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Abstract

We propose a generic method for deciding semantic equivalences be-

tween pushdown automata and finite-state automata. The abstract

part of the method is applicable to every process equivalence which is

a right PDA congruence. Practical usability of the method is demon-

strated on selected equivalences which are conceptual representa-

tives of the whole spectrum. In particular, special attention is de-

voted to bisimulation-like equivalences (including weak, early, delay,

branching, and probabilistic bisimilarity), and it is also shown how

the method applies to simulation-like and trace-like equivalences.

The generality does not lead to the loss of efficiency; the algorithms

obtained by applying our method are essentially time-optimal and

sometimes even polynomial. The list of particular results obtained by

our method includes items which are first of their kind.
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1 Introduction

The importance of pushdown automata (PDA) has recently been recognized

also in areas different from theory of formal languages. In particular, PDA

are a natural and convenient model for sequential programs with recursive

procedure calls (see, e.g., [AEM04, AEY01, EK99, ES01, EKS03]). Global

data of such a program is stored in the finite control, and the stack symbols

correspond to activation records of individual procedures. A procedure

call is thus modeled by pushing a new symbol onto the stack, and a re-

turn from the procedure is modeled by poping the symbol from the stack.

Consequently, a PDA is seen as a finite description of a “computational

behavior” rather than a language acceptor in this context1. The behavior

of a given PDA ∆ is formally defined by the associated transition system

T∆, where the states are configurations of ∆ and pα
a→ qβ if this move is

consistent with the transition function of ∆. Hence, T∆ has infinitely many

states.

One of the dominating approaches to formal verification of software

systems is equivalence-checking. The idea is to compare the behavior of a

given program with its intended behavior called the specification. Since the

two behaviors are formalized as transition systems, the comparison means

proving some kind of semantic equivalence between the initial states of the

two transition systems. Since such proofs cannot be completed by humans

for programs of realistic size, a natural question is whether the problem is

decidable and what is its complexity. This question has been considered

for many computational models and a large number of results have been

1From the language-theoretic point of view, the definition of PDA adopted in this area

corresponds to the subclass of real-time PDA. It does not mean that the concept of ε-

transitions vanished—it has only been replaced by “silent” transitions with a distinguished

label τ which may (but does not have to) be taken into account by a given semantic equiv-

alence.
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achieved during the last decade (see [Mol96, Esp97, JM99, Bou01, KJ02,

BCMS01, Srb02a] for surveys of some subfields).

In this paper we restrict our attention to the class of programs whose

behavior is definable by pushdown automata, and to the class of spec-

ifications which are definable by finite-state systems. On the other

hand, we consider a large class of equivalences which subsumes the lin-

ear/branching time spectrum of [vG99, vG93].

The state of the art: Checking semantic equivalences between two push-

down automata tends to be undecidable. Special attention has been de-

voted to stateless PDA, which are often denoted BPA2 in this context. The

first result indicating that the situation is not completely hopeless is due

to Baeten, Bergstra, and Klop [BBK93] who proved that strong bisimilarity

is decidable for normed BPA (a PDA is normed if the stack can be emp-

tied from every reachable configuration). Simpler proofs were given later

in [Cau90, Gro92, HS98], and there is even a polynomial-time algorithm

[HJM96]. The decidability result has been extended to all (not necessarily

normed) BPA in [CHS95], and an elementary upper complexity bound is

due to [BCS95]. Recently, PSPACE-hardness of this problem has been es-

tablished in [Srb02b]. Strong bisimilarity was shown to be decidable also

for normed PDA [Sti98a]. Later, Sénizergues proved that bisimilarity is de-

cidable for all PDA processes [Sén98]. For simulation-like and trace-like

equivalences, the equivalence-checking problem is undecidable even for

(normed) BPA; this follows directly from Friedman’s result [Fri76]. In the

presence of silent moves, the situation gets even worse. Weak bisimilarity

is undecidable for PDA [Srb02c], and in fact for a very modest subclass of

PDA known as one-counter nets [May03].

2This is because stateless PDA correspond to a natural fragment of ACP known as “BPA”

(Basic Process Algebra; see [BW90]). BPA cannot model global data, but they are sufficiently

powerful to model, e.g., the interprocedural data-flow [EK99]. It is worth noting that the

expressive power of PDA is strictly greater than the one of BPA w.r.t. most of the considered

semantic equivalences.
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Comparing a PDA with a finite-state system is computationally easier.

Strong and weak bisimilarity between a BPA and a finite-state system is

decidable in polynomial time [KM02b]. For general pushdown automata,

both problems are PSPACE-complete [KM02a]. Checking strong and weak

simulation equivalence between a BPA and a finite-state system is EXP-

TIME-complete [KM02a], and the same holds for general PDA. Trace-like

equivalences between BPA and finite-state systems are undecidable (this is

a direct consequence of the undecidability of language equivalence).

Our contribution: In this paper we consider the equivalence-checking

problem between PDA and finite-state systems. More precisely, we con-

sider the problem of checking full equivalence between a given PDA pro-

cess pα and a given process f of a given finite-state system T . The processes

pα and f are fully equivalent if pα is equivalent to f and, in addition, every

reachable state of pα is equivalent to some state f′ of T . In other words, the

specification must define the “global” behaviour of a given program. For

bisimulation-like equivalences, the extra condition about reachable states is

redundant. However, for simulation-like and trace-like equivalences, this

condition is fully meaningful.

We propose a unified method for deciding full equivalence between

PDA and finite-state systems. The method consists of two parts. The first

part is generic and works for every “reasonable” semantic equivalence (an

equivalence is considered “reasonable” if it is a right PDA congruence; see

Definition 3.2). The authors are not aware of any semantic equivalence

which is not reasonable in this sense. The second part is equivalence-

specific. The difference between individual equivalences is hidden in the

notion of expansion. There are four abstract conditions which guarantee

appropriateness of the designed expansion for a given equivalence. The

applicability of the method to concrete equivalences is demonstrated by

defining appropriate expansions for the main conceptual representatives.

Special attention is devoted to bisimulation-like equivalences (we explic-

4



itly consider weak, early, delay, branching, and probabilistic bisimilarity),

but we also show how to handle weak simulation equivalence and weak

trace equivalence. The application part is nontrivial and most of technical

tricks are hidden there.

Interestingly, the generality of the method does not lead to the loss

of efficiency. For bisimulation-like and simulation-like equivalences, our

method results in algorithms which are polynomial in the size of the PDA

and the finite-state system on input, and exponential in the number of con-

trol states of the PDA. So, the algorithm is exponential for general PDA, but

polynomial for each subclass of PDA where the number of control states

is bounded by a fixed constant (in particular, this applies to BPA). Since

these problems are PSPACE-hard for general PDA processes, the obtained

algorithms are essentially time-optimal. For trace-like equivalences, the al-

gorithm requires exponential time even for BPA, but the problem is also

PSPACE-hard for BPA.

The list of particular results obtained by applying our method includes

some items which are first results of their kind. Below we explicitly men-

tion some of them (the subclass of PDA where the number of control states

is bounded by a given k is denoted PDAk):

(a) Branching bisimilarity [vGW96] between PDAk and finite-state sys-

tems is decidable in polynomial time. To the best of authors’ knowledge,

this is the first result about computational tractability of branching bisimi-

larity for systems with infinitely many states. Branching bisimilarity plays

a distinguished role in the semantics of systems with silent moves [vG94],

similarly as strong bisimilarity [Par81] for processes without silent moves.

However, the “algorithmic support” for branching bisimilarity has been so

far limited only to finite-state systems. A related concept of weak bisim-

ilarity [Mil89] is substantially more developed in this sense. One reason

is that weak bisimilarity admits a simple game-theoretic characterization

[Sti98b, Tho93] and consequently it is “more manageable” than branching
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bisimilarity. Our method treats all equivalences in the same way and conse-

quently branching bisimilarity is equivalently manageable as weak bisimi-

larity in our setting (the same applies to early and delay bisimilarity; results

for these equivalences are also first of their kind).

(b) Probabilistic bisimilarity [LS91, vGSST90] between PDAk and finite-

state systems is decidable in polynomial time. This result applies to (fully)

probabilistic extensions of PDA and finite-state systems. Probabilistic

bisimilarity has so far been considered only for finite-state systems. The

obtained polynomial-time algorithm indicates that one can go beyond this

limit without losing efficiency.

(c) For simulation-like equivalences (represented by weak simulation

equivalence), we prove that full equivalence between PDAk and finite-state

systems is decidable in polynomial time. Since the non-full variant of the

problem is EXPTIME-complete even for BPA [KM02a], this result shows

that the extra condition about reachable states used in the definition of full

equivalence actually makes the problem more tractable (rather than more

complicated). The same applies to trace-like equivalences (represented by

weak trace equivalence in this paper). Trace-like equivalences between BPA

and finite-state systems are undecidable; this is a direct consequence of the

undecidability of language equivalence. However, full trace-like equiva-

lences between PDA and finite-state systems are decidable in exponential

time (this problem is PSPACE-hard even for BPA).

Another generic outcome of our method is an algorithm deciding

whether a given finite-state process f is the ∼-quotient of a given PDA

process pα for a given semantic equivalence ∼. The complexity of this

algorithm is essentially the same as the complexity of deciding full ∼-

equivalence. In particular, it is polynomial for PDAk processes when ∼

is simulation-like, and exponential for PDA processes when ∼ is trace-like.

In the context of formal verification, semantic quotients are used as suc-

cinct representations of original systems. Since most (if not all) of the ex-
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isting process equivalences are preserved under their respective quotients

[Kuč99, KE03], the information about the state-space of a given process is

faithfully preserved in its ∼-quotient.

This paper is organized as follows. We start with basic definitions in

Section 2. In Section 3, a suitable composition principle allowing to derive

new pairs of equivalent processes from already existing ones is developed.

This, in turn, allows to represent full equivalence between a given PDA and

a given finite-state system by a finite relation called base. The method is re-

lated to the technique of bisimulation bases pioneered by Caucal [Cau90],

and can also be seen as a generalization of the method used in [KM02b] to

prove that weak bisimilarity between BPA and finite-state systems is decid-

able in polynomial time. In Section 4 we show how to compute the base.

The first part of our development is again generic; we give an abstract al-

gorithm for computing the base and identify the equivalence-specific part

of the problem which is hidden in the notion of expansion. In subsequent

subsections, we show how to define expansions for various concrete pro-

cess equivalences.

2 Basic Definitions

Definition 2.1. A transition system is a triple T = (S,→,A) where S is a finite

or countably infinite set of states,A is a finite set of actions, and→ ⊆ S×A×S

is a transition relation.

We write s
a→ t instead of (s, a, t) ∈ →, and we extend this notation to

the elements of A∗ in the standard way. We say that a state t is reachable

from a state s, written s →∗ t, if there is w ∈ A∗ such that s
w→ t. Let τ be

a distinguished silent action, and let Aτ = A ∪ {τ}. For every a ∈ Aτ we

define the relation a⇒ ⊆ S× S as follows:

• s
τ⇒ t iff there is a sequence of the form s = p0

τ→ · · · τ→ pk = t where

k ≥ 0;
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• s
a⇒ t where a 6= τ iff there are p, q such that s

τ⇒ p
a→ q

τ⇒ t.

From now on, a process is formally understood as a state of (some) transi-

tion system. Intuitively, transitions from a given process s model possible

computational steps, and the silent action τ is used to mark those steps

which are internal (i.e., not externally observable).

Definition 2.2. Let s be a process of a transition system T = (S,→,A), and let

∼ be a process equivalence. The ∼-quotient of s is the process [s] of the transition

system T /∼ = (S/∼,A,�) where [t]
a� [u] iff there are some t′, u ′ ∈ S such

that t ∼ t′, u ∼ u ′, and t ′
a→ u ′.

Most (if not all) of the existing process equivalences are preserved under

quotients in the sense that each process is equivalent to its corresponding

∼-quotient (see [Kuč99, KE03] for a more detailed discussion).

Definition 2.3. A pushdown automaton (PDA) is a tuple ∆ = (Q, Γ,A, δ)

where Q is a finite set of control states, Γ is a finite stack alphabet, A is a finite

input alphabet, and δ : (Q × Γ) → 2A×Q×Γ
≤2

is a transition function where

Γ≤2 = {ε} ∪ Γ ∪ (Γ×Γ)

In the rest of this paper we adopt a more intuitive notation, writing

pX
a→ qβ ∈ δ instead of (a, (q, β)) ∈ δ(p, X). To ∆ we associate the tran-

sition system T∆ where Q × Γ∗ is the set of states (we write pα instead of

(p, α)), A is the set of actions, and the transition relation is determined by

pXα
a→ qβα iff pX

a→ qβ ∈ δ.

3 A Finite Semantic Base for PDA

For the rest of this section, let us fix a pushdown automaton ∆ = (Q, Γ,A, δ)

and a finite state system T = (F,A,→). The symbol F⊥ denotes the set

F ∪ {⊥}, where ⊥ 6∈ F stands for “undefined”.
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Definition 3.1. For every process pα of ∆ we define the set Mpα = {q ∈ Q |

pα →∗ qε}. A function F : Q → F⊥ is compatible with pα iff for every

q ∈ Mpα we have that F(q) 6= ⊥. The class of all functions that are compatible

with pα is denoted C(pα).

For every process pα of ∆ and every F ∈ C(pα) we define the process

pαF whose transitions are determined by the following rules:

pα
a→ qβ

pαF
a→ qβF

F ∈ C(pα)
F(p)

a→ f

pF
a→ pF [f/p]

F ∈ C(pε)

Here F [f/p] : Q → F⊥ is a function which returns the same result as F

for every argument except for p where F [f/p](p) = f. In other words,

pαF behaves like pα until the point when the stack is emptied and a con-

figuration of the form qε is entered; from that point on, pαF behaves

like F(q). Note that if F ∈ C(pα) and pα →∗ qβ, then F ∈ C(qβ).

We put Stack(∆, F) = Γ∗ ∪ {pαF | p ∈ Q, α ∈ Γ∗,F ∈ (F⊥)
Q}, and

P(∆, F) = {pα | p ∈ Q, α ∈ Γ∗} ∪ {pαF | p ∈ Q, α ∈ Γ∗,F ∈ C(pα)}.

Definition 3.2. We say that an equivalence ∼ over P(∆, F) ∪ F is a right PDA

congruence iff the following conditions are satisfied:

• For every process pα of ∆ and all w, v ∈ Stack(∆, F) we have that if qw ∼ qv

for all q ∈Mpα, then also pαw ∼ pαv.

• pF ∼ F(p) for every pF ∈ P(∆, F). (This condition is satisfied by all “be-

havioral” equivalences which do not distinguish between isomorphic processes.

However, ∼ can be an arbitrary equivalence, and therefore this condition is not

redundant.)

One intuitively expects that every “reasonable” semantic equivalence

should be a right PDA congruence. In particular, bisimulation-like,

simulation-like, and trace-like equivalences (even in their “weak” forms)

are right PDA congruences. For the rest of this section, we fix a right PDA

congruence ∼.
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In this paper we consider the problem of full equivalence checking be-

tween PDA and finite-state processes. The notion of full equivalence is

introduced in our next definition.

Definition 3.3. Let pα be a process of ∆ and f ∈ F. We say that pα is fully

equivalent to f (with respect to ∼), written pα - f, iff pα ∼ f and for every

pα →∗ qβ there is some f′ ∈ F such that qβ ∼ f′. (Note that f′ does not have to

be reachable from f.)

Now we formulate a composition lemma for pushdown processes.

Lemma 3.4. Let pαG - f, where G ∈ C(pα) and f ∈ F. Further, let β, γ ∈ Γ∗

andH : Q→ F⊥. Then the following holds:

(1) If qβ - G(q) for all q ∈Mpα, then pαβ - f.

(2) If H ∈ C(qγ) and qγH - G(q) for all q ∈ Mpα, then H ∈ C(pαγ) and

pαγH - f.

Proof.

(1) First we show that for every pα →∗ p ′α ′ we have that p ′α ′β ∼ p ′α ′G.

Clearly Mp ′α ′ ⊆Mpα. Since qβ - G(q) and G(q) ∼ qG for all q ∈Mp ′α ′ ,

we have that qβ ∼ qG for each q ∈Mp ′α ′ . Hence, p′α ′β ∼ p ′α ′G because

∼ is a right PDA congruence.

Now we can conclude that pαβ ∼ pαG ∼ f. It remains to show that for

every pαβ →∗ rγ there is some f′ ∈ F such that rγ ∼ f′. There are two

possibilities:

(a) pαβ →∗ p ′α ′β = rγ where pα →∗ p ′α ′. Then rγ = p′α ′β ∼ p ′α ′G.

Since pαG - f and pαG →∗ p ′α ′G, there is some f′ ∈ F such that

p ′α ′G ∼ f ′, hence also rγ = p′α ′β ∼ f ′ as needed.

(b) pαβ →∗ qβ →∗ rγ where pα →∗ qε. Since qβ - G(q) and qβ →∗ rγ,

there must be some f′ ∈ F such that rγ ∼ f′.

(2) Similarly.
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Definition 3.5. Let α ∈ Γ∗, F ,G : Q→ F⊥. We write

• α ' F iff ∀p ∈ Q : F(p) 6= ⊥ =⇒ pα - F(p);
• αG ' F iff ∀p ∈ Q : F(p) 6= ⊥ =⇒ G ∈ C(pα) ∧ pαG - F(p).

Definition 3.6. Let

K = {(ε,F) | ε ' F } ∪ {(G,F) | G ' F } ∪ K′

where K ′ ⊆ Γ×(F⊥)Q ∪ (Γ×(F⊥)Q))×(F⊥)Q). (That is, K′ consists of (some)

pairs of the form (X,F) and (XG,F)).

We say that K is well-formed iff K satisfies the following conditions:

• if (XG,F) ∈ K and F(p) 6= ⊥, then G ∈ C(pX);

• if (X,F) ∈ K (or (XG,F) ∈ K) and (F ,H) ∈ K, then also (X,H) ∈ K (or

(XG,H) ∈ K, resp.).

It is clear that there are only finitely many well-formed sets, and that

there exists the greatest well-formed set G whose size isO(|Γ | · |F|2·|Q|). Fur-

ther, observe that if ∼ is decidable for finite-state processes, then G is effec-

tively constructible.

Definition 3.7. Let K be a well-formed set. The closure of K, denoted Cl(K), is

the least set L satisfying the following conditions:

(1) K ⊆ L;

(2) if (αG,F) ∈ L, (ε,G) ∈ K, and α6=ε, then (α,F) ∈ L;

(3) if (αG,F)∈L, (H,G)∈K, and α6=ε, then (αH,F) ∈ L;

(4) if (αG,F)∈L, (X,G)∈K, and α6=ε, then (αX,F) ∈ L;

(5) if (αG,F) ∈ L, (XH,G) ∈ K, and α6=ε, then (αXH,F) ∈ L.

Note that Cl(K) =
⋃∞
i=0 Cli(K) where Cl0(K) = K and Cli+1(K) consists

of exactly those pairs which are either in Cli(K) or can be derived from K

and Cli(K) by applying one of the rules (1)–(5) of Definition 3.7. Another

simple observation (which will be useful later) is the following:
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Lemma 3.8. Let K be a well-formed set, and let (F ,H) ∈ K. If (α,F) ∈ Cli(K),

then also (α,H) ∈ Cli(K). Similarly, if (αG,F) ∈ Cli(K), then also (αG,H) ∈

Cli(K).

For our purposes, the following well-formed set is particularly impor-

tant:

Definition 3.9. The base B is defined as follows:

B = {(ε,F) | ε ' F } ∪ {(G,F) | G ' F } ∪ {(X,F) | X ' F }

∪ {(XG,F) | XG ' F }

Theorem 3.10. Let α ∈ Γ∗ and F ,G : Q→ F⊥. We have

• α ' F iff (α,F) ∈ Cl(B);

• αG ' F iff (αG,F) ∈ Cl(B).

Proof. For the “⇐” direction, it suffices to show that all of the rules intro-

duced in Definition 3.7 preserve the relation '. We give an explicit proof

just for (5) (the other cases follow similarly). Let αG ' F and XH ' G. We

show that αXH ' F . So, let p ∈ Q such that F(p) 6= ⊥. Since αG ' F ,

we have that pαG - F(p). For every q ∈ Mpα we have that G(q) 6= ⊥.

Hence, H ∈ C(qX) and qXH - G(q) because XH ' G. Now we can apply

Lemma 3.4 to conclude that H ∈ C(pαX) and pαXH - F(p). Thus, we

obtain αXH ' F .

The “⇒” direction will be shown by induction on the length of α. If

α = ε, we are done immediately because for all ε ' F and G ' F we have

that (ε,F) and (G,F) are in B. Now assume that α = βX, and let βX ' F

(the case when βXG ' F follows in the same way and therefore it is not

considered explicitly). Let us define the function G : Q→ F⊥ as follows (for

purposes of this definition, fix an arbitrary linear ordering over F):

G(q) =


the least f s.t. qX - f if ∃p ∈ Q s.t. F(p) 6=⊥

and pβ→∗ qε;

⊥ otherwise.
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First, let us verify that G is correctly defined, i.e., if q ∈ Q for which there

is p ∈ Q where F(p) 6= ⊥ and pβ →∗ qε, then there is at least one f ∈ F

such that qX - f. Since F(p) 6= ⊥ and βX ' F , we have that pβX - F(p).
As pβ →∗ qε, we also have that pβX →∗ qX and by definition of - there

must be some f ∈ F such that qX ∼ f. Moreover, qX - f because each

state reachable from qX is also reachable from pβX and therefore it must be

equivalent to some state of F.

Now we can readily confirm that βG ' F and X ' G just by applying

the definition of G above. This means that (βG,F) ∈ Cl(B) (by induction

hypothesis), (X,G) ∈ B (by definition of B), and hence also (βX,F) ∈ Cl(B)

by applying the rule (4) of Definition 3.7.

4 Computing the Base

In this section we present algorithms for computing the base B for various

process equivalences. We start by describing the generic part of the method

together with some auxiliary technical results which are also valid for every

process equivalence which is a right PDA congruence. The applicability of

the method to concrete process equivalences is demonstrated in subsequent

subsections (due to the lack of space, we could include only a subsection

devoted to bisimulation equivalences with silent moves; the other parts can

be found in [KM04]). For the rest of this section, let us fix

• a pushdown automaton ∆ = (Q, Γ,A, δ) of size n;

• a finite state system T = (F,A,→) of size m.

• a right PDA congruence ∼ over P(∆, F) ∪ F which is decidable for finite-

state processes.

In our complexity estimations we also use the parameter z = |F||Q|.

Let W be the (finite) set of all well-formed sets. Note that (W ,⊆) is a

complete lattice. Let Exp : W → W be a function satisfying the following

four conditions:
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(1) Exp(B) = B.

(2) Exp is monotonic, i.e. K⊆L implies Exp(K)⊆Exp(L).

(3) If K = Exp(K), then K ⊆ B.

(4) For every well formed set K, the membership to Exp(K) is decidable.

The conditions (1) and (3) together say that B is the greatest fixed-point

of Exp. Since Exp is monotonic and W is finite, we further have B =⋂∞
i=0 Expi(G) where G is the greatest well-formed set. In other words, the

base B can be computed by the algorithm of Figure 1. Observe that G is

effectively computable because ∼ is decidable over finite-state processes.

Input: A PDA ∆, a finite-state system T

Output: The base B

1: B := the greatest well-formed set;

2: repeat

3: K := B; B := ∅

4: for all (w,F) ∈ K do

5: if (w,F) ∈ Exp(K) then B := B ∪ {(w,F)} fi

6: od;

7: until B = K

Figure 1: An algorithm for computing B

As we shall see, an appropriate Exp satisfying the conditions (1)–(4) can

be designed for almost every process equivalence of the linear/branching

time spectrum [vG99, vG93]. Now we introduce further notions and results

which underpin our technical constructions.

For every set of processes P and every action a we define the sets

• Posta(P) = {t | ∃s ∈ P : s
a→ t}

• Post∗(P) = {t | ∃s ∈ P : s→∗ t}

• Post∗τ(P) = {t | ∃s ∈ P : s
τ⇒ t}
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Note that if P is a subset of P(∆, F), then so are Posta(P), Post∗(P), and

Post∗τ(P).

To be able to represent infinite subsets of P(∆, F) in a finite and compact

way, we borrow the following concept from [BEM97]:

Definition 4.1. A multi-automaton is a tupleM = (S, Σ, δ, Acc) where

• S is a finite set of states such that Q ⊆ S (i.e, the control states of ∆ are among

the states ofM);

• Σ = Γ ∪ {F | F : Q → F⊥} is the input alphabet (the alphabet has a special

symbol for each F : Q→ F⊥);

• δ ⊆ S× Σ× S is a transition relation;

• Acc ⊆ S is a set of accepting states.

Every multi-automatonM determines a unique set

L(M) = {pw | p ∈ Q, w ∈ Σ∗, δ(p, w) ∩ Acc 6= ∅}

A set P ⊆ P(∆, F) is recognized by a multi-automatonM iff P = L(M).

A proof of the following lemma can be found, e.g., in [EHRS00].

Lemma 4.2. Let P ⊆ P(∆, F) be a set of processes recognized by a multi-

automaton M. Then one can compute multi-automata recognizing the sets

Posta(P), Post∗(P), and Post∗τ(P) in time which is polynomial in m, n, z and

the size ofM.

Definition 4.3. Let K be a well-formed set. For all f ∈ F and i ∈ IN0 we define

the set Genif(K) =

{pα | ∃F s.t. F(p) = f and (α,F) ∈ Cli(K)}

∪ {pαG | ∃F s.t. F(p) = f and (αG,F) ∈ Cli(K)}

Further, we put Genf(K) =
⋃∞
i=0Genif(K).

Lemma 4.4. The relation - over P(∆, F) × F is exactly
⋃
f∈FGenf(B) × {f}.
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Proof. It suffices to apply Theorem 3.10 and Definition 4.3.

Lemma 4.5. Let K be a well-formed set and f ∈ F. The set Genf(K) is recognized

by a multi-automatonMK,f which is constructible in time polynomial in m, n, z.

Proof. We refer to [KM02b] where a similar result is proven explicitly; the

construction required for Lemma 4.5 differs from the one presented in

[KM02b] only in minor details.

As we shall see in the next subsections, Lemma 4.2 and Lemma 4.5

are heavily used in algorithms which decide the membership to Exp(K)

for a given well-formed set K. With their help it is also possible to decide

whether a given finite-state system T is the ∼-quotient of a given PDA pro-

cess pα (see the algorithm of Fig. 2). Observe that the if statements in the

lines 5–6 can be implemented by computing a multi-automatonM recog-

nizing the set Posta(Post∗({pα})∩Genf(B))∩Genf ′(B) (this is possible due to

Lemma 4.2 and Lemma 4.5) and checking whether L(M) = ∅. Moreover, if

the base B is computable in time polynomial in m, n, z, then the algorithm

of Fig. 2 terminates in time which is also polynomial in m, n, z.

We finish this part by an auxiliary technical lemma whose proof is also

independent of a concrete choice of ∼.

Lemma 4.6. Let K be a well-formed set. The following conditions hold:

(1) If qβG∈Geng(K) and (ε,G)∈K, then qβ∈Geng(K).

(2) If qβG∈Geng(K), (X,G)∈K, then qβX∈Geng(K).

(3) pG ∈ Geng(K) iff G(p) - g.

(4) Let g - g′. Then pw∈Genig(K) implies pw∈Genig ′(K).

Proof. (1) and (2) follow directly from Definition 3.7 and Definition 4.3.

(3), “⇒”: As pG ∈ Geng(K), by Definition 4.3 there is F such that

F(p) = g and (G,F) ∈ Cl(K). However, this means that (G,F) ∈ K by Defi-

nition 3.7. Further, G ' F by Definition 3.6. Thus, we obtain pG - F(p) = g

and as G(p) ∼ pG, we are done.
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Input: A PDA ∆ = (Q, Γ,A, δ), a process pα of ∆,

and a finite-state system T = (F,A,→).
Output: YES if T is the ∼-quotient of pα, NO otherwise.

1: if there are f, f′ ∈ F such that f 6= f′ and f ∼ f ′ then return NO; fi

2: compute the base B;

3: if there is no f ∈ F such that pα ∈ Genf(B) then return NO; fi

4: for all f, f′ ∈ F, a ∈ A do

5: if f
a→ f ′ and Posta(Post∗({pα}) ∩ Genf(B)) ∩ Genf ′(B) = ∅

then return NO; fi

6: if f 6
a→ f ′ and Posta(Post∗({pα}) ∩ Genf(B)) ∩ Genf ′(B) 6= ∅

then return NO; fi

7: od

8: return YES;

Figure 2: Deciding if T is the ∼-quotient of pα.
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(3), “⇐”: Let G(p) - g. This means that G ' G[g/p], hence (G,G[g/p]) ∈

K by Definition 3.6. Thus, pG ∈ GenG[g/p](p)K = Geng(K) as required.

(4): Let g ∼ g ′. We show that if pw ∈ Genig(K), then also pw ∈ Genig ′(K).

Since pw ∈ Genig(K) , there is F such that F(p) = g and (w,F) ∈ Cli(K).

Since g - g′, we have that F ' F [g′/p]. Hence, (F ,F [g′/p]) ∈ K by

Definition 3.6 and thus (w,F [g′/p]) ∈ Cli(K) by Lemma 3.8. This means

that pw ∈ GeniF [g ′/p](p)(K) = Genig ′(K) and we are done.

4.1 Bisimulation Equivalences with Silent Moves

In this subsection we show how to compute the base B for bisimulation-like

equivalences which take into account silent moves. We explicitly consider

the main four representatives which are weak, early, delay, and branching

bisimilarity. We prove that for all these equivalences, the base B is com-

putable in time polynomial in m, n, z.

Definition 4.7. Let R be a binary relation over processes, and let (s, t) ∈ R.

We say that a move t
a⇒ t ′ is R-consistent with a move s

a→ s ′ in a weak,

early, delay, or branching style, respectively, if one of the following conditions

is satisfied:

• a = τ, t = t′, and (s ′, t) ∈ R;

• the move t
a⇒ t ′ is of the form t=u0

τ→ · · · τ→ ui
a→ v0

τ→ · · · τ→ vj=t ′, where

i, j ≥ 0, such that (s′, t ′) ∈ R and

(i) if the style is early or branching, then also (s, ui) ∈ R;

(ii) if the style is delay or branching, then also (s′, v0)∈R.

We say that (s, t) ∈ R expands in R (in the respective style) iff for all a ∈ Actτ
and s

a→ s ′ there is a move t
a⇒ t ′ which is R-consistent with s

a→ s ′. Fur-

thermore, we say that (s, t) ∈ R b-expands in R (in the respective style) if (s, t)

expands in R and (t, s) expands in R−1 in the respective style.
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A binary relation R over processes is a weak, early, delay, or branching

bisimulation if for every (s, t) ∈ R we have that (s, t) b-expands in R in the

respective style. Processes s, t are weakly, early, delayed, or branching bisimilar if

they are related by some weak, early, delay, or branching bisimulation, respectively.

Remark 4.8. An important fact (which will be used in the proof of Lemma 4.11) is

that the same notion of weak, early, delay, and branching bisimilarity is obtained

when the conditions (i) and (ii) of Definition 4.7 are reformulated as follows:

(i) if the style is early or branching, then (s, ù ) ∈ R for all 0 ≤ ` ≤ i;

(ii) if the style is delay or branching, then (s′, v`) ∈ R for all 0 ≤ ` ≤ j,

Since our constructions are to a large extent independent of the chosen

style of bisimilarity, from now on we refer just to “bisimilarity” which is

denoted by ∼ in the rest of this subsection. It follows directly from Defini-

tion 4.7 that ∼ = - over P(∆, F) × F and therefore we do not distinguish

between these two relations.

For technical reasons which become clear in (the proof of) Theorem 4.7,

we need to assume that the transition relation of T is “complete” in the

following sense:

Definition 4.9. Let ∼F be the relation of bisimilarity restricted to F × F. We say

that T is complete if for all f, f′ ∈ F and a ∈ Aτ the following condition is

satisfied: If there is a sequence of transitions forming a f
a⇒ f ′ move which is

∼F-consistent with a hypothetical transition f
a→ f ′ (note that the condition of

∼F-consistency with f
a→ f ′ makes a clear sense even if f

a→ f ′ is not a transition

of T ), then f
a→ f ′ is a real transition of T .

From now on in this subsection, we assume that T is complete. This

assumption is not restrictive because if we add the missing transitions to T

(which can be done in polynomial time because ∼F is computable in polyno-

mial time), each state f of T stays bisimilar to itself. A pleasant consequence

of this assumption is that we do not have to deal with the “ a⇒” moves of f;

it suffices to consider the “ a→” ones.
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Definition 4.10. Let R ⊆ P(∆, F)×F be a relation. We say that a pair (pw, f) ∈ R

quasi-expands in R iff it satisfies the following conditions:

• for all a ∈ A and pw
a→ qv, there is f

a→ g such that (qv, g) ∈ R;

• for all a ∈ A and f
a→ g, one of the following conditions is satisfied:

− a = τ and (pw, g) ∈ R;

− there is an R-consistent move pw
a⇒ qv such that (qv, g) ∈ R. Moreover, we

require that if pw is of the form pαG, then the move pαG
a⇒ qv contains at

most one transition of the form rG
x→ rH (which can appear only at the end

of the whole move).

We say that R is a quasi-bisimulation iff every pair of R quasi-expands in R. Pro-

cesses pw and f are quasi-bisimilar iff they are related by some quasi-bisimulation.

Every quasi-bisimulation is clearly a bisimulation. The opposite is not

necessarily true, but we can prove the following (here we need the fact

formulated in Remark 4.8 and the assumption that T is complete):

Lemma 4.11. The relation ∼ restricted to P(∆, F) × F is a quasi-bisimulation.

Proof. Let pw ∈ P(∆, F) and f ∈ F such that pw ∼ f. We show that (pw, f)

quasi-expands in ∼.

• Let pw
a→ qβ. We need to prove that there is f

a→ g such that qβ ∼ g.

Since (pw, f) b-expands in ∼, there are two possibilities:

− a = τ and qβ ∼ f. Since T is complete, there is a move f
τ→ f and we

are done;

− there is a ∼-consistent move f
a⇒ g where qβ ∼ g. Since T is complete,

there is a move f
a→ g as needed.

• Let p
a→ g. As (pw, f) b-expands in ∼, we either have that a = τ and

pw ∼ g (in which case we are done), or there is a ∼-consistent move

pw
a⇒ qv such that qv ∼ g. Note that here we can assume that this

move is ∼-consistent even in the “stronger” sense of Remark 4.8. If pw
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is of the form pαG and the move pw
a⇒ qv is of the form pαG

x⇒ qG =

qG0
y1→ · · · yk→ qGk where k ≥ 2, we can argue that G0(q)

y1→ · · · yk→ Gk(q)
is a sequence of transitions of T satisfying the condition given in Defini-

tion 4.9 . Hence, G0(q)
y→ Gk(q) because T is complete. This means that

the process pαG can also perform pαG
x⇒ qG

y→ qGk which is admissible

by Definition 4.10.

Definition 4.12. Let K be a well-formed set, and let R =
⋃
f∈FGenf(K)×{f}. The

set BExp(K) consists of all pairs (w,F) ∈ K such that for each p ∈ Q we have

that if F(p) 6= ⊥, then the pair (pw,F(p)) quasi-expands in R.

Now we prove that BExp satisfies the conditions (1)–(4) formulated at

the beginning of Section 4. It follows immediatelly from the definition of

BExp that BExp is monotonic. Due to Lemma 4.4 and Lemma 4.11 we ob-

tain BExp(B) = B. Now we prove that if K = BExp(K) then K ⊆ B. This

is where we need the above introduced technicalities (completeness of T ,

quasi-expansion, etc.). If the definition of BExp was based “directly” on the

notion of b-expansion, which seems to be the most natural possibility, the

following theorem would not hold.

Theorem 4.13. Let K be a well-formed set. If K = BExp(K), then K ⊆ B.

Proof. We show that if K = BExp(K), then the relation R =
⋃
f∈FGenf(K)×{f}

is a quasi-bisimulation. This means to show that for all h ∈ F and pw ∈

Genih(K) the pair (pw, h) quasi-expands in R. We proceed by induction on

i. (We present a detailed proof just for the case when pw is of the form pα

where α ∈ Γ∗; the other case when pw is of the form pαF follows similarly).

• i = 0. Since pα ∈ Gen0h(K), there is F such that F(p) = h and (α,F) ∈

K. Since K = BExp(K), we have (α,F) ∈ BExp(K), which means that

(pαX, h) quasi-expands in R by Definition 4.12.

• Induction step: Let pα ∈ Geni+1h (K). Then there must be some F such that

F(p) 6= ⊥ and (α,F) ∈ Cli+1(K) (see Definition 4.3). Hence, we either
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have that (α,F) ∈ Cli(K) (in which case it suffices to apply induction

hypothesis), or the pair (α,F) can be derived from a pair of K and a pair

of Cli(K) using the rule (2) or (4) of Definition 3.7. We consider these two

cases separately.

“rule (2):” Then there is G such that (αG,F) ∈ Cli(K) and (ε,G) ∈ K. We

show that (pα,F(p)) quasi-expands in R.

(A) Let pα
a→ qβ. Then pαG

a→ qβG and since (pαG,F(p)) quasi-expands

in R by induction hypothesis, there is a move F(p) a→ g which is R-

consistent with pαG
a→ qβG, and hence also with pα

a→ qβ by apply-

ing Lemma 4.6 (1).

(B) Let F(p) a→ g. Since (pαG,F(p)) quasi-expands in R by induction

hypothesis, there is an “appropriate” responding move of pαG which

is R-consistent with F(p) a→ g. We need to distinguish several cases.

(1) a = τ and pαG ∈ GenF(p)(K). Then also pα ∈ GenF(p)(K) by

Lemma 4.6 (1) and we are done.

(2) The responding move of pαG is of the form pαG
τ⇒ qβG

a→ rγG
τ⇒

sδG, where the sequence pα
τ⇒ qβ

a→ rγ
τ⇒ sδ is performable, sδG ∈

Geng(K), and

∗ if the style is early or branching, then also qβG ∈ GenF(p)(K),

∗ if the style is delay or branching, then also rγG ∈ Geng(K).

Hence, the sequence pα
τ⇒ qβ

a→ rγ
τ⇒ sδ is a move which is R-

consistent with F(p) a→ g by Lemma 4.6 (1) (this holds for all styles).

(3) The responding move of pαG is of the form pαG
τ⇒ qβG

a→ rγG
τ⇒

sG
τ→ sH, where the sequence pα

τ⇒ qβ
a→ rγ

τ⇒ sε is performable,

sH ∈ Geng(K), and

∗ if the style is early or branching, then also qβG ∈ GenF(p)(K)

∗ if the style is delay or branching, then also rγG ∈ Geng(K).
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We prove that the sequence pα
τ⇒ qβ

a→ rγ
τ⇒ sε is R-consistent

with the move F(p) a→ g. To do that, it suffices to show that

sε ∈ Geng(K) (the other states of this sequence are “handled” by

Lemma 4.6 (1)). As (ε,G) ∈ K, by induction hypothesis we know

that (sε,G(s)) quasi-expands in R. Hence, there is a “ τ⇒” move of sε

which is R-consistent with G(s) τ→ H(s). The only available move

is sε
τ⇒ sε, hence sε ∈ GenH(s)(K). Since sH ∈ Geng(K), we have

H(s) ∼ g by Lemma 4.6 (3). As sε ∈ GenH(s)(K) and H(s) ∼ g, we

obtain sε ∈ Geng(K) by Lemma 4.6 (4).

(4) The responding move of pαG is of the form pαG
τ⇒ qG

a→ qH, where

the sequence pα
τ⇒ qε is performable, qH ∈ Geng(K), and if the

style is early or branching, then also qG ∈ GenF(p)(K). Since qH ∈

Geng(K), we have that H(q) ∼ g by Lemma 4.6 (3). As (ε,G) ∈ K,

the pair (qε,G(q)) quasi-expands in R. As G(q) a→ H(q), the process

qε must be able to respond by an appropriate “ a⇒” move. This is

possible only if a = τ and qε ∈ GenH(q)(K). Since g ∼ H(q), we

also have that qε ∈ Geng(K) by Lemma 4.6 (4). If the style is early

or branching, we have that qG ∈ GenF(p)(K) and thus also qε ∈

GenF(p)(K) by Lemma 4.6 (1). To sum up, the move pα
τ⇒ qε is R-

consistent with F(p) a→ g.

“rule (4):” Then α = βX and there are G,H such that (βH,F) ∈ Cli(K)

and (X,H) ∈ K. The proof can be completed along the same lines as

above, using Lemma 4.6(2) instead of Lemma 4.6(1).

Now we show how to decide the membership to BExp(K). At the same

time, we perform a (rough) complexity analysis. Pairs of the form (G,F)

and (ε,F) belong to BExp(K) if and only if they belong to K. Hence, they

do not require any special attention. As for pairs of the form (X,F), by

Definition 4.12 we have that (X,F) ∈ BExp(K) iff for all p ∈ Q such that
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F(p) 6= ⊥we have that the pair (pX,F(p)) quasi-expands in
⋃
f∈FGenf(K)×

{f}. This means to check if

• for all pX
a→ qβ there is some F(p) a→ g such that qβ ∈ Geng(K). In

other words, we are interested if there is some g ∈ F such that F(p) a→
g and qβ ∈ L(MK,g). Since the multi-automaton MK,g is effectively

constructible in time which is polynomial in m, n, z (see Lemma 4.5), this

condition can be also checked in time which is polynomial in m, n, z.

• for all F(p) a→ g, one of the following two conditions is satisfied:

− a = τ and pX ∈ Geng(K). In other words, we check whether

pX ∈ L(MK,g) which can be done in time polynomial in m, n, z due

to Lemma 4.5.

− there is a sequence pX
τ⇒ qα

a→ rβ
τ⇒ sγ such that sγ ∈ Geng(K) and

∗ if the style is early or branching, then qα ∈ GenF(p)(K);

∗ if the style is delay or branching, then rβ ∈ Geng(K).

Depending on whether the style is weak, early, delay, or branching,

this condition can be reformulated as follows:

∗ Post∗τ(Posta(Post∗τ({pX}))) ∩ Geng(K) 6= ∅

∗ Post∗τ(Posta(Post∗τ({pX})∩GenF(p)(K)))∩Geng(K)6=∅

∗ Post∗τ(Posta(Post∗τ({pX})) ∩ Geng(K)) ∩ Geng(K) 6= ∅

∗ Post∗τ(Posta(Post∗τ({pX}) ∩ GenF(p)(K)) ∩ Geng(K)) ∩ Geng(K) 6= ∅

Due to Lemma 4.5 and Lemma 4.2, each of these four conditions can

be checked in a purely “symbolic” way by performing the required

operations directly on the underlying multi-automata. Obviously, the

whole procedure takes time which is still polynomial in m, n, z.

Pairs of the form (XG,F) are handled in a similar way. So, the membership

to BExp(K) for a given K is decidable in time polynomial in m, n, z. This

means that the algorithm of Fig. 1 terminates in time which is polynomial

in m, n, z. So, we obtain the following theorem:
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Theorem 4.14. The problem of weak, early, delay, and branching bisimilarity

between PDA and finite-state processes is decidable in time polynomial in m, n, z.

For PDAk processes, the same problem is decidable in time polynomial in m, n (for

each fixed k).

4.2 Probabilistic Bisimulation Equivalence

A (fully) probabilistic transition system is a tuple T = (S,A,→, Prob),

where S, A, and → are defined as for (non-probabilistic) transition sys-

tems, and Prob is a function which to each transition s
a→ t of T assigns

its probability Prob(s a→ t) ∈ (0, 1] so that for every s ∈ S we have∑
s
a→t Prob(s a→ t) ∈ {0, 1}. In the rest of this section we write s

a,x
−→ t

instead of Prob(s a→ t) = x.

Definition 4.15. Let T = (S,A,→) be a probabilistic transition system, and let

R be an equivalence over S. For all s ∈ S, a ∈ A, and C ∈ S/R we define

• Succ(s, a, C) = {t ∈ C | s
a→ t},

• Prob(s, a, C) =
∑
t∈Succ(s,a,C) Prob(s a→ t).

We say that (s, t) ∈ S× S p-expands in R iff for all a ∈ A and C ∈ S/R we have

that Prob(s, a, C) = Prob(t, a, C). An equivalence R over S is a probabilistic

bisimulation iff each pair of R p-expands in R. Probabilistic processes s, t ∈ S are

probabilistic bisimilar, written s ∼ t, iff they are related by some probabilistic

bisimulation.

A probabilistic PDA is a tuple ∆ = (Q, Γ,A, δ, Prob) where all elements

except for Prob are defined as in the non-probabilistic case, and Prob is a

a function which to each transition pX
a→ qα ∈ δ assigns its probability

Prob(pX
a→ qα) ∈ (0, 1] so that for all p ∈ Q and X ∈ Γ we have that∑

pX
a→qα Prob(pX

a→ qα) ∈ {0, 1}.

Each probabilistic PDA determines a unique probabilistic transition

system in the very same way as in the non-probabilistic case. In fact, the
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only difference is that transitions are now labeled by pairs of the form a, x

rather than by single actions. So, the previously introduced notions make a

clear sense also in the probabilistic setting. In particular, it is easy to check

that probabilistic bisimilarity is a right PDA congruence.

For the rest of this subsection, we fix a probabilistic PDA ∆ =

(Q, Γ,A, δ, Prob) of size n, and a probabilistic finite state system T =

(F,A,→, Prob′) of size m. As before, we use z to denote |F||Q|.

Definition 4.16. Let K be a well-formed set. Let ≡K be the least equivalence over

P(∆, F) ∪ F subsuming the relation
⋃
f∈FGenf(K)×{f}. The set PExp(K) consists

of all pairs (w,F) ∈ K such that for each p ∈ Q we have that if F(p) 6= ⊥, then

the pair (pw,F(p)) p-expands in ≡K.

The function PExp is clearly monotonic and one can easily check that

PExp(B) = B. Before verifying the condition (3) of Section 4 we need to

state one auxiliary lemma.

Lemma 4.17. Let pw ∈ P(∆, F) and g ∈ F. If pw ≡K g then there is h ∈ F such

that g ≡K h and pw ∈ Genh(K).

Theorem 4.18. Let K be a well-formed set. If K = PExp(K), then K ⊆ B.

Proof. We show that if K = PExp(K), then the relation ≡K is a probabilistic

bisimulation. This means to prove that every (s, t) ∈ ≡K p-expands in ≡K.

Since ≡K is the reflexive, symmetric, and transitive closure of the relation

R =
⋃
f∈FGenf(K)×{f}, we can distinguish two cases:

• (s, t) ∈ R. That is, s = pw and t = f where pw ∈ Genif(K) for some i ∈ IN0.

We proceed by induction on i (considering only the case when pw = pα

for some α ∈ Γ∗; the case when pw = pαF is handled similarly). We

proceed by induction on i.

− i = 0. Then there is F such that F(p) = f and (α,F) ∈ K. As K =

PExp(K), we immediatelly obtain that (pα, f) p-expands in ≡K just by

applying the definitions.
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− Induction step: If pα ∈ Geni+1f (K), there is some F such that F(p) 6= ⊥

and (α,F) ∈ Cli+1(K). By definition of Cli+1(K), we either have that

(α,F) ∈ Cli(K) (in which case we just apply induction hypothesis),

or the pair (α,F) has been derived using the rule (2) or (4) of Defini-

tion 3.7.

“rule (2):” Then α 6= ε and there is G such that (αG,F) ∈ Cli(K) and

(ε,G) ∈ K. By induction hypothesis we know that for all a ∈ A and

C ∈ (P(∆, F) ∪ F)/≡K we have that Prob(pαG, a, C) = Prob(f, a, C).

Since α 6= ε, we have that pαG
a,x
−→ qβG iff pα

a,x
−→ qβ. Hence, it

suffices to prove that if pαG
a,x
−→ qβG and qβG ∈ C for a given C ∈

(P(∆, F) ∪ F)/≡K, then also qβ ∈ C.

So, let pαG
a,x
−→ qβG where qβG ∈ C. As (pαG, f) p-expands in ≡K,

there must be some f
a→ g where qβG ≡K g. By Lemma 4.17 there is

some h ∈ F such that g ≡K h and qβG ∈ Genh(K). Since (ε,G) ∈ K, we

obtain qβ ∈ Genh(K) by Lemma 4.6 (1). Hence, qβ ≡K h ≡K g ≡K qβG.

“rule (4):” Then α = βX where β 6= ε and there are G,H such that

(βH,F) ∈ Cli(K) and (X,H) ∈ K. The proof can be completed similarly

as above.

• (s, t) 6∈ R. Since (s, t) belongs to the reflexive, symmetric, and transitive

closure of R, there is a sequence s = s0, · · · , sk = t, where k ∈ IN0 and

for each 0 ≤ i < k we have that either (si, si+1) ∈ R or (si+1, si) ∈ R.

This means that (si, si+1) p-expands in≡K (see above), and hence we can

readily confirm that also (s, t) p-expands in ≡K.

Deciding the membership to PExp(K) is easy—for example, to find out

whether (X,F) ∈ PExp(K), it suffices to compute the ≡K relation between

the successors of pX and F(p) (for all p ∈ Q such that F(p) 6= ⊥). Obvi-

ously, this can be done in time polynomial in m, n, z. Thus, we obtain the

following:
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Theorem 4.19. The problem of probabilistic bisimilarity between PDA and finite-

state processes is decidable in time polynomial in m, n, z. For PDAk processes, the

same problem is decidable in time polynomial in m, n.

4.3 Simulation-Like Equivalences

Definition 4.20. A binary relation R over processes is a weak simulation iff

every pair (s, t) ∈ R expands in R in the weak style (see Definition 4.7).

Let s, t be processes. We say that t weakly simulates s, written s v t, if there

is a weak simulation R such that (s, t) ∈ R. Further, s, t are weakly simulation

equivalent, written s ∼ t, if they simulate each other.

Definition 4.21. Let R ⊆ P(∆, F)×F be a relation. We say that a pair (pw, f) ∈ R

s-expands in R iff the following two conditions are satisfied:

• for all a ∈ A and pw
a→ qv there are ḡ ∈ F and f

a⇒ g such that (qv, ḡ) ∈ R

and ḡ v g;

• for all a ∈ A and f
a→ g there are ḡ ∈ F and pw

a⇒ qv such that (qv, ḡ) ∈ R

and g v ḡ.

We say that R is a ≺-simulation iff every pair of R s-expands in R.

The next lemma is a simple consequence of Definition 4.21.

Lemma 4.22. The relation - over P(∆, F) × F is a ≺-simulation.

We can also prove the following:

Lemma 4.23. Let pw ∈ P(∆, F) and f ∈ F. If (pw, f) ∈ R for some≺-simulation

R, then pw - f.

Proof. Let R be a ≺-simulation. We show that for all (pw, f) ∈ R we have

that pw ∼ f. From this and Definition 4.21 we obtain that pw - f as re-

quired. Let

R1 = {(pw, g) | ∃ḡ ∈ F such that (pw, ḡ) ∈ R and ḡ v g}
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One can readily check that R ⊆ R1 and that every pair of R1 expands in R1

in the weak style (see Definition 4.7). Similarly, we define

R2 = {(g, pw) | ∃ḡ ∈ F such that (pw, ḡ) ∈ R and g v ḡ}

Then R−1 ⊆ R2 and every pair of R2 expands in R2 in the weak style. To

sum up, if (pw, f) ∈ R, then pw ∼ f.

Definition 4.24. Let K be a well-formed set, and let R =
⋃
f∈FGenf(K)×{f}. The

set SExp(K) consists of all pairs (w,F) ∈ K such that for each p ∈ Q we have

that if F(p) 6= ⊥, then the pair (pw,F(p)) s-expands in R.

SExp is clearly monotonic, and SExp(B) = B due to Lemma 4.4 and

Lemma 4.22. Hence, for every well-formed set K we have that if B ⊆ K,

then also B ⊆ SExp(K). Now we prove that if K = SExp(K), then K ⊆ B.

From this we obtain the correctness of the algorithm of Fig. 1 (when we

replace Exp with SExp).

Remark 4.25. Similarly as in Section 4.1, we need to assume that T is complete

in the following sense: For all f, g ∈ F and a ∈ Aτ we have that if f
a⇒ g, then also

f
a→ g. Again, this assumption is not restrictive because the missing transition

can be added in polynomial time and each state of F stays equivalent to itself.

Theorem 4.26. Let K be a well-formed set. If K = SExp(K), then K ⊆ B.

Proof. We show that if K = SExp(K), then the relation R =
⋃
f∈FGenf(K)×{f}

is a≺-simulation. That is, we prove that for all h ∈ F and pw ∈ Genih(K) the

pair (pw, h) s-expands in R. We proceed by induction on i. (We present a

detailed proof just for pairs of the form pα; the other case follows similarly).

• i = 0. Since pα ∈ Gen0h(K), there is F such that F(p) = h and (α,F) ∈

K. Since K = SExp(K), we have (α,F) ∈ SExp(K), which means that

(pαX, h) s-expands in R by Definition 4.24.

• Induction step: Let pα ∈ Geni+1h (K). Then there must be some F such that

F(p) 6= ⊥ and (α,F) ∈ Cli+1(K) (see Definition 4.3). Hence, we either
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have that (α,F) ∈ Cli(K) (in which case it suffices to apply induction

hypothesis), or the pair (α,F) can be derived from a pair of K and a pair

of Cli(K) using the rule (2) or (4) of Definition 3.7. We consider these two

cases separately.

“rule (2):” Then there is G such that (αG,F) ∈ Cli(K) and (ε,G) ∈ K. We

show that (pα,F(p)) s-expands in R.

(A) Let pα
a→ qβ. Then pαG

a→ qβG and since (pαG,F(p)) s-expands

in R by induction hypothesis, there are ḡ ∈ F and F(p) a⇒ g such that

qβG ∈ Genḡ(K) and ḡ v g. Since qβ ∈ Genḡ(K) by Lemma 4.6 (1), we

are done.

(B) Let F(p) a→ g. Since (pαG,F(p)) s-expands in R by induction hypoth-

esis, there are ḡ ∈ F and pαG
a⇒ qw such that qw ∈ Genḡ(K) and g v ḡ.

We need to distinguish several cases.

(1) The responding move of pαG is of the form pαG
a⇒ qβG where the

sequence pα
a⇒ qβ is performable. Since qβG ∈ Genḡ(K), we obtain

qβ ∈ Genḡ(K) by Lemma 4.6 (1).

(2) The responding move of pαG is of the form pαG
a⇒ qG

τ⇒ qHwhere

the sequence pα
a⇒ qε is performable. Since qH ∈ Genḡ(K), we have

that H(q) - ḡ by Lemma 4.6 (3), which means that g v ḡ v H(q).

Further, as qG
τ⇒ qH, we also have G(q) τ⇒ H(q) and hence G(q) τ→

H(q) because T is complete (see Remark 4.25). As (ε,G) ∈ K, by

induction hypothesis we know that (qε,G(q)) s-expands in R. The

only possibility how qε can respond to G(q) τ→ H(q) is to use the

move qε
τ⇒ qε. Hence, there is ¯̄g ∈ F such that qε ∈ Gen ¯̄g(K) and

H(q) v ¯̄g. Since g v ḡ v H(q) (see above) and H(q) v ¯̄g, we obtain

g v ¯̄g. Hence, pα
a⇒ qε is an “appropriate” response to F(p) a→ g.

(3) The responding move of pαG is of the form pαG
τ⇒ qG

a⇒ qHwhere

the sequence pα
τ⇒ qε is performable. We argue similarly as in (2),

showing that a = τ in this case.
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“rule (4):” Then there are G,H such that (αH,F) ∈ Cli(K) and (X,H) ∈

K. The proof can be completed along the same lines as above, using

Lemma 4.6(2) instead of Lemma 4.6(1).

The set SExp(K) for a given K can be computed in time polynomial in

m, n, z by using the same kind of technique as in Section 4.1. That is, we use

Lemma 4.5 and Lemma 4.2 to check the required conditions symbolically.

Thus, we obtain the following:

Theorem 4.27. The problem of full simulation equivalence between PDA and

finite-state processes is decidable in time polynomial in m, n, z. For PDAk pro-

cesses, the same problem is decidable in time polynomial in m, n.

4.4 Trace-Like Equivalences

Let w ∈ Act∗τ and s, t be processes. We write s
w⇒ t iff there is a sequence

s=s0
w(1)
=⇒ s1

w(2)
=⇒ · · · w(n)=⇒ sn=t, where w = w(1)w(2) · · ·w(n).

Definition 4.28. For every process s we define the set

Tr(s) = {w ∈ Act∗ | there is at such that s
w⇒ t}.

Processes s, t are (weakly) trace equivalent, written s ∼ t, iff Tr(s) = Tr(t).

From now on we assume that the system T is complete in the sense of

Definition 4.25. This means that for all f, g ∈ F and w ∈ A∗ we have that

f
w⇒ g iff f

w→ g.

Definition 4.29. Let R ⊆ P(∆, F) × F be a relation. For every pw ∈ P(∆, F) we

define the setMR(pw) = {g ∈ F | (pw, g) ∈ R}.

We say that a pair (pw, f) ∈ R t-expands in R iff the following two conditions

are satisfied:

• for all a ∈ A and pw
a→ qv there is a ḡ ∈ F such that (qv, ḡ) ∈ R and

Tr(ḡ) ⊆
⋃
f
a→g Tr(g).
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• for all a ∈ A and f
a→ g we have that Tr(g) ⊆

⋃
pw

a⇒qv⋃ḡ∈MR(qv)
Tr(ḡ).

We say that R is a ≺-trace similarity iff every pair of R t-expands in R.

Lemma 4.30. The relation - over P(∆, F) × F is a ≺-trace similarity.

Proof. This follows immediatelly from Definition 4.29 and the assumption

that T is complete.

Lemma 4.31. Let pw ∈ P(∆, F) and f ∈ F. If (pw, f) ∈ R for some ≺-trace

similarity R, then pw - f.

Proof. We show that for all (pw, f) ∈ F and u ∈ A∗ we have the following:

(1) If pw
u→ qv, then there is g ∈ F such that f

u→ g.

(2) If f
u→ g, then there is qv ∈ P(∆, F) such that pw

u⇒ qv.

We proceed by induction on the length of u. If u = ε, we are done immedi-

atelly. Now let u = ax where a ∈ A.

“(1)”: If pw
ax→ qv, there is ry such that pw

a→ ry
x→ qv. Since R is a ≺-

trace similarity, there is ḡ ∈ F such that (ry, ḡ) ∈ R and Tr(ḡ) ⊆
⋃
f
a→g Tr(g).

Since (ry, ḡ) ∈ R and ry
x→ qv, by induction hypothesis we get that ḡ

x→ ḡ ′

for some ḡ′ ∈ F. Hence, there is g ∈ F such that f
a→ g

x→ g ′ for some g ′ ∈ F

as required.

“(2)”: If f
ax→ g, there is g′ ∈ F such that f

a→ g ′
x→ g. Since R is a ≺-trace

similarity, there is pw
a⇒ qv and ḡ ∈ F such that (qv, ḡ) ∈ R and x ∈ Tr(ḡ).

Since T is complete, there is ḡ′ ∈ F such that ḡ
x→ ḡ ′. As (qv, ḡ) ∈ R and

ḡ
x→ ḡ ′, by induction hypothesis we get that qv

x⇒ ry for some ry ∈ P(∆, F).

Hence, pw
ax⇒ ry as needed.

Definition 4.32. Let K be a well-formed set, and let R =
⋃
f∈FGenf(K)×{f}. The

set TExp(K) consists of all pairs (w,F) ∈ K such that for each p ∈ Q we have

that if F(p) 6= ⊥, then the pair (pw,F(p)) t-expands in R.

Theorem 4.33. Let K be a well-formed set. If K = TExp(K), then K ⊆ B.

32



Proof. The proof has the same structure and is based on similar observa-

tions as proofs of Theorem 4.13 and Theorem 4.26.

The complexity issues are different from the ones of Section 4.1 and Sec-

tion 4.3. The problem of checking trace equivalence/inclusion over finite-

state processes in PSPACE-complete. Hence, even computing the largest

well-formed set takes time exponential in m, n. Further, deciding whether

a given pair (X,F) of K belongs to TExp(K) also takes time exponential in

m, n (the same holds for pairs of the form (XG,F)). So, the whole algorithm

for computing B takes O(2pol(m,n)) time where pol is a polynomial in two

variables. Thus, we obtain the following:

Theorem 4.34. The problem of full trace equivalence between PDA and finite-

state processes is decidable in time exponential in m, n. Moreover, this problem is

PSPACE-hard even for BPA.
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