
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

An Effective Characterization of Properties
Definable by LTL Formulae with a Bounded

Nesting Depth of the Next-Time Operator

by

Antonín Kučera
Jan Strejček

FI MU Report Series FIMU-RS-2004-04

Copyright c© 2004, FI MU May 2004

An Effective Characterization of Properties
Definable by LTL Formulae with a Bounded

Nesting Depth of the Next-Time Operator∗

Antonı́n Kučera Jan Strejček

Faculty of Informatics

Masaryk University

Botanická 68a, 60200 Brno

Czech Republic

{tony,strejcek }@fi.muni.cz

Abstract

It is known that an LTL property is expressible by an LTL formula
without any next-time operator if and only if the property is stutter
invariant. It is also known that the problem whether a given LTL
property is stutter invariant is PSPACE-complete. We extend these
results to fragments of LTL obtained by restricting the nesting depth
of the next-time operator by a given n ∈ N0. Some interesting facts
about the logic LTL follow as simple corollaries.

1 Introduction

Lamport [Lam83] observed that LTL formulae without any next-time op-
erator cannot distinguish between stutter equivalentω-words, i.e.,ω-words
which are the same up to replacing all substrings of the form a+ with a
single a (here a is a letter and a+ denotes a non-empty finite string of
a’s). Hence, properties (ω-languages) definable in this fragment of LTL are
stutter invariant. Later, Peled and Wilke [PW97] proved that every stut-
ter invariant property definable in LTL is also definable by an LTL formula

∗This work has been supported by GAČR, grant No. 201/03/1161.

1

without any next-time operator. This was achieved by designing a transla-
tion algorithm which for a given LTL formulaϕ computes another formula
τ(ϕ)without any next-time operator such thatϕ and τ(ϕ) are equivalent iff
the property defined by ϕ is stutter invariant. Since the equivalence prob-
lem for LTL formulae is PSPACE-complete [SC85], one can also decide if
a given LTL formula ϕ defines a stutter invariant property—it suffices to
compute τ(ϕ) and decide if it is equivalent toϕ. This algorithm requires ex-
ponential space because the size of τ(ϕ) is exponentially larger than the size
of ϕ in general. Hence, it is surely not optimal—due to [PWW98] we know
that the problem whether a given LTL formula ϕ defines a stutter invari-
ant property is PSPACE-complete. However, the space complexity of the
aforementioned algorithm can be improved from exponential to polyno-
mial space by employing an alternative translation algorithm due to Etes-
sami [Ete00]. In this case, the resulting formula τ(ϕ) can be represented by
a circuit of polynomial size (though the size of τ(ϕ) is still exponential in
the nesting depth of the next-time operator in ϕ). See Section 3 for further
comments.

In our paper, we generalize the above discussed results to fragments
of LTL where the nesting depth of the next-time operator is bounded by
a given n ∈ N0. We provide a characterization of LTL properties which
are expressible in these fragments, and design a polynomial-space algo-
rithm which decides whether a given LTL formula is expressible in a given
fragment (the matching PSPACE-lower bound is due to [PWW98]). Some
interesting observations about the logic LTL follow as simple corollaries
to our results. For example, it can be easily shown that by increasing the
nesting depth of the next-time operator one always yields a strictly more
expressive fragment of LTL (this is intuitively clear but a formal proof is
not completely trivial), that the ‘G2p’ formula is not expressible in LTL, etc.

2 Background

The syntax of linear temporal logic (LTL) [Pnu77] is given by the following
abstract syntax equation:

ϕ ::= p | ¬ϕ | ϕ1 ∧ϕ2 | Xϕ | ϕ1Uϕ2

Here p ranges over a countable set AP = {p, q, . . . } of atomic propositions.

2

An alphabet is a (finite) set Σ = 2A, where A is a finite subset of AP.
Elements of Σ are called letters. An ω-word over Σ is an infinite sequence
α = α(0)α(1) · · · of letters from Σ. The set of allω-words over Σ is denoted
by Σω. A property (orω-language) over Σ is a set L ⊆ Σω. For all α ∈ Σω and
i ∈ N0, the symbol αi denotes the ω-word obtained from α by omitting its
first i elements (hence, α0 = α).

The validity of an LTL formula ϕ for a given α ∈ Σω is defined induc-
tively as follows:

α |= p iff p ∈ α(0)

α |= ¬ϕ iff α 6|= ϕ

α |= ϕ1 ∧ϕ2 iff α |= ϕ1 ∧ α |= ϕ2

α |= Xϕ iff α1 |= ϕ

α |= ϕ1Uϕ2 iff ∃i ∈ N0 : αi |= ϕ2 ∧ ∀0 ≤ j < i : αj |= ϕ1

Let Σ be an alphabet. Each LTL formula ϕ defines a unique property LΣϕ
over Σ given by LΣϕ = {α ∈ Σω | α |= ϕ}. Let AP(ϕ) be the set of all atomic
propositions which appear in ϕ. The canonical alphabet of ϕ is the alphabet
Σϕ = 2

AP(ϕ) and the canonical property ofϕ is the property LΣϕϕ (denoted just
by Lϕ for short). A property L is an LTL property iff L = Lϕ for some LTL
formula ϕ. LTL formulae ϕ,ψ are equivalent if LΣϕ = L

Σ
ψ for every alphabet

Σ.

Remark 2.1. It can be easily shown that LTL formulae ϕ,ψ such that AP(ϕ) =
AP(ψ) are equivalent iff Lϕ = Lψ.

In this paper, we are mainly interested in fragments of LTL obtained
by restricting the nesting depth of the X operator to a certain level. For-
mally, for every LTL formula ϕ we inductively define its X-depth (denoted
depth(ϕ)) by

depth(p) = 0

depth(¬ϕ) = depth(ϕ)
depth(ϕ1 ∧ϕ2) = max{depth(ϕ1), depth(ϕ2)}
depth(Xϕ) = depth(ϕ) + 1
depth(ϕ1Uϕ2) = max{depth(ϕ1), depth(ϕ2)}

The set of all LTL formulae whose X-depth is less or equal to a given n ∈ N0
is denoted by LTL(Xn). A property L is an LTL(Xn) property iff L = Lϕ for
some ϕ ∈ LTL(Xn).

3

Let α be an ω-word and i ∈ N0. We say that α(i) is redundant iff
α(i) = α(i+1) and there is j > i such that α(i) 6= α(j). The canonical form
of α is the ω-word obtained from α by deleting all redundant letters. Two
ω-words α,β are stutter equivalent iff they have the same canonical form.
A property L is stutter invariant iff it is closed under stutter equivalence.
Stutter invariant LTL properties are classified by the following theorem:

Theorem 2.2. Let L be an LTL property. L is stutter invariant iff L is an LTL(X0)
property.

The ‘⇐=’ direction has been observed by Lamport [Lam83]. The other
direction is due to Peled and Wilke [PW97].

Remark 2.3. Theorem 2.2 cannot be extended to all ω-regular properties1. For
example, the regular and stutter invariant property (a+b+a+b+)∗cω (where
a, b, c ∈ Σ) is not an LTL property. This can be easily shown, e.g., with the
help of results presented in [KS02]. See Section 4 for further comments.

A related result (taken from [PWW98]) is

Theorem 2.4. Let ϕ be an LTL formula. The problem whether Lϕ is an LTL(X0)
property is PSPACE-complete.

3 The Results

In this section we generalize Theorem 2.2 and Theorem 2.4 to LTL(Xn) (for
arbitraryn ∈ N0). Our proofs are obtained by adapting the techniques used
for LTL(X0).

The generalization is based on a simple observation that LTL(Xn) for-
mulae cannot distinguish between n+1 and more adjacent occurrences of
the same letter in a given ω-word. Formally, let Σ be an alphabet, n ∈ N0,
andα ∈ Σω. A letterα(i) is n-redundant if α(i) = α(i+1) = · · · = α(i+n+1)
and there is some j > i such that α(i) 6= α(j). The n-canonical form of α, de-
noted [n:α], is obtained from α by deleting all n-redundant letters. Two
ω-words α,β are n-stutter equivalent iff [n:α] = [n:β]. A property L is n-
stutter invariant iff it is closed under n-stutter equivalence.

1ω-regular properties are the properties definable byω-regular expressions or (equiva-
lently) by Büchi automata [Tho90].

4

Example 3.1. Let a, b, c ∈ Σ and α = aaaab cccccaabω . Then [0:α] =
ab cabω, [1:α] = aab ccaabω, and [2:α] = aaab cccaabω .

Note that for n = 0, all of the notions just defined coincide with the
ones of Section 2.

Theorem 3.2. Let Σ be an alphabet, n ∈ N0, and ϕ ∈ LTL(Xn). The property
LΣϕ is n-stutter invariant.

Proof. We prove (by induction on the structure of ϕ) that for every α ∈ Σω

we have that α |= ϕ iff [n:α] |= ϕ.

• ϕ ≡ p. Since α(0) = [n:α](0), we are done.

• ϕ ≡ ¬ψ or ϕ ≡ ψ∧ ρ. Immediate.

• ϕ ≡ Xψ. Then n ≥ 1 and ψ ∈ LTL(Xn−1). First, observe that the
(n−1)-canonical form of [n:α]1 is exactly [n−1:α1]. Now α |= Xψ iff
α1 |= ψ iff [n−1:α1] |= ψ (we just applied induction hypotheses) iff
[n:α]1 |= ψ (here we applied our induction hypotheses to the word
[n:α]1 using the observation above) iff [n:α] |= Xψ.

• ϕ ≡ ψU ρ. We define a function f : N0 → N0 as follows.

f(i) =

0 if i = 0
f(i−1) if i > 0 and α(i−1) is n-redundant
f(i−1) + 1 otherwise

The function f is nondecreasing, surjective, and for every i ∈ N0 it
holds that [n:αi] = [n:α]f(i). We need to show that α |= ψUρ iff
[n:α] |= ψUρ.

“=⇒”: If α |= ψUρ then there is j ≥ 0 such that αj |= ρ and for all
i < j it holds that αi |= ψ. By induction hypothesis we obtain that
[n:αj] |= ρ and [n:αi] |= ψ for every i < j. Moreover, [n:α]f(j) |= ρ and
[n:α]i ′ |= ψ for every i′ < f(j) (see the remarks about f above). This
means that [n:α] |= ψU ρ.

“⇐=”: Suppose that [n:α] |= ψUρ. Then there is j ≥ 0 such that
[n:α]j |= ρ and for all i < j it holds that [n:α]i |= ψ. Let j ′ ∈ N0 be
the least number such that f(j′) = j (hence, for all i′ < j ′ we have that
f(i ′) < f(j′)). Then [n:α]j = [n:αj ′] and by induction hypothesis we

5

get that αj ′ |= ρ. Similarly, for all i′ < j ′ we have that f(i′) < f(j′) = j
and thus [n:α]f(i ′) |= ψ. By induction hypothesis, αi ′ |= ψ. To sum
up, α |= ψUρ.

Theorem 3.2 says that all LTL(Xn) properties are n-stutter invariant.
Hence, the theorem can be used to show that a given property is not ex-
pressible in LTL(Xn) (or even in LTL).

Example 3.3. The standard example of anω-regular property which is not defin-
able in LTL is ‘G2p’ (see, e.g., [Tho90]). This property consists of all α ∈ {∅, {p}}ω

such that α(i) = {p} for every even i ∈ N0. With the help of Theorem 3.2 we
can easily prove that G2p is not an LTL(Xn) property for any n ∈ N0 (hence,
it is not an LTL property). Suppose the converse, i.e., there are n ∈ N0 and
ϕ ∈ LTL(Xn) such that Lϕ = G2p. Now consider the words α = {p}2n+2 ∅ {p}ω

and β = {p}2n+1 ∅ {p}ω. Clearly α 6∈ Lϕ, β ∈ Lϕ, and [n:α] = [n:β]. Hence, Lϕ
is not n-stutter invariant which contradicts Theorem 3.2.

Example 3.4. In a similar way we can also show that the LTL(Xn) hierearchy
is semantically strict, i.e., for every n ∈ N there is ϕn ∈ LTL(Xn) which is not
expressible in LTL(Xn−1). We define

ϕn ≡

n︷ ︸︸ ︷
X · · ·Xp.

Let us suppose that Lϕn is an LTL(Xn−1) property. If we put α = {p}n+1 ∅ω

and β = {p}n ∅ω, we see that α ∈ Lϕn , β 6∈ Lϕn , and [n−1:α] = [n−1:β]. It
contradicts Theorem 3.2.

Now we show that every n-stutter invariant LTL property is definable
in LTL(Xn). Our proof is similar to the one for 0-stuttering presented by
Etessami in [Ete00]. Alternatively, one could also generalize the proof pre-
sented earlier in [PW97]. In fact, this would result in a somewhat simpler
construction; however, it would not allow to derive the PSPACE-upper
bound for the problem whether a given LTL property is an LTL(Xn) prop-
erty (see Corollary 3.6).

Theorem 3.5. Every n-stutter invariant LTL property is an LTL(Xn) property.

6

Proof. Let ϕ be an LTL formula such that Lϕ is n-stutter invariant. We
translate ϕ into an equivalent formula τn(ϕ) whose X-depth is n.

A literal is a (possibly negated) proposition of AP(ϕ). For every non-
empty sequence `0 · · · `k of literals we define a formula σ`0···`k as follows:

σ`0···`k ≡ `0 ∧ X(`1 ∧ X(`2 ∧ · · ·∧ X(`k−1 ∧ X`k) · · ·))

Observe that the X-depth of σ`0···`k is k. A similar notation is used also for
sequences of letters; for every a ∈ Σϕ we define

γa ≡
∧
p∈a

p ∧
∧

p∈AP(ϕ)ra

¬p

and for every non-empty sequence a0 · · ·ak of letters we put

σa0···ak ≡ a0 ∧ X(a1 ∧ X(a2 ∧ · · ·∧ X(ak−1 ∧ Xak) · · ·))

The sequence consisting of i ∈ N copies of an atomic proposition p is de-
noted pi, and the same notation is used also for sequences of letters.

The translation τn(ϕ) is defined by induction on the structure of ϕ.

• τn(p) = p

• τn(¬ψ) = ¬τn(ψ)

• τn(ψ∧ ρ) = τn(ψ) ∧ τn(ρ)

• τn(ψU ρ) = τn(ψ)U τn(ρ)

• τn(Xψ) = Φ(ψ) ∨ Γ(ψ) where

Φ(ψ) ≡
∧

p∈AP(ϕ)

(Gp∨G¬p) ∧ τn(ψ)

and

Γ(ψ) ≡
∨

p∈AP(ϕ)

(δ(p) ∧ (
∨

1<i≤n+1

ξ(ψ,p, i))).

The subformulae δ(p) and ξ(ψ,p, i) of Γ(ψ) are constructed as fol-
lows:

δ(p) ≡
∧

q∈AP(ϕ)r{p}

(p∧ (qU¬p∨¬qU¬p)) ∨ (¬p∧ (qUp∨¬qUp))

7

and

ξ(ψ,p, i) ≡

(σpi¬p ∧ pU (σpi−1¬p ∧ τn(ψ))) ∨ if i ≤ n
∨ (σ¬pip ∧¬pU (σ¬pi−1p ∧ τn(ψ)))

(σpn+1 ∧ pU (σpn¬p ∧ τn(ψ))) ∨ if i = n+1
∨ (σ¬pn+1 ∧¬pU (σ¬pnp ∧ τn(ψ)))

One can readily confirm that the X-depth of τn(ϕ) is n. We prove that if
Lϕ is n-stutter invariant, then ϕ is equivalent to τn(ϕ). Since ϕ and τn(ϕ)
use the same set of atomic propositions, it suffices to show that Lϕ = Lτn(ϕ)
(see Remark 2.1). Moreover, as both Lϕ and Lτn(ϕ) are n-stutter closed (in
the case of Lτn(ϕ) we apply Theorem 3.2), it actually suffices to prove that
ϕ and τn(ϕ) cannot be distinguished by any n-stutter free ω-word α ∈ Σωϕ
(an ω-word α is n-stutter free if α = [n:α]).

That is, for every n-stutter free α ∈ Σωϕ we need to show that α |= ϕ iff
α |= τn(ϕ). We proceed by induction on the structure of ϕ. All subcases
except for ϕ = Xψ are trivial. Here we distinguish two possibilities:

• α = aω for some a ∈ Σϕ. Then α1 = α and thus we get α |= Xψ
iff α1 |= ψ iff α1 |= τn(ψ) (here we used induction hypotheses) iff
α |= τn(ψ). Hence, this subcase is ‘covered’ by the formula Φ(ψ)
which says that α is of the form aω and that τn(ψ) holds.

• α = aibβ where a, b ∈ Σϕ, a 6= b, 1 ≤ i ≤ n + 1, and β ∈ Σωϕ .

First, let us assume that i ≤ n. Then aibβ |= Xψ iff ai−1bβ |= ψ

iff ai−1bβ |= τn(ψ) (we used induction hypotheses) iff aibβ |=
σaib ∧ aU (σai−1b ∧ τn(ψ)). The structure of the last formula is al-
ready similar to the structure of ξ(ψ,p, i). The next step is to real-
ize that since a 6= b, there must be some p ∈ (a r b) ∪ (b r a);
a characteristic feature of p is that no other q ∈ AP(ϕ) changes its
(in)validity in the word aibβ ‘earlier’ than p. So, p ∈ (arb)∪ (bra)
iff aibβ |= δ(p). Moreover, if aibβ |= δ(p), then we also have that
aibβ |= σaib ∧ aU (σai−1b ∧ τn(ψ)) iff aibβ satisfies either the for-
mula

σpi¬p ∧ pU (σpi−1¬p ∧ τn(ψ)),

or the formula

σ¬pip ∧¬pU (σ¬pi−1p ∧ τn(ψ)).

8

which is equivalent to aibβ |= ξ(ψ,p, i). Observe that the first for-
mula holds when p ∈ a r b, and the second formula holds when
p ∈ br a.

The case when i = n+1 is handled similarly; we have that an+1bβ |=
Xψ iff anbβ |= ψ iff anbβ |= τn(ψ) (we used induction hypotheses)
iff an+1bβ |= σan+1 ∧ aU (σanb ∧ τn(ψ)). Using the same argument
as above, we argue that if an+1bβ |= δ(p), then an+1bβ |= σan+1 ∧

aU (σanb ∧ τn(ψ)) iff an+1bβ |= ξ(ψ,p, i).

To sum up, the case when α = aibβ is ‘covered’ by the formula Γ(ψ).

In general, the size of τn(ϕ) is exponential in depth(ϕ). However, the size
of the circuit2 representing τn(ϕ) is only O(n · |ϕ|2). To see this, realize the
following:

(1) The total size of all circuits representing the formulae δ(p), σpi¬p,
σ¬pip, σpn+1 , σ¬pn+1 (for all p ∈ AP(ϕ) and 0 ≤ i ≤ n), isO(n2 · |ϕ|2).

(2) Assuming that the circuits of (1) and the circuit representing τn(ψ)
are at our disposal, we need to add only a constant number of new
nodes to represent the formula ξ(ψ,p, i) for given p ∈ AP(ϕ) and
1 ≤ i ≤ n+1. It means that we need to add O(n · |ϕ|) new nodes
when constructing the circuit for τn(Xψ).

(3) Since ϕ contains O(|ϕ|) subformulae of the form Xψ, the circuit rep-
resenting ϕ has O(n2 · |ϕ|2) nodes in total.

Corollary 3.6. Let ϕ be an LTL formula and n ∈ N0. The problem if Lϕ is an
LTL(Xn) property is PSPACE-complete (assuming unary encoding of n).

Proof. The PSPACE-lower bound holds even in the special case when n = 0
[PWW98]. The matching PSPACE-upper bound is obtained by applying
the same argument as in [Ete00]—due to Theorem 3.2 and Theorem 3.5 we
have that Lϕ is an LTL(Xn) property iff ϕ is equivalent to τn(ϕ). First, we
construct the circuit representing τn(ϕ) (its size is O(n2 · |ϕ|2) as shown
above). Then we check the equivalence between the circuit and ϕ, which
can be also done in polynomial space [SC85].

2The circuit representing a given LTL formula ϕ is obtained from the syntax tree ofϕ by
identifying all nodes which correspond to the same subformula.

9

4 Concluding remarks

Theorem 3.5 is closely related to a result presented in [KS02]. Roughly
speaking, in this paper it is shown that each property expressible by an
LTL formula ϕ where the X-depth is bounded by n and the U -depth is
bounded bym is closed under deleting/pumping of every subword which
is ‘sufficiently periodic’ (the condition depends on n, m, and the length
of the subword). For example, if we take the property (a+b+a+b+)∗cω

where a, b, c ∈ Σ, and arbitrary n,m ∈ N0, then there is (sufficiently large)
k ∈ N0 such that the leading ab subword becomes ‘sufficiently periodic’ in
the the word (abab)kcω. Hence, the considered (ω-regular and 0-stutter
invariant) property is not expressible in LTL, because it does not contain
the word ab(abab)k−1cω.

Our proof of Theorem 3.2 is based on the proof of the above discussed
result presented in [KS02]. Since it is quite simple, we believe it might be
of some use in introductory courses on LTL. It is not much longer than
the proof for 0-stuttering (which is often included) and it brings interesting
consequences ‘for free’. Theorem 3.5 and Corollary 3.6 do not follow from
the work presented in [KS02] (in fact, if we reformulate Theorem 3.5 for
the aforementioned generalized form of stutter invariance, it does not hold
[KS02]).

References

[Ete00] Kousha Etessami. A note on a question of Peled and Wilke on
stutter-invariant LTL. Information Processing Letters, 75(6):261–
263, 2000.

[KS02] Antonı́n Kučera and Jan Strejček. The stuttering principle re-
visited: On the expressiveness of nested X and U operators in
the logic LTL. In Julian Bradfield, editor, CSL ’02: 11th Annual
Conference of the European Association for Computer Science Logic,
volume 2471 of Lecture Notes in Computer Science, pages 276–291.
Springer-Verlag, 2002.

[Lam83] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,
editor, Proceedings of the IFIP Congress on Information Processing,
pages 657–667, Amsterdam, 1983. North-Holland.

10

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of
the 18th IEEE Symposium on the Foundations of Computer Science,
pages 46–57. IEEE Computer Society Press, 1977.

[PW97] Doron Peled and Thomas Wilke. Stutter-invariant temporal
properties are expressible without the next-time operator. In-
formation Processing Letters, 63(5):243–246, 1997.

[PWW98] Doron Peled, Thomas Wilke, and Pierre Wolper. An algorith-
mic approach for checking closure properties of ω-regular lan-
guages. Theoretical Computer Science, 195(2):183–203, 1998. A
preliminary version appeared in CONCUR’96, 7th International
Conference on Concurrency Theory, Pisa, Italy, LNCS 1119,
Springer Verlag, 1996, 596-610.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional lin-
ear temporal logics. Journal of the ACM, 32:733–749, 1985.

[Tho90] Wolfgang Thomas. Automata on Infinite Objects, pages 133–192.
Elsevier, Amsterdam, 1990.

11

Copyright c© 2004, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

