedure while the destination state of the edge is the first state to be expanded.

Everytime a pair is dequeued from the queue the procedure CHECK-BL-EDGES pro-

ceeds as follows. At first it checks whether q (i.e. the state to be expanded) is not below

the depth of the target. Note that in the distributed memory environment d(target)

may be generally inaccessible, hence the value of variable Level is used instead in the

test (recall that d(target) = Level- 1). If the test succeeds the state q is checked for be-

ing the target itself. If it is so the presence of a cycle is reported, otherwise the state q is

expanded and its successors (combined with the target to make the proper pairs) are in-

serted in the appropriate queues in accordance with the partition function. Note that all

the procedures CHECK-BL-EDGES terminate synchronized after all the pairs enqueued

in all local queues BLQ are processed.

In the following lemmas we prove the correctness of the algorithm given in Figure 5.

In particular we show that the algorithm reports cycle if and only if there is a cycle in

the examined graph and that the algorithm terminates. Note that if we speak about a

procedure BFS-BASED-CYCLE-DETECTION or CHECK-BL-EDGES we actually mean all

the local procedures performed on all participating workstations. Further we assume

for the needs of the proofs that the procedure Synchronize correctly implements a dis-

tributed termination detection algorithm.

Lemma 4.1. If there is a cycle in the examined graph then the algorithm finishes by reporting

the presence of a cycle.

Proof: The key observation we employ in the following is that all the queues BLQ are

“FI-FO” structure. Thus if a pair is inserted in the queue and the algorithm is not termi-

nated then the pair is also dequeued from the queue (processing of each pair is finite).
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Suppose there is a cycle in the graph. Let us consider only the cycles that have

the minimal maxdepth(�) among all the cycles in the graph. Let k be the distance, i.e.

k = maxdepth(�). From Lemma 3.4 we can conclude that each such a cycle contains at

least one back-level edge that emanates from the levelk. Furthermore, from Lemma 3.7

and the pseudo-code of the algorithm we can conclude that all these back-level edges

are enqueued in appropriate queue BLQ when Level equals to k+1 and the procedures

BFS-BASED-CYCLE-DETECTION synchronize.

Let � = p0; : : : ; pn be one of the cycles, hence p0 = pn and p0 is the source state of

the corresponding maximal depth back-level edge. We will show that if the algorithm is

not termianted then each pair (p0; pi) for 1 � i � n is inserted in a queue BLQ on some

workstation at least once. To show this we employ the mathematical induction. As for

the base case we have to show that (p0; p1) is inserted in the queue BLQ on workstation

owning the state p1, but this is done by the procedure BFS-BASED-CYCLE-DETECTION

because (p0; p1) is the back-level edge. So let us suppose that all the pairs (p0; pi) for

1 � i � j < nwere inserted in a queue BLQ at least once on at least one workstation. We

will show that then also the pair (p0; pj+1) had to be inserted in the queue on workstation

owning pj+1. However, this is clear. The pair (p0; pj) had to be dequeued from the

queue on the workstation owning pj and because d(pj) � k < Level, the state pj had

to be expanded. We can see from the pseudo-code of the procedure CHECK-BL-EDGES

that all the pairs for immediate successors of the state pj are inserted in an appropriate

queues BLQ, hence namely the pair (p0; pj+1). This completes the induction.

The algorithm does not finish until all pairs from queues BLQ are processed or a

Report function is called. If the report function is called then we are done because

the presence of a cycle is reported. Suppose the algorithm does not report the pres-

ence of a cycle (i.e. the algorithm finishes without reporting the presence of a cycle or

the algorithm cycles forever). But from the arguments above it follows that the pair

(p0; pn) = (p0; p0) is dequeued and processed by the procedure. In such a situation, we

have that d(p0) = k, k < Level, and p0 = p0 from which we can conclude (following the

pseudo-code) that the Report function is called. Hence we get a contradiction and the

lemma is proved. �

Lemma 4.2. If the algorithm reports the presence of a cycle then there is at least one cycle in the

examined graph.
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Proof: It is clear from the pseudo-code that if the algorithm finished and reported the

presence of a cycle then one of the procedures CHECK-BL-EDGES had to dequeue a pair

(p; p) from the corresponding queue BLQ. A pair (p; p) could be inserted in the queue

for two different reasons. If it was inserted in the queue by the procedure BFS-BASED-

CYCLE-DETECTION then (p; p) is a back-level edge in the examined graph. In such a

case the presence of a cycle in the graph is prooved.

Let us now suppose that (p; p) is not a back-level edge. This means that the pair

was inserted in the queue by a procedure CHECK-BL-EDGES when it processed an im-

mediate predecessor of the state p. Let us denote this predeccessor by p1. However,

this means that there was also a pair (p; p1) that was degueued by some procedure

CHECK-BL-EDGES from its queue BLQ. Again we can distinquish two cases: (p; p1) is a

back-level edge or it was inserted in the queue by a procedure CHECK-BL-EDGES when

it processed an immediate predecessor p2 of the state p1, i.e. when it processed the pair

(p; p2). We can continue in this manner and gradually generate immediate predeces-

sors p3; p4; ldots. However, all the procedures CHECK-BL-EDGES could have enqueued

only finitely many pairs in the queues BLQ since the beginning of the computation,

hence we have to reach such an immediate predeccessor pn that was enqueued in a

queue as a pair (p; pn) by a procedure BFS-BASED-CYCLE-DETECTION. Now it remains

to realize that the constructed path p; pn; pn-1; : : : ; p2; p1; p supports the presence of a

cycle in the examined graph. �

Lemma 4.3. If the examined graph is finite then the algorithm finishes eventually.

Proof: If there is a cycle in the examined graph then the algorithm finishes according to

the Lemma 4.1. It remains to show that the algorithm terminates also if there is no cycle

in the graph.

Let us suppose that any procedure CHECK-BL-EDGES initiated from any procedure

BFS-BASED-CYCLE-DETECTION finishes eventually. In such a case we can conclude that

the algorithm finishes eventually from Lemma 3.8. Thus we only need to prove that if

there is no cycle in the graph then any procedure CHECK-BL-EDGES finishes.

Since the procedure CHECK-BL-EDGES is called from the procedure BFS-BASED-

CYCLE-DETECTION we know that there are only finitely many pairs enqueued in the

queue BLQ when it is initiated. It is obvious that processing of a single pair finishes

(each state has only finitely many immediate successors), hence we only need to show

that a single pair is inserted in a queue BLQ only finitely many times. If we analyze the
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pseudo-code of the procedure we can see that a pair (u; v) can be inserted in a queue

BLQ only if there is a path from u to v. Moreover, if a pair (u; v) is inserted to the queue

due to a path from u to v it is never inserted to the queue due to the same path again.

Thus a pair (u; v) can be inserted in a queue BLQ at most as many times as there are

paths from u to v. Since we know that there are no cycles in the graph, we are done

because in such a case there are only finitely many paths between any two states of the

graph, hence there are only finitely many pairs inserted in the queue BLQ. Obviously,

these are all processed eventually which means that the procedure finishes. �

5 Improving the algorithm

When checking a state u for its self-reachability the corresponding nested procedure re-

visits every state v that is reachable from the state u but is not below the state u as many

times as there are different paths leading from u to v. Obviously, in such a case some

states may be revisited many times by the nested procedure. Obviously, this revisiting

makes the algorithm quite slow. Therefore, we suggest a modification of the procedure

CHECK-BL-EDGES that decreases the revisiting factor fairly.

At first we would like to eliminate the revisits of states made by a single nested

procedure. This is possible in the standard search approaches like breadth first search

or depth first search where the states that has already been expanded can be marked

as visited. So when a newly generated state should be expanded it is at first checked

whether it is marked as visited. If it is the case then the state has been expanded previ-

ously and so it need not be expanded again. This approach is used for example for the

nested procedure of the standard Nested DFS algorithm where it suffices to enrich each

state with a single bit to distinguish whether it has been expanded in the nested proce-

dure or not. However, in our algorithm there are many nested procedures performed

in parallel each having a different goal. Hence, if we wanted to use this approach, we

would have to maintain for each state as many differentiating bits as there are running

nested procedures. Obviously, this would be quite memory demanding since the num-

ber of running nested procedures cannot be reasonably bounded. As the memory is the

primary resource that is extended by employing the distributed memory environment,

we use slightly different technique to reduce the revisiting factor.

The technique we suggest has reasonable additional space requirements. However,

contrary to the approach described above it does not prevent revisiting completely. Its
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Figure 6: Repeated state expansions

basic idea is to replace the bundle of the distinguishing bits associated to each state by a

single nested procedure identifier. Note that each nested procedures can be easily iden-

tified by its target. In the identifier stored at the state we cannot obviously remember all

the nested procedures that has expanded a state but only one. In particular, we store the

identifier of the last nested procedure that expanded the state. So if a nested procedure

reaches a state such that the identifier stored at the state is the same as the identifier

of the procedure, then the procedure omits the expansion of the state. Hence, a nested

procedure is allowed to expand a state it has expanded previously only if the state was

expanded by another nested procedure in the meantime.

To illustrate the power of the presented optimization let us consider the graph a) in

Figure 6. It can be easily seen that the nested procedure initiated for the back-level edge

(A;B) will visit and expand the state G four times (along all the paths from B to G) if

the optimization is not considered. However, if it is considered then the state G will be

visited twice (from the states E and F) and expanded only once (when being visited for

the first time).

It is clear that the presented optimization is too weak to prevent revisits of such a

states that are alternately expanded by two or more nested procedures. In general, we

can say that the less nested procedures are performed in parallel the more powerfull the

technique is. Nevertheless, we would like also to reduce the state revisits that are made

by different nested procedures. To this end we suggest another optimization.

The idea of the optimization is quite simple: instead of storing the identifier of the

last nested procedure we store the identifier of the greatest nested procedure that has
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ever expanded the state. However, to be able to recognize the greatest nested procedure

identifier we need at first to define their ordering. We define it as follows (note that we

use square brackets to distinguish a nested procedure identifier from a single state):

[A] > [B] () d(A) > d(B) _ (d(A) = d(B) ^ A > B)

We can see that to order the identifiers of nested procedures that originate on different

levels we exploit the distances from the initial state as computed during the primary

phase of the algorithm. However, to order the identifiers of nested procedure originat-

ing on the same level we need to have an ordering on the states. Since there are no

restriction on this ordering, it can be defined easily. Technically, to order the states we

use the state corresponding bit vectors.

Having the ordering a nested procedure is allowed to expand (and thus proceed

through) a state either if the identifier of the nested procedure is greater than the iden-

tifier stored at the state or the state has not been expanded by a nested procedure at all

(the identifier stored at the state is undefined). Such an approach reduces the revisits

of states significantly, however, it breaks the cycle detection capability of the algorithm

as the nested procedure that should reveal a cycle may be stopped before it reaches its

target. This situation is illustrated on the graph b) in Figure 6. Let us suppose an or-

dering of state in which A > F. If the nested procedure [A] (the one corresponding to

the back-level edge (A;C) and thus having A as its target) reaches the state C before the

nested procedure [F] then the nested procedure [F] is stopped at the the state C because

the identifier stored at the state C is [A] and [A] > [F]. The nested procedure [A] con-

tinues through the states E; F; B at which identifiers [?]; [F]; [F], respectively, are stored.

And stops at the state C at which identifier [A] is stored (obviously [A] 6> [A]). Hence,

the cycle F; B; C; E; F remains undetected.

To address this problem we further change the identifier of each nested procedure

to be a couple [T;n], where T is the target of the procedure and n is the number of

current back-level edges the procedure has passed through. Note that the identification

of a nested procedure is dynamically modified as the procedure proceeds and passes

current back-level edges. Since we changed the identifiers of the nested procedures, we

need also to redefine the ordering. We do it as follows:

[A; x] > [B; y] () [A] > [B] _ ([A] = [B] ^ x > y):

Now the algorithm can detect a cycle in two different ways. A cycle can be detected

either by a nested procedure that hits its target or by a nested procedure whose number
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of passed current back-level edges exceeds the total number of current back-level edges.

Note that the latter case is possible only if there is a back-level edge that is a part of a

cycle.

To exemplify this optimization let us consider again the graph b) in Figure 6 and

an ordering of states such that A > F. There are two back-level edges emanating from

different source states and so there are two nested procedures initiated, namely [A; 0]

and [F; 0]. When they reach the state C they have both passed one current back-level

edge, hence they are identified as [A; 1] and [F; 1]. If the nested procedure [A; 1] reaches

the state C before the procedure [F; 1], the [F; 1] procedure is stopped at the state C. In

such a case the procedure [A; 1] continues in the exploration of the graph. When it visits

the state C for the second time, its identification is [A; 2], which is obviously greater then

[A; 1], and so the procedure is not stopped but continues through the state C again. It

goes through the states E and F and increases its number of passed current back-level

edges when it reaches the state B. At that moment the number of passed current back-

level edges by the procedure [A; 3] (originally initiated as [A; 0] at the state A) exceeds

the total number of current back-level edges (which is two) and the cycle is detected.

Note that the cycle was detected by a nested procedure that was initiated at a state that

is not a part of the cycle.

Finally, we suggest seemingly strange modification of the procedure CHECK-BL-

EDGES. In particular, we suggest not to use the “FI-FO” structure BLQ for the nested

procedures, but to use a different structure BBLQ into which items from the queue BLQ

are copied in a way described below. This modification forces the local processing of a

nested procedure to search the graph in a depth first manner, however the remote states

are standardly enqueued to the remote queues. In the case there is a cycle in the exam-

ined graph this optimization should help a nested procedure to discover a cycle faster

than if it used strictly breadth first search. Note that this modification cannot be applied

directly to the procedure CHECK-BL-EDGES without the optimizations suggested above

because it may result in a non-terminating procedure.

The pseudo-code of the improved version of the procedure CHECK-BL-EDGES

bears the name CHECK-BL-EDGES2 and is given in Figure 7. Contrary to the origi-

nal procedure the new version requires in addition to the workstation identification

(WorkstationId) also the number of current back-level edges (nmbrbl). The new pro-

cedure proceeds as follows. At first it dequeues all the pairs from the queue BLQ,

change them into quadruples and enqueue them into the queue BBLQ. Each quadru-
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1 proc CHECK-BL-EDGES2(WorkstationId ;nmbrbl )

2 BBLQ := ;;

3 while (BLQ 6= ;) do

4 (target ; q) := dequeue(BLQ)

5 enqueue(BBLQ ; (q;Level-1; target ; 0))

6 od

7 while (:Synchronized () _ BBLQ 6= ;) do

8 if (BBLQ 6= ;)

9 then (q;prelevel ; target ; bl ) := dequeue(BBLQ);

10 if d (q) < Level

11 then if (q = target ) then Report(“Cycle-Detected”) fi

12 if (prelevel = Level-1)

13 then bl := bl + 1

14 if (bl > nmbrbl )

15 then Report(“Cycle-Detected”)

16 fi

17 fi

18 if ((Level-1 > q:level) _ (Level-1 = q:level ^

19 (target > q:target _ (target = q:target ^ bl > q:bl ))))

20 then q:target := target

21 q:bl := bl ; q:level := Level-1

22 foreach t 2 Fsuccs(q) do

23 if (Owner(t) 6= WorkstationId )

24 then SendTo(Owner(t);

25 enqueue(BBLQ ; (t;d(q); target ; bl )))

26 else push (BBLQ ; (t;d(q); target ; bl ))

27 fi

28 od

29 fi

30 fi

31 fi

32 od

33 end

Figure 7: Improved procedure CHECK-BL-EDGES
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ple consists of a state to be explored (q), the distance of the immediate predeccessor of

the state to be explored (prelevel), the target of the nested procedure (target) and the

number of passed current back-level edges (bl). The variable prelevel is used to detect

whether the nested procedure passes through a current back-level edge. The meaning

of other variables should be already clear. When the queue BBLQ is ready, the pro-

cedure CHECK-BL-EDGES2 proceeeds similarly to the procedure CHECK-BL-EDGES. It

dequeues a quadruple from the queueBBLQ and proceeds the state to be expanded only

if it is not below the target. If q equals to the target a cycle can be reported (the first

way of cycle detection). Then the variable prelevel is checked whether it keeps the value

of Level- 1. If it is so then it means that the edge due to which the currently processed

quadruple was inserted in the queue is a current back-level edge. (We can conclude this

from the fact that the source state of the edge has the same distance from the initial state

as the target and the fact that the states below the target are not processed.) In such a

case the back-level edge counter is increased and then it is checked whether it overflows

the total number of current back-level edges on the examined level. If it does, a cycle is

reported (the second way of cycle detection). In the other case it is checked whether the

identification of the nested procedure is great enough to allow the procedure to expand

the state to be expanded. Note that q:target, q:bl are the values of target and bl of the

identifier stored at the state q. The value q:level is used to remember the distance of

the target of last nested procedure that expanded the state. Initially, the value of q:level

equals to -1. Hence, if a state is visited for the first time its expansion is guaranteed.

If the nested procedure is allowed to expand the state, the values of q:target, q:bl, and

q:level are properly updated, and the immediate successors of the state q are generated.

Local successors are pushed to the front of the queue BBLQ, while the remote ones are

enqueued to the corresponding queues on remote workstations. Note that the distance

of the state q (d(q)) is used in the produced quadruples in order to become the value of

the variable prelevel when a quadruple is dequeued.

It remains to say how to modify the BFS-BASED-CYCLE-DETECTION algorithm given

in Figure 5 to employ the new procedure CHECK-BL-EDGES2. The modification is quite

easy. Actually it suffice to call the procedure CHECK-BL-EDGES2 instead of the proce-

dure CHECK-BL-EDGES. Nevertheless, to be able to do so we need to know the num-

ber of current back-level edges (nmbrbl). We can get the number by counting up the

sizes of all queues BLQ. To do so we have to can insert a new call of the procedure

Synchronize() just before the place where the procedure CHECK-BL-EDGES2 is called.
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We can then employ this call of the procedure to get the value of nmbrbl in a simi-

lar way it is used to count the sizes of the queues NLQ in order to detect the end of

exploration of the graph.

Now we state and prove lemmas giving the correctness of the improved BFS-BASED-

CYCLE-DETECTION algorithm as given in Figures 5 and 7. At first we prove an auxiliary

Lemma.

Lemma 5.1. Let us assume that the procedures CHECK-BL-EDGES2 were initiated after the

procedures BFS-BASED-CYCLE-DETECTION synchronized on such a level that there is no cycle

in the graph such that the distances of all states on the cycle are less than Level - 1. Further,

let q0 = (q; prelevel; target; bl) be a quadruple that is dequeued from the queue BBLQ by the

procedure CHECK-BL-EDGES2 running on a participating workstation before the procedures

CHECK-BL-EDGES2 synchronize and the next level of the graph is explored. Let q1; q2; : : : ; qn

be the contents of the queue BBLQ immediately after a quadruple q0 was dequeued. Then either

the algorithm finishes by reporting the presence of a cycle before the quadruple q1 is dequeued

from the queue BBLQ or the procedure CHECK-BL-EDGES2 dequeues the qudruple q1 eventu-

ally.

Proof: It is obvious from the pseudo-code that the algorithm cannot terminate reporting

no presence of a cycle without dequeuing all the quadruples from the queue BBLQ on

the workstation. Hence, we only need to show that the procedure CHECK-BL-EDGES2

cannot cycle forever without dequeuing the quadruple q1. Let us suppose the contrary,

i.e. the procedure cycles forever without dequeuing the quadruple q1 from the queue

BBLQ.

We know that processing of each quadruple is finite (this is because any state has

only finitely many immediate successors). However, when a quadruple q is completely

processed and the next quadruple is going to be dequeued from the queue BBLQ it need

not be the quadruple that was just behind the quadruple q when the quadruple q was

dequeued. This is becasause some quadruples may be pushed to the front of the queue

when local successors of the state from the quadruple q were generated.

Let us denote by R the set of all quadruples that occur in the part of the queue BBLQ

that precedes the quadruple q1 during the execution of the algorithm. Note that there

are only finitely many different quadruples that may occur in R. This is because we

have only finitely many states in the graph (this limits q and target). The graph has

only finitely many levels (this limits prelevel) and no presence of a cycle is reported

(hence bl < nmbrbl).
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Since we know that processing of any quadruple is finite, the algorithm must de-

queue quadruples from the queue BBLQ continuously. We have only finitely many

different quadruples, hence there is at least one quadruple that is dequeued from the

queue BBLQ infinitely many times. Let I be the set of all quadruples that are inserted to

and dequeued from the queue BBLQ infinitely many times. Obviously, I � R.

Let p = (q 0; prelevel 0; target 0; bl 0) be a quadruple from I. Let us call descendants

of a quadruple p all the quadruples that are generated from the quadruple p or from

descendants of the quadruple p. We show that any quadruple that is (not necessarily

immediate) descendant of the quadruple p differs from p. This is because a descendant

of the quadruple p has to contain a state that is reachable from the state q0. So to be

the same as p it must be reached along a path from q 0 to q 0. Such a path is a cycle and

thus according to our assumptions it contains at least one state that has the distance

from the initial state equal to Level - 1. However, when the procedure CHECK-BL-

EDGES2 processes a quadruple containing successors of this state, it obviously increases

the value of bl. Note that the value of bl is never decreased, hence any descendant of

this quadruple must differ from the quadruple p.

Now we can define a partial ordering on I. If a; b 2 I and b is a (not necessarily

immediate) descendant of a, then a < b. Obviously, it cannot be that b < a at the same

time, otherwise a would be its own descendant which is not possible as we showed.

Hence, we can choose a minimal member in I. Let us denote this minimal member

by r. We know that r was inserted in R infinitely many times, but only as descendant

of finitely many quadruples that were processed only finitely many times. Obviously,

this is not possible and hence we get the needed contradiction. So if the algorithm is

not terminated by reporting the presence of a cycle, the procedure CHECK-BL-EDGES2

dequeues the quadruple q1 eventually. �

Lemma 5.2. If there is a cycle in the examined graph then the algorithm will finish by reporting

the presence of a cycle eventually.

Proof: Let us consider all the cycles �1; : : : ; �m such that they have the minimal maxi-

mal depth of a state on the cycle among all the cycles in the graph. Let k be the max-

imal distance of a state in such a cycle, i.e. k = maxdepth(�i) for some 1 � i � m.

From Lemma 3.4 we can conclude that each cycle contains at least one back-level edge

that emanates from the levelk. Furthermore, from Lemma 3.7 and the pseudo-code of

the algorithm we can conclude that all these back-level edges are enqueued in appro-
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priate queue BLQ when Level equals to k + 1 and the procedures BFS-BASED-CYCLE-

DETECTION synchronize. Let nmbrbl be the number of back-level edges enqueued in

all queues BLQ after the synchronization. Now let us suppose that the algorithm did

not finished or finished without reporting the presence of a cycle.

Let �x = p0; : : : ; pn be one of the cycles with minimal maximal depth of a state on

the cycle and let p0 = pn and p0 be the source state of the corresponding maximal depth

back-level edge. Furthermore, let us consider the greatest values target and bl (i.e. the

greatest nested procedure identification) stored at a state q of the cycle �x during the

execution of the procedure CHECK-BL-EDGES2 when Level = k + 1. Let us denote this

greatest nested procedure indentification by [T; b]. Note that if the procedure finishes

then the maximum obviously exists, if it cycles forever then from the pseudocode we

can see that the variable bl cannot overflow the value of nmbrbl, otherwise a cycle is

reported and the algorithm terminated. Hence, the value of bl is limited by nmbrbl.

Since there are only finitely many states in the examined graph the value of target can

be limited too and so the maximum exists.

Since (p0; p1) is a back-level edge that is enqueued to the queue BLQ on the

workstation owning the state p1 when the procedure CHECK-BL-EDGES2 is initiated

on the workstation we can easily conclude that there is a corresponding quadruple

(p1; Level-1; p0; 0) engueued to the queue BBLQ. By repeated application of Lemma 5.1

we know that either the algorithm terminated by reporting the presence of a cycle

(which is not possible according to our assumptions) or the quadruple is dequeued

eventually. In the latter case, we can be sure that the nested procedure identification

greater or equal to [p0; 0] is stored to at least one state on the cycle �x. Hence, we can

suppose in the following that T � p0.

At first let us suppose that T = p0. In such a case there is a greatest m such that

1 � m � n and [T; b] is stored at the state pm. This means that the state pm was expanded

when target = p0 and bl = b. If m = n then pm = pn = p0 = target. Hence, when the

corresponding quadruple pm was dequeued the algorithm must have been obviously

terminated and cycle reported. However, this is in contradiction with our assumption

and thus m < n. Since pm was expanded, obviously all immediate successors of the

state pm had to be generated and corresponding quadruples inserted in appropriate

queues. Again by repeated application of Lemma 5.1 we can be sure that either the

algorithm terminated by reporting the presence of a cycle (which is not possible) or the
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quadruple having the state pm+1 was dequeued eventually. Suppose now the situation

when the quadruple containing the successor pm+1 was dequeued.

Since d(pm+1) � d(p0) < Level we can be sure that the nested procedure was tested

whether it is allowed to expand the state pm+1. Obviously, the test had to succeed be-

cause [T; b] is the maximal nested procedure identification stored at a state in the cycle.

This means that the state pm+1 was expanded and so [T; b] was stored at the state pm+1.

Which is obviously in contradiction to the assumption that m is the maximal index of a

state on the cycle at which [T; b] is stored. Therefore, the case that T = p0 is not possible.

Now let us suppose that T > p0. Let us denote by S the set of all the states in the

cycle �x that have the same distance from the initial state of the graph as the state p0,

S = fpj0; : : : ; pjrg. Further, let us consider a state r 2 S such that [T; b] is stored at the

state. At first we show that there is at least one such state in the set S. Let us choose a

state pm on the cycle �x such that [T; b] is stored ot the state. If pm 2 S, we put r = pm,

otherwise there is a such a part of the cycle pm; : : : ; pm+h that pm; : : : ; pm+h-1 62 S and

pm+h 2 S. It must be the case that [T; b] is stored at all the states pm; : : : ; pm+h, otherwise

there is a state pz for m � z < m + h in the sequence whose immediate successor

have the stored nested procedure identification less than [T; b]. However, when the

state pz was expanded by the nested procedure, all the quadruples for its immediate

successors were enqueued to the appropriate queues BBLQ. According to Lemma 5.1

either the algorithm finished and reported the presence of a cycle or the quadruple

(pz+1; d(pz); T; b) was dequeued eventually. Since the nested procedure identification

stored at the state pz+1 has to be less then [T; b] the state pz+1 is expanded by the nested

procedure and so [T; b] is stored at the state pz+1 which is contradiction to choice of the

state pz. Thus we know that all the states pm; : : : ; pm+h have [T; b] stored at them and so

we can put r = pm+h, thus r 2 S.

Since [T; b] is stored at the state r, we know that r was expanded by the nested pro-

cedure [T; b] and so a quadruple (t; d(r); T; b) was inserted in some queue BBLQ for the

immediate successor t on the cycle �x. By Lemma 5.1 we know that either the algorithm

finished and reported the presence of a cycle, or the quadruple was dequeued eventu-

ally. In the latter case the variable prelevel was assigned the value Level - 1 and the

variable bl the value b. We can see from the pseudo-code that in such a case the variable

bl was increased before the state t was checked for being allowed to be expanded. In

such a case either the algorithm was terminated by reporting the presence of a cycle (if

bl > nmbrbl) or the test for beeing allowed to expand the state t succeeded ([T; b] was
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maximal). When the state t was expanded the identification [T; b+ 1] had to be stored

at the state t. However, this is in contradiction to the maximality of [T; b] and thus it is

not possible.

So in all cases we get a contradiction with our assumptions. Hence, if there is a cycle

in the examined graph, then the algorithm terminates by reporting the presence of a

cycle. �

Lemma 5.3. If the algorithm reports the presence of a cycle then there is at least one cycle in the

examined graph.

Proof: Suppose that the quadruple dequeued in the iteration in which the presence of a

cycle was reported is (q; prelevel; target; bl). At first we prove that if such a quadruple

is dequeued from a queue BBLQ then there is a path from the state target to the state

q in the examined graph. Such a quadruple can be inserted in the queue either due to

the fact that (target; q) is a current back-level edge that was dequeued from the queue

BLQ or due to the fact that there is an immediate predecessor p1 of the state q that was

expanded by a nested procedure. However, in the latter case there must be a quadru-

ple with the state p1 being its state to be expanded. Obviously, either (target; p1) is

a current back-level edge or there is an immediate predecessor p2 of the state p1 that

was expanded previously. We can continue in this manner and gradually generate im-

mediate predecessors p3; p4; : : :. However, all the procedures CHECK-BL-EDGES2 could

have inserted only finitely many quadruples in the queues BBLQ since the beginning of

the computation to the moment of dequeuing the quadruple (q; prelevel; target; bl),

hence we have to reach such an immediate predeccessor pn that was enqueued in

some queue due to a current back-level edge (target; pn). It is clear that the sequence

� = target=pn+1; pn; : : : ; p2; p1; p0=q is a path from the state target to the state q.

We can see from the pseudo-code that there are two reasons for which the algorithm

may report the presence of a cycle. In the case that q = target the cycle is supported

directly by the path �. In the other case (bl = nmbrbl + 1) we only need to realize that

there are nmbrbl + 1 states in the path � that have the same distance from the initial

state as the state target. Obviously, all the edges in the path � emanating from these

states have to be current back-level edges (no state with greater distance is allowed to

be processed). Since there are only nmbrbl current back-level edges there are at least

two states pj; pk in the path � from which the same back-level edge emanates. Since
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pj = pk, the path from the state pj to the state pk supports the presence of a cycle in the

examined graph. �

Lemma 5.4. If the examined graph is finite then the algorithm terminates.

Proof: The proof is basically the same as the proof of Lemma 3.8. So, if there is a cycle in

the examined graph then according Lemma 5.2 the algorithm terminates by reporting

the presence of a cycle. Thus we only show that the algorithm terminates if there is no

cycle in the graph. Let us suppose that every procedure CHECK-BL-EDGES2 initiated

from any procedure BFS-BASED-CYCLE-DETECTION finishes eventually. In such a case

we can conclude that the algorithm finishes eventually from Lemma 3.8. Hence, we

only need to prove that if there is no cycle in the graph then any procedure CHECK-

BL-EDGES2 finishes eventually. We prove this by showing that each quadruple can be

inserted in a queue BBLQ only finitely many times. Nevertheless, it can be easily fol-

lowed from the pseudo-code that a quadruple (q; prelevel; target; bl) can be inserted

in a queue BBLQ only if there is a path from the state target to the state q. Moreover, if

a quadruple is inserted in the queue due to a path it is never inserted in the queue again

due to the same path. Since we suppose that the graph contains no cycle, there are only

finitely many paths (each being finite) between any two states of the graph. This gives

us needed bound on the number of quadruple insertions in the queue. �

6 Accepting cycle detection

Unless we are under special circumstances, we cannot directly use the algorithm BFS-

BASED-CYCLE-DETECTION to detect the language emptiness of a Büchi automaton as

needed in order to do the LTL model checking. This is because the algorithm cannot

distinguish between accepting and non-accepting cycles. Nevertheless, if we exploit

the verified property to decompose the product automaton graph into components, we

can use the algorithm to perform a limited accepting cycle detection.

To be more precise the graph can be decomposed into components of the three fol-

lowing types: non-accepting, fully accepting, and partially accepting. A non-accepting

component contains no accepting states, a fully accepting component contains accept-

ing states only, and a partially accepting component contains both. If we want to detect

accepting cycles only, we need not search for cycles in the non-accepting components

31



and may use the normal cycle detection in the fully accepting components. (Note that

any cycle in a fully accepting component must be an accepting cycle.) Since the types of

components are completely determined by the verified property, which is quite small in

practice, we are able to precompute the decomposition of the product automaton graph

easily in advance. Naturally, we can use the algorithm BFS-BASED-CYCLE-DETECTION

for LTL model checking problem as it is if the examined product automaton graph is

made of non-accepting and fully accepting components only.

Moreover, if the algorithm BFS-BASED-CYCLE-DETECTION is used to reveal accept-

ing cycles in a product automaton graph, it can be further optimized. In particular, we

need not search for back-level edges and test back-level edges in non-accepting com-

ponnents. Obviously, a back-level edge whose source state or destination states is in a

non-accepting component cannot be a part of an accepting cycle.

Although in [4, 8] the authors argue that 95% of practically verified properties pro-

duce Büchi automata without partially accepting components, we found the capability

of accepting cycle detection quite usefull. Hence in the following we suggest an exten-

sion of the algorithm BFS-BASED-CYCLE-DETECTION that makes the algorithm capable

of accepting cycle detection and thus makes it applicable to the full LTL model checking

problem.

The basic idea behind detection of accepting cycles in partially accepting compo-

nents is to prevent the algorithm from detecting a non-accepting cycle. For this pur-

pose each nested procedure maintains an additional (accepting) bit to indicate that it has

passed through an accepting state since its last pass through a current back-level edge.

In particular, this accepting bit is set to true whenever the procedure reaches an accept-

ing state and is set to false whenever the procedure passes a current back-level edge.

The bit is set to false initially.

There are two ways the algorithm detects a cycle: by hitting the target of the pro-

cedure or by exceeding the number of current back-level edges. To prevent a nested

procedure from exceeding the number of current back-level edges on a non-accepting

cycle we modify the nested procedure so that it counts a current back-level edge only if

the accepting bit is set to true. As regards the first way (hitting the target), we modify

the nested procedure so that it reports a cycle only if it reaches the target state and the

bit is set to true.

Note that on an accepting cycle there must be such a back-level edge that if any

nested procedure repeatedly walks around the cycle, then it always reaches the source
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state of the edge with the accepting bit set to true. However, the source state may be

reachable from itself also along a path that does not contain any accepting bit. Hence, it

may happen that the nested procedure reaches and stores its identification to the state

along the non-accepting path first and so when the nested procedure reaches the state

along the accepting path it is not allowed to expand the state. In such a case the accept-

ing cycle may remain undetected. To prevent this we again extend a nested procedure

identification. In addition to the target of the procedure and the counter of passed cur-

rent back-level edges the new identificator contains also the accepting bit. If we define

that true > false we can modify the requested ordering on nested procedure indenti-

fication obviously, i.e.

[A; x; b] > [B; y; c] () [A; x] > [B; y] _ ([A; x] = [B; y] ^ b > c)

We demonstrate the behavior of the modified nested procedure on the graphs a)

and b) in Figure 8. In both cases the nested procedure for the back-level edge (A;C)

arrives at the state C as a procedure that is identified by [A; 0; false]. This is because

the accepting bit is initially set to false and the state A is not an accepting state. Thus

the procedure does not increase its counter of passed back-level edges when it passes

the edge (A;C). Similarly, the nested procedure for the back-level edge (F; B) arrives at

the state B as the procedure [F; 0; false].

Let us first assume that either A < F or the procedure [F; 0; false] arrives at the state

C before the procedure [A; 0; false]. In such a case the procedure [F; 0; false] continues

through the states C and E and hits its target (the state F). While in the graph b) the

procedure reaches its target with the accepting bit set to true, in the graph a) it reaches

its target with the bit set to false. Obviously, this can distinguish between accepting and

non-accepting cycles.

Now let us assume that A > F and the [A; 0; false] arrives at the state C before the

procedure [F; 0; false] does. In such a case the procedure [F; 0; false] is stopped when

it arrives at the state C, while the procedure [A; 0; false] continues in the search. In the

case of the graph a) the procedure [A; 0; false] passes the current back-level edge (F; B)

without increasing its counter of passed current back-level edges because its accepting

bit remains set to false. This means that the procedure does not change its identification

and so it is stopped when it arrives at the state C for the second time. In the case

of the graph b) the procedure [A; 0; false] sets its accepting bit to true and becomes

[A; 0; true] when it passes the accepting state E which allows the procedure to increase
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Figure 8: Accepting cycle detection

its counter of passed back-level edges when it passes the back-level edge (F; B). Note

that the accepting bit is reset to false when the counter is increased. The procedure then

arrives at the state C for the second time being identified as [A; 1; false]. This means

that the procedure is not stopped but it continues in the search. At the state E it sets its

accepting bit to true changing its identifier to [A; 1; true] and passes the back level-edge

(F; B) changing its identifier to [A; 2; false]. Then it goes through the state C for the

third time. At the state E it sets the accepting bit to true again ([A; 2; true]) and after

passing the back-level edge (F; B) it exceeds the number of current back-level edges.

Hence, the existence of an accepting cycle is correctly detected.

Note that if the algorithm is modified to detect accepting cycles only, it may happen

that there are non-accepting cycles that are completely above the currently tested level.

However, these non-accepting cycles do not influence the cycle detection at all because

they have neither accepting states nor current back-level edges. Finally, note there may

be nested procedures that are initiated for a source state of a back-level edge which is a

part of an accepting cycle but that cannot detect the accepting cycle by the first way of

cycle detection (i.e. by hitting the target).

The procedure CHECK-BL-EDGES that is modified in order to detect accepting cy-

cles only bears the name CHECK-BL-EDGES3 and its pseudo-code is given in Figure 9.

Naturally, the new variable abit correspond to the accepting bit.

Since the proof of the correctness of the algorithm BFS-BASED-CYCLE-DETECTION

that employs the procedure CHECK-BL-EDGES3 is quite similar to the proof of the corec-
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1 proc CHECK-BL-EDGES3(WorkstationId ;nmbrbl )

3 BBLQ := ;;

4 while (BLQ 6= ;) do

5 (target ; q) := dequeue(BLQ)

6 enqueue(BBLQ ; (q;Level-1; target ; 0; false))

7 od

8 while (:Synchronize() _ BBLQ 6= ;) do

9 if (BBLQ 6= ;)

10 then (q;prelevel ; target ; bl ; abit) := dequeue(BBLQ);

11 if d (q) < Level

12 then if (IsAccepting(q)) then abit := true fi

13 if (q = target ^ abit = true)

14 then Report(“Accepting Cycle Detected”) fi

15 if (prelevel = Level-1 ^ abit = true)

16 then bl := bl + 1; abit := false

17 if (bl > nmbrbl )

18 then Report(“Accepting Cycle Detected”) fi

19 fi

20 if ((Level-1 > q:level) _ (Level-1 = q:level ^

21 (target > q:target _ (target = q:target ^ bl > q:bl ) _

22 (target = q:target ^ bl = q:bl ^ abit > q:abit))))

23 then q:target := target ; q:bl := bl

24 q:level := Level-1; q:abit := abit

25 foreach t 2 Fsuccs(q) do

26 if (Owner(t) 6= WorkstationId )

27 then SendTo(Owner(t); enqueue(BBLQ ;

28 (t;d(q); target ; bl ; abit)))

29 else push (BBLQ ; (t;d(q); target ; bl ; abit))

30 fi

31 od

32 fi

33 fi fi od

34 end

Figure 9: Improved procedure CHECK-BL-EDGES with accepting cycle detection
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ctness of the algorithm employing the procedure CHECK-BL-EDGES2, we state the nec-

essary Lemmas and sketch their proofs only.

Lemma 6.1. Let us assume that the procedures CHECK-BL-EDGES3 were initiated after the

procedures BFS-BASED-CYCLE-DETECTION synchronized on such a level that there is no ac-

cepting cycle in the graph such that the distances of all states on the cycle are less than Level-1.

Further, let q0 = (q; prelevel; target; bl; abit) be a quintuple that is dequeued from the queue

BBLQ by the procedure CHECK-BL-EDGES3 running on a participating workstation before

the procedures CHECK-BL-EDGES3 synchronize and the next level of the graph is explored.

Let q1; q2; : : : ; qn be the contents of the queue BBLQ immediately after the quintuple q0 was

dequeued. Then either the algorithm finishes by reporting the presence of an accepting cycle be-

fore the quintuple q1 is dequeued from the queue BBLQ or the procedure CHECK-BL-EDGES3

dequeues the quintuple q1 eventually.

Proof: We can see from the pseudo-code that the algorithm cannot terminate and report

no presence of an accepting cycle without dequeuing all the quintuples from the queue

BBLQ. Hence, we only need to show that the procedure CHECK-BL-EDGES3 cannot

cycle forever without dequeuing the quintuple q1. Let us suppose the contrary in the

following.

We know that processing of each quintuple is finite. However, when a quintuple

q is processed some quintuples may be pushed to the front of the queue when local

successors of the state from the quintuple q are generated. Let us denote by R the set of

all quintuples that occur in the part of the queue BBLQ that precedes the quadruple q1
during the execution of the algorithm. Note that there are only finitely many different

quintuples that may occur in R. The algorithm dequeues quintuples from the queue

BBLQ continuously and therefore, there is at least one quintuple that is dequeued from

the queue infinitely many times. Let I � R be the set of all quintuples that are inserted

to and dequeued from the queue infinitely many times.

Let p = (q 0; prelevel 0; target 0; bl 0; abit 0) be a quintuple from I that is dequeued

from the queue BBLQ. The quintuple p may be generated from itself and inserted in

the queue BBLQ as its own (not necessarily immediate) descendant only finitely many

times (there are finitely many acyclic paths from q0 to q 0). If the quintuple was inserted

in the queue infinitely many times then the state q 0 would be expanded by the nested

procedure that bears the identification [target0; bl 0; abit 0] infinitely many times as well.

Obviously, this is not posible due to the nested procedure identification stored at the

state. Hence, we can define a partial ordering on qudruples in I as follows. If a; b 2 I
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and b is inserted in in the queue BBLQ as a (not necessarily immediate) descendant of

a infinitely many times, then a < b. Obviously, it cannot be that b < a at the same time.

Hence, we can choose a minimal member r in I. We know that r was inserted in the

queue BBLQ infinitely many times, but only as descendant of finitely many quintuples

that were processed only finitely many times. Obviously, this is not possible and is the

needed contradiction. So, if the algorithm is not terminated by reporting the presence of

an accepting cycle, the procedure CHECK-BL-EDGES3 dequeus the quintuple q1 even-

tually. �

Lemma 6.2. If there is an accepting cycle in the examined graph then the algorithm will finish

by reporting the presence of an accepting cycle eventually.

Proof: Let us consider the level from which emanate the maximal depth back-level

edges of shallowest accepting cycles and let us suppose that the procedures CHECK-BL-

EDGES3 were initiated after the synchronization of the procedure BFS-BASED-CYCLE-

DETECTION on that level. Further, let us suppose that the algorithm did not finish or

finished without reporting the presence of an accepting cycle. Note that in the latter

case all quintuples inserted in queues BBLQ must have been dequeued.

Let [T; b; a] be the maximal nested procedure identification stored at a state of one

of the shallowest accepting cycles. Let the cycle be p0; : : : ; pn-1; pn=p0. Note that the

maximal value exists even in the case of infinite run of the algorithm (bl is limited by

corresponding nmbrbl, otherwise an accepting cycle is reported). Note also that T is

greater or equal to any source state of a back-level edge on the cycle.

According to our assumptions and Lemma 6.1 we know that any quintuple that

is inserted in a queue BBLQ by the nested procedure [T; b; a] is eventually dequeued.

Naturally, this means that all the states on the cycle are expanded by at least one nested

procedure. Nevertheless, this also means that all the states on the cycle were expanded

at least once by the nested procedure [T; b; a] and so the nested procedure identification

[T; b; a] is stored at each state on the cycle. From which we can conclude that a equals to

true ([T; b; a] is the maximal value and an accepting state on the cycle was processed).

Now it remains to consider the situation when a destination state of some maximal

depth back-level edge on the cycle was expanded by the procedure [T; b; a]. Since the

state is a destination state of a maximal depth back-level edge, we have prelevel =

Level - 1. Thus the identification of the nested procedure must have been changed to

[T; b + 1; false] before that state was expanded. [T; b + 1; false] is obviously greater
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than [T; b; a] and so it is in contradiction to the maximality of [T; b; a]. So, if there is an

accepting cycle in the examined graph, then the algorithm terminates by reporting the

presence of an accepting cycle. �

Lemma 6.3. If the algorithm reports the presence of an accepting cycle then there is at least one

accepting cycle in the examined graph.

Proof: Suppose that the quintuple dequeued in the iteration in which the presence of

a cycle was reported is (q; prelevel; target; bl; abit). Obviously, if such a quintuple is

dequeued from a queue BBLQ then there is a corresponding path from the state target

to the state q in the examined graph. Let � = target=pn+1; pn; : : : ; p2; p1; p0=q be the

path.

There are two reasons for which the algorithm may report the presence of an accept-

ing cycle. In the case that q = target the accepting cycle is supported directly by the

path � (note that � has to contain an accepting state as abit = true). In the other case

(bl = nmbrbl + 1) we have that there are nmbrbl + 1 current back-level edges in the

path � such that there is at least one accepting state between any of these back-level

edges. Since there are only nmbrbl current back-level edges on the currently explored

level there are at least two states pj; pk in the path � from which the same back-level

edge emanates. Since pj = pk, the path from the state pj to the state pk supports the

presence of an accepting cycle in the examined graph. �

Lemma 6.4. If the examined graph is finite then the algorithm terminates.

Proof: If there is a cycle in the examined graph then according Lemma 6.2 the algrotihm

terminates by reporting the presence of an accepting cycle. We only show that the al-

gorithm terminates if there is no accepting cycle in the graph. Let us suppose that

any procedure CHECK-BL-EDGES3 initiated from any procedure BFS-BASED-CYCLE-

DETECTION finishes eventually. In such a case we can conclude that the algorithm fin-

ishes eventually from Lemma 3.8. Thus it remains to prove that if there is no accepting

cycle in the graph then all procedures CHECK-BL-EDGES3 finish eventually.

We prove this by showing that each quintuple can be inserted in a queue BBLQ

only finitely many times. Obviously, a quintuple (q; prelevel; target; bl; abit) can be

inserted in a queue BBLQ only if there is a path from the state target to the state q.

Moreover, if a quintuple is inserted in the queue due to a path, it is never inserted in the
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queue due to the same path again. To complete the proof we show that if a quintuple is

inserted to a queue BBLQ due to a path target=r0; : : : ; rm; q then r0; : : : ; rm is an acyclic

path. Suppose it is not. Then we have that there are i; j such that 0 � i < j � m and

ri = rj. Consider the situation when the nested procedure originating at the state target

visits the state ri. If the nested procedure is allowed to expand the state ri and it visits

late on the state rj due to a path ri; ri+1; : : : ; rj then its nested procedure identifaction is

less or equal to the nested procedure identification stored at the state. This is because

the path ri; ri+1; : : : ; rj is a non-accepting cycle and we can see from the pseudo-code

of the procedure CHECK-BL-EDGES3 that the identification of a nested procedure can-

not increase unless the nested procedure passes through an accepting state. Hence, the

nested procedure is not allowed to expand the state rj and no successors in the path (in-

cluding the state q) are inserted in the queue BBLQ. Hence a quintuple can be inserted

in a queue BBLQ only due to a acyclic path from the target of the nested procedure to

the explored state. Obviously, there are only finitely many acyclic paths (each being

finite) between any two states of the graph. This gives us needed bound on the number

of quintuple insertions in the queue. �

7 Counterexample Generation

Model checking algorithms should be able to provide the user with a counterexample

in the case the verified property is violated. In general, the computed counterexamples

can be quite long which might make it difficult to locate an error. Thus computing the

shortest possible counterexample greatly facilitates the debugging process. In this sub-

section we present a technique to generate short counterexamples using the algorithm

BFS-BASED-CYCLE-DETECTION.

A counterexample consists of two parts: an accepting cycle and a path that reaches it

from the initial state of the graph. In the standard Nested DFS algorithm the counterex-

ample is simply generated by following the depth first search stacks: the DFS stack of

the nested search is used to reconstruct the accepting cycle while the DFS stack of the

primary search gives a path to it. However, in our algorithm we do not have any DFS

stacks, hence a different approach has to be considered. Recall that our algorithm uses,

similarly to the Nested DFS algorithm, two search phases.

The idea is quite simple. We use additional data structure for the primary phase of

the algorithm to keep the shortest path from a state to the initial state of the graph and
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an additional data structure for the secondary phase of the algorithm to record a trace

of the path followed by nested procedures. The structures are nothing more than the

standard parent graphs.

More precisely, during the primary phase of the algorithm we store to each state v

that has not been visited yet the value of its immediate predecessor p in the primary

search (called primary parent). Note that it is assigned only once during the whole

computation. During the secondary phase of the algorithm we store to each state its

immediate predecessor in the nested search (called secondary parent). The secondary

parent is assigned every time a nested procedure is allowed to pass through the state.

In both cases, the parents stored at states induce edges in the corresponding parent

graph. Now we show how one can traverse the primary and secondary parent graphs

to reconstruct the counterexample.

The accepting cycle part of a counterexample is generated using the secondary par-

ent graph. Once the existence of an accepting cycle in the graph is detected, one could

be tempted to follow the DFS parents back to and through the cycle. However, due to

the fact that several nested procedures can be run in parallel, a state can be expanded

several times by different nested procedure each time possibly changing its secondary

parent. As a result, the secondary parent graph may not contain a cycle even though

the the presence of an accepting cycle is reported. A possible situation is exemplified in

Figure 10. Suppose the first nested procedure starts from the state F and the secondary

parent graph is build as the procedure continues (see Figure 10.a). Suppose that after

the nested procedure passes through the state C the second nested procedure which has

been started from the state A visits the state C before the first nested procedure actually

closes the cycle. Further suppose that A > F. When exploring the state C by the second

procedure, the secondary parent for C is reset to point to the state A, hence the possible

cycle in the secondary parent graph is interrupted (see Figure 10.b).

To solve this problem we assign to the nested procedure that detected the cycle a

new (highest) identification and we re-execute it independently. In our case given in

Figure 10 we start the nested procedure from the state F once more with identification

[F 0; 0; false] where F 0 > F and F 0 > A. The secod nested procedure originating from the

state A is not performed at all.

During counterexample generation the manager workstation is used as a “collector”

that all the workstations participating in the generation send information to. Note that

states forming the counterexample are spread across network according to the partition
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Figure 10: Interrupting a cycle in the secondary parent graph

function. The counterexample is generated in two steps. In the first one the secondary

parent graph is traversed starting at the state where the cycle was detected. When

traversing the secondary parent graph the visited states are marked in order to dis-

cover the cycle. Once an already marked state is visited, the cycle can be reconstructed

from the vertices that have been sent and saved on the manager workstation. Moreover,

the manager is able to determine the state v with the smallest distance from the initial

state on the cycle. In the second step of the generation the primary parents are traversed

from the state v back to the initial state of the examined graph. After finishing the sec-

ond step, the whole counterexample can be put together using the information stored

on the manager workstation.

A significant positive feature of the algorithm is related to the length of counterex-

amples it provides. Since the algorithm is primarily based on breadth first search explo-

ration, the counterexamples tend to be short. See the chapter on experiments for more

details.

8 Partial Order Reduction

In this subsection we suggest how to combine the partial order reduction with the dis-

tributed memory algorithm BFS-BASED-CYCLE-DETECTION.

The primary task of the algorithm is to check whether the examined graph contains

(accepting) cycles. However, to accomplish the task the algorithm has to solve the state

space generation problem as well, i.e. it has to compute the explicit representation of
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the verified graph from the given implicit one. Recall that if the partial order reduction

technique is not considered, then the graph is implicitly given by the functions Finit and

Fsuccs. If the reduction is involved then the graph is given by the functions Finit and

Fample.

We can provide the algorithm with the function Fample only if we are able to check

the ample conditions C0, C1, and C2 during the generation of the graph. However,

checking these conditions can be done in the same way as it is done in the standard

sequential state space generation case. Naturally, if the function Fsuccs is replaced by the

function Fample the algorithm BFS-BASED-CYCLE-DETECTION has to guarantee that the

condition C3 is satisfied as well, otherwise the reduction is not correct.

Our aim is to develop a counterpart of the condition C3-dfs. The condition C3-dfs is

used instead the condition C3 in depth first search based generation of the state space.

It exploit the depth first search stack to ensure that at least one state is fully expanded

on each cycle in the product automaton graph. Unfortunately, we do not have search

stack in the distributed memory breadth first based algorithm so we cannot use this

condition, but have to suggest a different one. However, if we realize the fact that a

necessary condition for closing a cycle in breadth first search is that the state closing

the cycle has to be the destination state of a back-level edge, we are actually done. The

newly suggested replacement of the condition C3 used for the breath first search based

generation of the state space is the following.

C3-bfs If a state s is not fully expanded, then ample(s) does not contain an action that if taken,

produces a back-level edge.

The condition requires each source state of a back-level edge to be fully expanded.

Recall that a back-level edge is detected when its destination state is explored. If the

source state of a detected back-level edge is local, we can easily enqueue the source

state of the edge to the queue CLQ as a state to be fully re-expanded. However, it

might happen that the source state and destination state of a back-level edge are owned

by different workstations. In such a case a message requesting full expansion of the

source state of the back-level edge has to be sent to the workstation owning the source

state. Obviously, this makes the distributed memory back-level edge detection algo-

rithm quite complicated. In particular, each local queue CLQ no more keeps only the

states to be explored but it keeps also the states to be fully re-expanded. Since the states

to be fully re-expanded cannot be precomputed in the same way as the states to be ex-
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1 proc DISTRIBUTED-MEMORY-BL-EDGE-DETECTION-POR(WorkstationId)

2 CLQ = ;; NLQ = ;; Visited = ;; Level = 0

3 initstate := Finit(); finished := false

4 if (WorkstationId = Owner(initstate))

5 then enqueue(NLQ ; (-; initstate ; ample)) fi

6 while (:finished) do

7 swap(NLQ ;CLQ )

8 while (:Synchronize(finished := (all NLQ = ;))) do

9 if (CLQ 6= ;)

10 then (p; v;w) := dequeue(CLQ)

11 if (v 62 Visited)

12 then Visited := Visited [ fvg; v:fully := false; d(v) := Level

13 foreach t 2 Fample(v) do

14 if (Owner(t) 6= WorkstationId)

15 then SendTo(Owner(t); enqueue(NLQ ; (v; t)))

16 else enqueue(NLQ ; (v; t))

17 fi od

18 else if (d(v) < Level )

19 then Print(“Back-level edge (p,v)”)

20 if (Owner(p) 6= WorkstationId)

21 then SendTo(Owner(p);

22 enqueue(CLQ ; (-; p; fully)))

23 else enqueue(CLQ ; (-; p; fully))

24 fi fi fi

25 if (w = fully)

26 then foreach t 2 (Fsuccs(v)r Fample(v)) do

27 if (Owner(t) 6= WorkstationId)

28 then SendTo(Owner(t); enqueue(CLQ ; (v; t; ample)))

29 else enqueue(CLQ ; (v; t; ample))

30 fi od

31 v:fully := true fi fi od

32 Level = Level + 1

33 od end

Figure 11: Distributed memory algorithm for back-level edge detection with POR
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plored (i.e. when exploring the previous level), the queues CLQ have to be replenished

with these states during the processing of states from the queues.

This requires a few modifications of the algorithm. Firstly, states stored at the queues

CLQ;NLQ are enriched with a flag whether they are the states to be explored or the

states to be fully re-expanded. If a state dequeued from the queue CLQ is a state to be

fully re-expanded only those successors of the state are generated that were not gener-

ated when the state was expanded for the first time. Secondly, the processing of a queue

CLQ cannot finish when the queue is empty since some states to be fully re-expanded

may still arrive from other workstations. Thus the distributed termination detection

mechanism has to be employed to detect that the processing of the states from all the

queues CLQ has already finished and next level can be processed.

Finally, each explored state is associated a bit flag fully whether it was or was not

fully re-expanded during the state space generation. This flag is obivously useless for

the back-level edge detection, however it is needed if the procedure is meant to be used

in the algorithm BFS-BASED-CYCLE-DETECTION. In such a case the algorithm has to en-

sure that the same successors of a state are generated during the primary and secondary

phase of the algorithm, otherwise the reduction in the size of the product automaton is

lost. Thus when expanding a state in the secondary phase of the algorithm the function

Fample is used if the flag is not set to true. The function Fsuccs is used otherwise.

Just for clarity the pseudo-code of the procedure DISTRIBUTED-MEMORY-BL-EDGE-

DETECTION-POR that can be used to detect back-level edges in the reduced product

automaton graph is given in Figure 11.

The condition C3-bfs ensures that there is at least one fully expanded state on each

cycle in the reduced product automaton graph. Nevertheless, since there may be many

back-level edges that are not a part of a cycle, there may be also many fully expanded

states that do not belong to any cycle. That is why we cannot expect the reduction to be

as efficient as in the case of the standard condition C3-dfs. For more details on this see

the experimental results given in the next chapter.

9 Experimental evaluation

The experimental version of the algorithm has been implemented in C/C++ using mpich

implementation of the standard network-support library MPI. Contrary to our previous

experimental work on parallel algorithms we have decided not to embed the algorithm
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Problem Model (M) Verified property (') M
?
j= '

elev1 Elevator G(r1 =) (F(p1^o))) yes

elev2 Elevator G(r1 =) (:p1 U(p1 U(p1^o)))) no

elev3 Elevator G(r0 =) (:p0 U(p0 U(:p0 U(p0 U(p0^o)))))) yes

elev4 Elevator G(r1 =) (:p1 U(p1 U(:p1 U(p1 U(p1^o)))))) yes

elev5 Elevator G(r2 =) (:p2 U(p2 U(:p2 U(p2 U(p2^o)))))) yes

elev6 Elevator elev3 ^ elev4 yes

elev7 Elevator FG(p1) no

lead1 Leader election F(elected) yes

lead2 Leader election FG(oneleader) yes

lead3 Leader election noleader U oneleader yes

lead4 Leader election F(moreleaders) no

pet1 Peterson G(p0cs =) F(:p0cs)) yes

pet2 Peterson G((:p0cs) =) F(p0cs)) no

pet3 Peterson GF(someoneincs) yes

pet-E0 Peterson-error state space generation —

pet-E1 Peterson-error G(p0cs =) F(:p0cs)) yes

pet-E2 Peterson-error G((:p0cs) =) F(p0cs)) no

pet-E3 Peterson-error GF(someoneincs) no

phi1 Philosophers GF(eat0) no

phi2 Philosophers G(one0 =) F(eat0)) no

phi3 Philosophers GF(someoneeats) no

phi-L1 Philosophers-left GF(eat0) no

phi-L2 Philosophers-left G(one0 =) F(eat0)) no

phi-L3 Philosophers-left GF(someoneeats) yes

rte1 RT Ethernet G(r0 =) (: e U (e U (:e ^ (rt0 R :e))))) yes

rte2 RT Ethernet G (w0 =) (: e U (e U (:e ^ (rt0 R :e))))) no

rte3 RT Ethernet G(r0 =) (rt0 R :e)) no

rte4 RT Ethernet GF(nrt0) yes

rte5 RT Ethernet GF(rt0) no

Table 1: Verified model checking problems
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into an existing tool, e.g. SPIN. The main reason was that the SPIN has been built ba-

sically for sequential enumerative LTL model-checking and it has proven to be quite

difficult to be modified. Therefore, we implemented the algorithm directly as a proto-

type (not using all the very efficient implementation techniques and optimizations en-

countered in SPIN). After all, the primary reason for the implementation was to be able

to make a preliminary experimental evaluation of our new approach to the distributed

on-the-fly back-level edge based cycle detection.

In the distributed implementation built on the MPI library each workstation has its

own unique number that is used for its identification. The workstation with the low-

est identification number (the manager) performs all the management related to the

distributed computation, in particular the manager starts the synchronization protocol

(during which the workstations synchronize and exchange all the necessary informa-

tion) and the distributed termination detection protocol.

The partition function used for slicing the state space was chosen to partition

the graph evenly without optimizations either for perfect load balancing or for min-

imal communication complexity. However, the load was reasonably well balanced

in all performed experiments and the communication overhead caused by “cross-

edges”(successive vertices placed on different workstations) has not influenced the

comparative value of the experiments. For more efficient communication between

workstations we did not send separate messages, but sent them in packets of pre-

specified size. The optimal size of a packet depends on the network connection and

the underlying communication structure. In our case we have achieved the best results

for packets of size around 100 single messages.

For our set of experiments we chose several standard software protocols. All systems

are parametrized: the Philosophers problem by the number of philosophers, the Elevator

by the number of floors served, the Peterson, Leader election, and the Real Time Ethernet

by the number of participating processes. The LTL formulas specifying the checked

properties are given in Table 1 together with the answer to the model-checking problem.

9.1 Back-Level Edge Distribution

We start by a few experiments to measure the frequency and distribution of the back-

level edges in product automaton graphs. In particular, we measured the maximal

breadth first search level that was reached during the verification, the total number

of revealed back-level edges, and the number of back-level edges that were tested for
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Problem Maximal All Explored

(M 6j= ') Level Back-Level Edges Back-Level Edges

elev2(10) 50 296469 118510

elev7(10) 24 18291 18291

lead4(5) 91 40 40

pet2(4) 31 115071 38173

pet-E3(4) 7 72 24

pet-E3(5) 7 120 40

phi2(10) 5 572 66

phi-L2(10) 5 581 65

rte2(9) 206 146101 23136

rte5(9) 75 74 23

Problem Maximal All Explored

(M j= ') Level Back-Level Edges Back-Level Edges

elev1(10) 64 302094 101647

elev3(10) 64 381735 175392

elev4(10) 64 372604 161953

elev6(10) 64 3373453 655523

lead3(5) 119 0 0

pet-E1(4) 23 6357 0

pet1(4) 55 121920 313

phi-L3(10) 29 213733 44287

rte1(9) 446 169095 0

rte4(9) 446 497755 164469

Figure 12: Number of Back-Level Edges and Levels
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Figure 13: Explored Back-Level Edge Distribution for elev1(10) and rte4(9)
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being the part of an accepting cycle (hence the back-level edges occuring in the fully and

partially accepting components of the graph). All the values we measured are given in

tables in Figure 12. Note that for the cases where the property is not satisfied the max-

imal level reached during the verification corresponds to the level where the accepting

cycle was discovered (as the rest of the graph was not explored).

We were also interested in the distribution of the back-level edges in product au-

tomaton graphs. We found out that the distributions are quite similar for most cases

and thus we depict only two of them in Figure 13.

There are two noteworthy points that could be drawn from these experiments.

Firstly, if there is an accepting cycle in the product automaton graph, then it seems

that the cycle is quite often discovered by examining just a few back-level edges found

in early stage of the computation (very often on the first level containing back-level

edges). However, there are models and verified formulas that do not stick to this obser-

vation at all as demonstrated, e.g., by the elev2 and elev7 model checking problems.

Secondly, there are product automaton graphs that contain so few back-level edges

(possibly none) that the suggested distributed memory algorithm can perform the for-

mal verification of an LTL formula as efficiently as it would perform a distributed state

space generation. We consider this fact to be quite interesting.

9.2 Scalability

In this subsection we measure how the implemented algorithm scales. In particular,

we are interested in the runtimes and memory consumtion made on a workstation if

various numbers of workstations are involved in the computation. Selected experimen-

tal results concerning the scalability are given in Figure 15. Time values are reported

in seconds while memory values in megabytes. The corresponding graphs are given

in Figure 14. It can be see that the more workstations participate the computation the

less time is needed to perform the verification. However, if the verified model is too

small, the runtimes increase with the number of used workstations. This is because the

time needed to initialize the network layer dominates the time needed to perform the

verification. The same holds for memory, i.e. the more workstations participate the

computation the less are the memory requirements. An exception situations are those

where the memory load caused by the table of visited states is to small to dominate the

memory overhead caused by the network layer.
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5 Workstations 10 Workstations 15 Workstations 20 Workstations

Problem Time Mem Time Mem Time Mem Time Mem

elev1(10) 752 42.3 433 25.3 325 26.0 223 22.1

elev2(10) 522 59.9 285 32.9 220 33.2 169 27.1

lead3(5) 46 106.3 32 57.7 33 41.5 30 33.5

rte4(9) 1166 175.3 590 95.4 469 67.2 334 52.9

pet-E3(4) 2 7.9 4 8.0 7 8.2 8 8.5

phi-L3(11) 95 30.6 81 25.3 36 18.5 49 16.8

Figure 15: Back-Level Edge based cycle detection scalability

9.3 Counterexample Generation

The table in Figure 16 shows the lengths of the generated counterexamples for selected

model checking problems. The column “Counterexample Length” gives the lengths of

the counterexamples as produced by the new algorithm while the column “Counterex-

ample Length (NDFS)” gives the lengths of counterexamples as produced by the Nested

DFS algorithm. It can be seen that our algorithm produces significantly shorter coun-

terexamples than the standard Nested DFS does. On the other hand, the time needed by

the Nested DFS algorithm to discover and generate a counterexample is shorter in gen-

eral. The difference is obviously caused by the fact that our algorithm explores many

more states in comparison to the Nested DFS algorithm before it discovers an accepting

cycle. Time in seconds needed to generate the counterexamples is given in the table as

well. Note the difference in runtime needed by the Nested DFS algorithm to generate

the counterexample for the problem phi1(15). The longer reported value give the run-

time needed by the algorithm when the counterexample generation procedure had not

been optimized.

9.4 C3-BFS Partial Order Reduction

Other experiments were performed to evaluate the partial order reduction based on the

condition C3-bfs. See the table in Figure 17. We measured the number of states in the

full graph (the column “no POR”) and the number of states in the reduced graph (the

column “POR”). In addition, we measured the number of states in the graph that was re-

duced by the standard partial order reduction as given in [5] (the column “POR-DFS”).
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Counterexample Counterexample

Problem Length Length (NDFS) Time Time (NDFS)

elev2(9) 85 323 136 1

elev2(10) 65 356 527 1

lead4(4) 74 74 3 1

lead4(5) 92 92 69 1

pet2(3) 39 63 1 1

pet2(4) 85 128 7 1

pet3(4) 12 215 1 1

pet3(5) 12 625 1 1

phi1(12) 5 4116 1 1

phi1(13) 5 18579 1 1

phi1(14) 5 18579 1 2

phi1(15) 5 120730 1 14 (635)

rte2(9) 207 17478 54 4

rte2(10) 244 60520 76 16

Figure 16: Counterexample lengths and generation times

This value was measured using the standard sequential DFS algorithm (“—” means the

algorithm exceeds the available memory). Note that a reduction was achieved only for

the Leader election and the Peterson models which we believe is due to the immature

implementation of the ample set selection in DiVinE. While the reduction based on C3-

bfs condition was the same as the standard partial order reduction in the case of Leader

election model, it was worse in the case of Peterson model. Hence, we can conclude that

there are models for which the C3-bfs partial order reduction works and there are also

models for which it works only marginally or even does not work at all.

Finally, we measured the impact of the suggested partial order reduction on the

counterexample generation. The table in Figure 18 shows counterexample lengths (“CE

Length”), time needed to generate them (“Time”), and the deepest levels that were

reached during the verification (“Level”). It can be seen that if the partial order re-

duction is employed then the shallowest accepting cycles may get slightly deeper. This

may increase the number of states that are explored by the algorithm before an accepting

cycle is discovered as well as the time needed to discover and generate the counterex-
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Problem
Number of states

no POR
Number of states

POR
Number of states

POR-DFS

elev2(10) 1113062 1113062 1113062

lead1(4) 110537 60681 60681

lead1(5) 3629011 1487891 1487891

pet1(3) 2429 2335 1815

pet1(4) 132104 130965 103963

pet1(5) 9516142 9478643 —

phi2(12) 847653 847653 847653

phi2(13) 2468548 2468548 —

rte1(10) 5759277 5759277 5759277

Figure 17: C3-BFS Partial Order Reduction

CE Length CE Length Runtime Runtime Level Level

Problem No POR POR No POR POR No POR POR

lead2(4) 74 74 3 3 73 73

lead2(5) 92 92 69 61 91 91

pet2(3) 39 38 1 1 20 21

pet2(4) 85 89 7 394 31 33

pet3(4) 12 14 1 1 7 9

pet3(5) 12 15 1 1 7 10

Figure 18: Partial order reduction and counterexample generation

ample (see the row pet2(4)). Nevertheless, the impact of the partial order reduction on

the lengths of counterexamples is generally minimal.

10 Conclusion

We propose a parallel LTL model checking algorithm for alleviating the state explosion

problem by distribution of the state space. The algorithm is based on a combination

of the breadth-first-like state space generation with a back-level edge controlled depth-

first-like search for accepting cycles. The aim of this paper was to describe the idea of

the algorithm in detail including counterexample generation and partial order reduction
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utilization. Experimental results obtained with a prototype implementation were also

given.

In the LTL model checking applications, the existence of an accepting cycle indicates

a failure of the property. In such a case, it is essential that the user is given an accept-

ing cycle as a counterexample. The counterexample should be as short as possible, to

facilitate debugging. The advantage of our approach is that thanks to the breadth-first

search character of the computation the generated counterexample is much shorter in

comparison with those computed by a depth-first search based algorithms. On the other

hand, on extremely large systems a depth-first search approach may discover an error

while a breadth-first search may fail to do so (even if ran in a distributed environment).

The reason is that depth-first search usually need not explore so many states to find the

error.

A very positive feature of the algorithm is its behaviour on graphs with a small num-

ber of back-level edges. In such cases the run of our algorithm for the full LTL model

checking practically equals to the reachability analysis. There were several models con-

firming this feature. On the other hand, a drawback shows up when the graph contains

many back-level edges. Moreover, if the graph does not contain an accepting cycle, it

must be fully explored, and frequent revisiting of states causes the time of the compu-

tation to be much longer than the time of a simple reachability analysis.

Another feature of our algorithm is that it works on-the-fly. The on-the-fly approach

to model checking has proven its superiority over global approach in many case studies.

As for the partial order reduction our algorithm works unexpectedly well. The

achived reduction was practically the same as for the depth first search based reduc-

tion. It is partly caused by the poor implementation of the reduction technique and we

expect our algorithm to work a bit worse in comparison with depth first like algorithms

when the implementation gets optimized.

There are several known approaches to distribution and/or parallelization of the

LTL model-checking problem. A distributed implementation of the SPIN [10] LTL

model-checker restricted to model-checking safety LTL properties (those properties that

do not involve cycle detection and hence can be reduced to the reachability problem)

was described in [11]. We extended the work of [11] to the full distributed LTL model-

checking in SPIN in [1]. The idea behind was to employ additional data structures that

allow to ensure the global DFS postorder on at least the most critical states. The disad-

vantage of this algorithm is that it performs only one nested search at a time. In [2], the
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problem of LTL model-checking is reduced to detecting negative cycles in a weighted di-

rected graph. Recently, in [3] another algorithm for distributed enumerative LTL model-

checking has been proposed. The algorithm implements the enumerative version of the

symbolic “One-Way-Catch-Them-Young ” algorithm [9]. The algorithm shows in many

situations a linear behavior, however it is not on-the-fly, hence the whole state space

has to be generated. The algorithm [3] shows better performance than our algorithm on

some systems without faulty runs, while our algorithm is superior in finding bugs. For

this reason the two algorithms could be meant not to replace but to complement each

other.

11 Complexity

The primary phase of the algorithm actually performs breadth first search of the graph.

Thus the time complexity of each locally performed procedure BFS-BASED-CYCLE-

DETECTION is O(m + n), where m is the number of transitions and n is the number

of states in the verified product automaton graph. If we employ the partial order re-

duction then each state of the graph may be expanded twice. However, this does not

increase the asymptotic complexity.

It is the procedure CHECK-BL-EDGES that mostly adds to the overall complexity of

the algorithm. For a given source state of a back-level edge the procedure traverses

the graph along all paths originating at the state. This is in (O(n!)) In the worst case

there can be n source states of back-level edges, hence the overall complexity of the

second phase of the algorithm is O(n � (n!)). When improving the behaviour of the

algorithm by the procedures CHECK-BL-EDGES2 or CHECK-BL-EDGES3 the theoretical

complexity of the algorithm improves as well. If these procedures are considered each

nested procedure may expand a single state up to n or 2n times, respectively. Hence,

the overall complexity of the procedures gets in O(n2 � (m+ n)).

Since the time complexity of the secondary phase of the algorithm dominates the

complexity of the primary phase, the time complexity of the algorithm is in O(n2 �

(m+ n)).

As for the space complexity we have to sum up the space needed to store all the

necessary information at a single state. In the worst case we store at a single state its

depth, the depth of last nested procedure that passed through the state, the last nested

procedure identification (target state, number of passed bl, accepting bit), the primary
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and secondary phase parrents, and a bit flag to keep the information about the full

expansion of the state. It may seem that the space needed to store these values is quite

large, however it is not so in practice. The cruicial fact is that the additional space

needed is constant for a single state. Thus it may be easily compensated by involving

more workstations in the computation.

Finally, we we should estimate the number of messages the algorithm needs to ex-

change during its execution. If we do not count messages exchanged when a coun-

terexample is recontructed and messages exchanged due to distributed memory termi-

nation detections (within which the numbers of current back-level edges and states in

the queues NLQ are collected), we can state that there are at most as many messages as

there are expansions of a state, thus O(n2 � (m+ n)).
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