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Abstract

It is known that an LTL property is expressible by an LTL formula
without any next-time operator if and only if the property is stutter
invariant. It is also known that the problem whether a given LTL
property is stutter invariant is PSPACE-complete. We extend these
results to fragments of LTL obtained by restricting the nesting depth
of the next-time operator by a given n ∈ N0. Some interesting facts
about the logic LTL follow as simple corollaries.

1 Introduction

Lamport [Lam83] observed that LTL formulae without any next-time op-
erator cannot distinguish between stutter equivalentω-words, i.e.,ω-words
which are the same up to replacing all substrings of the form a+ with a
single a (here a is a letter and a+ denotes a non-empty finite string of
a’s). Hence, properties (ω-languages) definable in this fragment of LTL are
stutter invariant. Later, Peled and Wilke [PW97] proved that every stut-
ter invariant property definable in LTL is also definable by an LTL formula

∗This work has been supported by GAČR, grant No. 201/03/1161.
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without any next-time operator. This was achieved by designing a transla-
tion algorithm which for a given LTL formulaϕ computes another formula
τ(ϕ)without any next-time operator such thatϕ and τ(ϕ) are equivalent iff
the property defined by ϕ is stutter invariant. Since the equivalence prob-
lem for LTL formulae is PSPACE-complete [SC85], one can also decide if
a given LTL formula ϕ defines a stutter invariant property—it suffices to
compute τ(ϕ) and decide if it is equivalent toϕ. This algorithm requires ex-
ponential space because the size of τ(ϕ) is exponentially larger than the size
of ϕ in general. Hence, it is surely not optimal—due to [PWW98] we know
that the problem whether a given LTL formula ϕ defines a stutter invari-
ant property is PSPACE-complete. However, the space complexity of the
aforementioned algorithm can be improved from exponential to polyno-
mial space by employing an alternative translation algorithm due to Etes-
sami [Ete00]. In this case, the resulting formula τ(ϕ) can be represented by
a circuit of polynomial size (though the size of τ(ϕ) is still exponential in
the nesting depth of the next-time operator in ϕ). See Section 3 for further
comments.

In our paper, we generalize the above discussed results to fragments
of LTL where the nesting depth of the next-time operator is bounded by
a given n ∈ N0. We provide a characterization of LTL properties which
are expressible in these fragments, and design a polynomial-space algo-
rithm which decides whether a given LTL formula is expressible in a given
fragment (the matching PSPACE-lower bound is due to [PWW98]). Some
interesting observations about the logic LTL follow as simple corollaries
to our results. For example, it can be easily shown that by increasing the
nesting depth of the next-time operator one always yields a strictly more
expressive fragment of LTL (this is intuitively clear but a formal proof is
not completely trivial), that the ‘G2p’ formula is not expressible in LTL, etc.

2 Background

The syntax of linear temporal logic (LTL) [Pnu77] is given by the following
abstract syntax equation:

ϕ ::= p | ¬ϕ | ϕ1 ∧ϕ2 | Xϕ | ϕ1Uϕ2

Here p ranges over a countable set AP = {p, q, . . . } of atomic propositions.
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An alphabet is a (finite) set Σ = 2A, where A is a finite subset of AP.
Elements of Σ are called letters. An ω-word over Σ is an infinite sequence
α = α(0)α(1) · · · of letters from Σ. The set of allω-words over Σ is denoted
by Σω. A property (orω-language) over Σ is a set L ⊆ Σω. For all α ∈ Σω and
i ∈ N0, the symbol αi denotes the ω-word obtained from α by omitting its
first i elements (hence, α0 = α).

The validity of an LTL formula ϕ for a given α ∈ Σω is defined induc-
tively as follows:

α |= p iff p ∈ α(0)

α |= ¬ϕ iff α 6|= ϕ

α |= ϕ1 ∧ϕ2 iff α |= ϕ1 ∧ α |= ϕ2

α |= Xϕ iff α1 |= ϕ

α |= ϕ1Uϕ2 iff ∃i ∈ N0 : αi |= ϕ2 ∧ ∀0 ≤ j < i : αj |= ϕ1

Let Σ be an alphabet. Each LTL formula ϕ defines a unique property LΣϕ
over Σ given by LΣϕ = {α ∈ Σω | α |= ϕ}. Let AP(ϕ) be the set of all atomic
propositions which appear in ϕ. The canonical alphabet of ϕ is the alphabet
Σϕ = 2

AP(ϕ) and the canonical property ofϕ is the property LΣϕϕ (denoted just
by Lϕ for short). A property L is an LTL property iff L = Lϕ for some LTL
formula ϕ. LTL formulae ϕ,ψ are equivalent if LΣϕ = L

Σ
ψ for every alphabet

Σ.

Remark 2.1. It can be easily shown that LTL formulae ϕ,ψ such that AP(ϕ) =
AP(ψ) are equivalent iff Lϕ = Lψ.

In this paper, we are mainly interested in fragments of LTL obtained
by restricting the nesting depth of the X operator to a certain level. For-
mally, for every LTL formula ϕ we inductively define its X-depth (denoted
depth(ϕ)) by

depth(p) = 0

depth(¬ϕ) = depth(ϕ)
depth(ϕ1 ∧ϕ2) = max{depth(ϕ1), depth(ϕ2)}
depth(Xϕ) = depth(ϕ) + 1
depth(ϕ1Uϕ2) = max{depth(ϕ1), depth(ϕ2)}

The set of all LTL formulae whose X-depth is less or equal to a given n ∈ N0
is denoted by LTL(Xn). A property L is an LTL(Xn) property iff L = Lϕ for
some ϕ ∈ LTL(Xn).

3



Let α be an ω-word and i ∈ N0. We say that α(i) is redundant iff
α(i) = α(i+1) and there is j > i such that α(i) 6= α(j). The canonical form
of α is the ω-word obtained from α by deleting all redundant letters. Two
ω-words α,β are stutter equivalent iff they have the same canonical form.
A property L is stutter invariant iff it is closed under stutter equivalence.
Stutter invariant LTL properties are classified by the following theorem:

Theorem 2.2. Let L be an LTL property. L is stutter invariant iff L is an LTL(X0)
property.

The ‘⇐=’ direction has been observed by Lamport [Lam83]. The other
direction is due to Peled and Wilke [PW97].

Remark 2.3. Theorem 2.2 cannot be extended to all ω-regular properties1. For
example, the regular and stutter invariant property (a+b+a+b+)∗cω (where
a, b, c ∈ Σ) is not an LTL property. This can be easily shown, e.g., with the
help of results presented in [KS02]. See Section 4 for further comments.

A related result (taken from [PWW98]) is

Theorem 2.4. Let ϕ be an LTL formula. The problem whether Lϕ is an LTL(X0)
property is PSPACE-complete.

3 The Results

In this section we generalize Theorem 2.2 and Theorem 2.4 to LTL(Xn) (for
arbitraryn ∈ N0). Our proofs are obtained by adapting the techniques used
for LTL(X0).

The generalization is based on a simple observation that LTL(Xn) for-
mulae cannot distinguish between n+1 and more adjacent occurrences of
the same letter in a given ω-word. Formally, let Σ be an alphabet, n ∈ N0,
andα ∈ Σω. A letterα(i) is n-redundant if α(i) = α(i+1) = · · · = α(i+n+1)
and there is some j > i such that α(i) 6= α(j). The n-canonical form of α, de-
noted [n:α], is obtained from α by deleting all n-redundant letters. Two
ω-words α,β are n-stutter equivalent iff [n:α] = [n:β]. A property L is n-
stutter invariant iff it is closed under n-stutter equivalence.

1ω-regular properties are the properties definable byω-regular expressions or (equiva-
lently) by Büchi automata [Tho90].
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Example 3.1. Let a, b, c ∈ Σ and α = aaaab cccccaabω . Then [0:α] =
ab cabω, [1:α] = aab ccaabω, and [2:α] = aaab cccaabω .

Note that for n = 0, all of the notions just defined coincide with the
ones of Section 2.

Theorem 3.2. Let Σ be an alphabet, n ∈ N0, and ϕ ∈ LTL(Xn). The property
LΣϕ is n-stutter invariant.

Proof. We prove (by induction on the structure of ϕ) that for every α ∈ Σω

we have that α |= ϕ iff [n:α] |= ϕ.

• ϕ ≡ p. Since α(0) = [n:α](0), we are done.

• ϕ ≡ ¬ψ or ϕ ≡ ψ∧ ρ. Immediate.

• ϕ ≡ Xψ. Then n ≥ 1 and ψ ∈ LTL(Xn−1). First, observe that the
(n−1)-canonical form of [n:α]1 is exactly [n−1:α1]. Now α |= Xψ iff
α1 |= ψ iff [n−1:α1] |= ψ (we just applied induction hypotheses) iff
[n:α]1 |= ψ (here we applied our induction hypotheses to the word
[n:α]1 using the observation above) iff [n:α] |= Xψ.

• ϕ ≡ ψU ρ. We define a function f : N0 → N0 as follows.

f(i) =


0 if i = 0
f(i−1) if i > 0 and α(i−1) is n-redundant
f(i−1) + 1 otherwise

The function f is nondecreasing, surjective, and for every i ∈ N0 it
holds that [n:αi] = [n:α]f(i). We need to show that α |= ψUρ iff
[n:α] |= ψUρ.

“=⇒”: If α |= ψUρ then there is j ≥ 0 such that αj |= ρ and for all
i < j it holds that αi |= ψ. By induction hypothesis we obtain that
[n:αj] |= ρ and [n:αi] |= ψ for every i < j. Moreover, [n:α]f(j) |= ρ and
[n:α]i ′ |= ψ for every i′ < f(j) (see the remarks about f above). This
means that [n:α] |= ψU ρ.

“⇐=”: Suppose that [n:α] |= ψUρ. Then there is j ≥ 0 such that
[n:α]j |= ρ and for all i < j it holds that [n:α]i |= ψ. Let j ′ ∈ N0 be
the least number such that f(j′) = j (hence, for all i′ < j ′ we have that
f(i ′) < f(j′)). Then [n:α]j = [n:αj ′] and by induction hypothesis we
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get that αj ′ |= ρ. Similarly, for all i′ < j ′ we have that f(i′) < f(j′) = j
and thus [n:α]f(i ′) |= ψ. By induction hypothesis, αi ′ |= ψ. To sum
up, α |= ψUρ.

Theorem 3.2 says that all LTL(Xn) properties are n-stutter invariant.
Hence, the theorem can be used to show that a given property is not ex-
pressible in LTL(Xn) (or even in LTL).

Example 3.3. The standard example of anω-regular property which is not defin-
able in LTL is ‘G2p’ (see, e.g., [Tho90]). This property consists of all α ∈ {∅, {p}}ω

such that α(i) = {p} for every even i ∈ N0. With the help of Theorem 3.2 we
can easily prove that G2p is not an LTL(Xn) property for any n ∈ N0 (hence,
it is not an LTL property). Suppose the converse, i.e., there are n ∈ N0 and
ϕ ∈ LTL(Xn) such that Lϕ = G2p. Now consider the words α = {p}2n+2 ∅ {p}ω

and β = {p}2n+1 ∅ {p}ω. Clearly α 6∈ Lϕ, β ∈ Lϕ, and [n:α] = [n:β]. Hence, Lϕ
is not n-stutter invariant which contradicts Theorem 3.2.

Example 3.4. In a similar way we can also show that the LTL(Xn) hierearchy
is semantically strict, i.e., for every n ∈ N there is ϕn ∈ LTL(Xn) which is not
expressible in LTL(Xn−1). We define

ϕn ≡

n︷ ︸︸ ︷
X · · ·Xp.

Let us suppose that Lϕn is an LTL(Xn−1) property. If we put α = {p}n+1 ∅ω

and β = {p}n ∅ω, we see that α ∈ Lϕn , β 6∈ Lϕn , and [n−1:α] = [n−1:β]. It
contradicts Theorem 3.2.

Now we show that every n-stutter invariant LTL property is definable
in LTL(Xn). Our proof is similar to the one for 0-stuttering presented by
Etessami in [Ete00]. Alternatively, one could also generalize the proof pre-
sented earlier in [PW97]. In fact, this would result in a somewhat simpler
construction; however, it would not allow to derive the PSPACE-upper
bound for the problem whether a given LTL property is an LTL(Xn) prop-
erty (see Corollary 3.6).

Theorem 3.5. Every n-stutter invariant LTL property is an LTL(Xn) property.
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Proof. Let ϕ be an LTL formula such that Lϕ is n-stutter invariant. We
translate ϕ into an equivalent formula τn(ϕ) whose X-depth is n.

A literal is a (possibly negated) proposition of AP(ϕ). For every non-
empty sequence `0 · · · `k of literals we define a formula σ`0···`k as follows:

σ`0···`k ≡ `0 ∧ X(`1 ∧ X(`2 ∧ · · ·∧ X(`k−1 ∧ X`k) · · · ))

Observe that the X-depth of σ`0···`k is k. A similar notation is used also for
sequences of letters; for every a ∈ Σϕ we define

γa ≡
∧
p∈a

p ∧
∧

p∈AP(ϕ)ra

¬p

and for every non-empty sequence a0 · · ·ak of letters we put

σa0···ak ≡ a0 ∧ X(a1 ∧ X(a2 ∧ · · ·∧ X(ak−1 ∧ Xak) · · · ))

The sequence consisting of i ∈ N copies of an atomic proposition p is de-
noted pi, and the same notation is used also for sequences of letters.

The translation τn(ϕ) is defined by induction on the structure of ϕ.

• τn(p) = p

• τn(¬ψ) = ¬τn(ψ)

• τn(ψ∧ ρ) = τn(ψ) ∧ τn(ρ)

• τn(ψU ρ) = τn(ψ)U τn(ρ)

• τn(Xψ) = Φ(ψ) ∨ Γ(ψ) where

Φ(ψ) ≡
∧

p∈AP(ϕ)

(Gp∨G¬p) ∧ τn(ψ)

and

Γ(ψ) ≡
∨

p∈AP(ϕ)

(δ(p) ∧ (
∨

1<i≤n+1

ξ(ψ,p, i))).

The subformulae δ(p) and ξ(ψ,p, i) of Γ(ψ) are constructed as fol-
lows:

δ(p) ≡
∧

q∈AP(ϕ)r{p}

(p∧ (qU¬p∨¬qU¬p)) ∨ (¬p∧ (qUp∨¬qUp))
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and

ξ(ψ,p, i) ≡


(σpi¬p ∧ pU (σpi−1¬p ∧ τn(ψ))) ∨ if i ≤ n
∨ (σ¬pip ∧¬pU (σ¬pi−1p ∧ τn(ψ)))

(σpn+1 ∧ pU (σpn¬p ∧ τn(ψ))) ∨ if i = n+1
∨ (σ¬pn+1 ∧¬pU (σ¬pnp ∧ τn(ψ)))

One can readily confirm that the X-depth of τn(ϕ) is n. We prove that if
Lϕ is n-stutter invariant, then ϕ is equivalent to τn(ϕ). Since ϕ and τn(ϕ)
use the same set of atomic propositions, it suffices to show that Lϕ = Lτn(ϕ)
(see Remark 2.1). Moreover, as both Lϕ and Lτn(ϕ) are n-stutter closed (in
the case of Lτn(ϕ) we apply Theorem 3.2), it actually suffices to prove that
ϕ and τn(ϕ) cannot be distinguished by any n-stutter free ω-word α ∈ Σωϕ
(an ω-word α is n-stutter free if α = [n:α]).

That is, for every n-stutter free α ∈ Σωϕ we need to show that α |= ϕ iff
α |= τn(ϕ). We proceed by induction on the structure of ϕ. All subcases
except for ϕ = Xψ are trivial. Here we distinguish two possibilities:

• α = aω for some a ∈ Σϕ. Then α1 = α and thus we get α |= Xψ
iff α1 |= ψ iff α1 |= τn(ψ) (here we used induction hypotheses) iff
α |= τn(ψ). Hence, this subcase is ‘covered’ by the formula Φ(ψ)
which says that α is of the form aω and that τn(ψ) holds.

• α = aibβ where a, b ∈ Σϕ, a 6= b, 1 ≤ i ≤ n + 1, and β ∈ Σωϕ .

First, let us assume that i ≤ n. Then aibβ |= Xψ iff ai−1bβ |= ψ

iff ai−1bβ |= τn(ψ) (we used induction hypotheses) iff aibβ |=
σaib ∧ aU (σai−1b ∧ τn(ψ)). The structure of the last formula is al-
ready similar to the structure of ξ(ψ,p, i). The next step is to real-
ize that since a 6= b, there must be some p ∈ (a r b) ∪ (b r a);
a characteristic feature of p is that no other q ∈ AP(ϕ) changes its
(in)validity in the word aibβ ‘earlier’ than p. So, p ∈ (arb)∪ (bra)
iff aibβ |= δ(p). Moreover, if aibβ |= δ(p), then we also have that
aibβ |= σaib ∧ aU (σai−1b ∧ τn(ψ)) iff aibβ satisfies either the for-
mula

σpi¬p ∧ pU (σpi−1¬p ∧ τn(ψ)),

or the formula

σ¬pip ∧¬pU (σ¬pi−1p ∧ τn(ψ)).
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which is equivalent to aibβ |= ξ(ψ,p, i). Observe that the first for-
mula holds when p ∈ a r b, and the second formula holds when
p ∈ br a.

The case when i = n+1 is handled similarly; we have that an+1bβ |=
Xψ iff anbβ |= ψ iff anbβ |= τn(ψ) (we used induction hypotheses)
iff an+1bβ |= σan+1 ∧ aU (σanb ∧ τn(ψ)). Using the same argument
as above, we argue that if an+1bβ |= δ(p), then an+1bβ |= σan+1 ∧

aU (σanb ∧ τn(ψ)) iff an+1bβ |= ξ(ψ,p, i).

To sum up, the case when α = aibβ is ‘covered’ by the formula Γ(ψ).

In general, the size of τn(ϕ) is exponential in depth(ϕ). However, the size
of the circuit2 representing τn(ϕ) is only O(n · |ϕ|2). To see this, realize the
following:

(1) The total size of all circuits representing the formulae δ(p), σpi¬p,
σ¬pip, σpn+1 , σ¬pn+1 (for all p ∈ AP(ϕ) and 0 ≤ i ≤ n), isO(n2 · |ϕ|2).

(2) Assuming that the circuits of (1) and the circuit representing τn(ψ)
are at our disposal, we need to add only a constant number of new
nodes to represent the formula ξ(ψ,p, i) for given p ∈ AP(ϕ) and
1 ≤ i ≤ n+1. It means that we need to add O(n · |ϕ|) new nodes
when constructing the circuit for τn(Xψ).

(3) Since ϕ contains O(|ϕ|) subformulae of the form Xψ, the circuit rep-
resenting ϕ has O(n2 · |ϕ|2) nodes in total.

Corollary 3.6. Let ϕ be an LTL formula and n ∈ N0. The problem if Lϕ is an
LTL(Xn) property is PSPACE-complete (assuming unary encoding of n).

Proof. The PSPACE-lower bound holds even in the special case when n = 0
[PWW98]. The matching PSPACE-upper bound is obtained by applying
the same argument as in [Ete00]—due to Theorem 3.2 and Theorem 3.5 we
have that Lϕ is an LTL(Xn) property iff ϕ is equivalent to τn(ϕ). First, we
construct the circuit representing τn(ϕ) (its size is O(n2 · |ϕ|2) as shown
above). Then we check the equivalence between the circuit and ϕ, which
can be also done in polynomial space [SC85].

2The circuit representing a given LTL formula ϕ is obtained from the syntax tree ofϕ by
identifying all nodes which correspond to the same subformula.
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4 Concluding remarks

Theorem 3.5 is closely related to a result presented in [KS02]. Roughly
speaking, in this paper it is shown that each property expressible by an
LTL formula ϕ where the X-depth is bounded by n and the U -depth is
bounded bym is closed under deleting/pumping of every subword which
is ‘sufficiently periodic’ (the condition depends on n, m, and the length
of the subword). For example, if we take the property (a+b+a+b+)∗cω

where a, b, c ∈ Σ, and arbitrary n,m ∈ N0, then there is (sufficiently large)
k ∈ N0 such that the leading ab subword becomes ‘sufficiently periodic’ in
the the word (abab)kcω. Hence, the considered (ω-regular and 0-stutter
invariant) property is not expressible in LTL, because it does not contain
the word ab(abab)k−1cω.

Our proof of Theorem 3.2 is based on the proof of the above discussed
result presented in [KS02]. Since it is quite simple, we believe it might be
of some use in introductory courses on LTL. It is not much longer than
the proof for 0-stuttering (which is often included) and it brings interesting
consequences ‘for free’. Theorem 3.5 and Corollary 3.6 do not follow from
the work presented in [KS02] (in fact, if we reformulate Theorem 3.5 for
the aforementioned generalized form of stutter invariance, it does not hold
[KS02]).
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