
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Relating Hierarchy of Linear Temporal Properties
to Model Checking

by

Ivana Černá
Radek Pelánek

FI MU Report Series FIMU-RS-2003-03

Copyright c© 2003, FI MU April 2003

Relating Hierarchy of Linear Temporal Properties to
Model Checking

Ivana Černá and Radek Pelánek ?

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{cerna,xpelanek }@fi.muni.cz

Abstract. The hierarchy of properties as overviewed by Manna and Pnueli
[23] relates language, topology, ω-automata, and linear temporal logic
classifications of properties. We provide new characterisations of this hi-
erarchy in terms of automata with Büchi, co-Büchi, and Streett accep-
tance condition and in terms of ΣLTL

i and ΠLTL
i hierarchies. Afterwards,

we analyse the complexity of the model checking problem for particular
classes of the hierarchy and thanks to the new characterisations we iden-
tify those linear time temporal properties for which the model checking
problem can be solved more efficiently than in the general case.

1 Introduction

Model checking has become a popular technique for formal verification of reac-
tive systems. The model checking process has several phases – the major ones
being modelling of the system, specification of desired properties of the sys-
tem and the actual process of automatic verification. Each of these phases has
its specific difficulties. In this paper we study linear temporal properties and
algorithms for the automatic verification of these properties.

Reactive systems maintain an ongoing interaction with their environment
and thus produce computations – infinite sequences of states. When analysing
the behaviour of such a system we are interested in some finite set AP of ob-
servable propositions about states. Hence, we can view a computation of the
system as an infinite word over 2AP . In general, we define a temporal property
as a language of infinite words. A reactive system S is said to have a property
P if all possible computations of S belong to P .

The problem of proper and correct specification of properties the system
ought to satisfy led to a careful study of theoretical aspects of properties. Manna
and Pnueli [23] have proposed a classification of temporal properties into a
hierarchy. They characterise the classes of the hierarchy through four views:
a language-theoretic view, a topological view, a temporal logic view, and an
automata view. The fact that the hierarchy can be defined in many different
ways shows the robustness of this hierarchy.

? Supported by GA ČR grant no. 201/03/0509

Model checking theory is devoted to the development of efficient algorithms
for the automatic verification of properties of reactive systems. A very success-
ful approach to verifying properties expressed as linear temporal logic (LTL)
formulas makes use of automata over infinite words. Here the problem of veri-
fying a property reduces to the problem whether a given automaton recognises
a non-empty language (so called non-emptiness check). The complexity of the
non-emptiness check depends on the type of the automaton. Bloem, Ravi, and
Somenzi [1] have studied two specialised types of automata, called weak and
terminal, for which the non-emptiness check can be performed more efficiently
than in the general case.

Our contribution Our aim is to classify temporal properties specifiable by lin-
ear temporal logic formulas with respect to the complexity of their verifica-
tion. To this end we provide a classification of temporal properties through two
new views. First, we characterise properties in terms of automata over infinite
words (ω-automata) with Büchi, co-Büchi and Streett acceptance condition and
in terms of weak and terminal automata. Weak and terminal automata are used
in the verification process and are checked for non-emptiness.

For the second characterisation we introduce a new hierarchy (called Until-
Release hierarchy) of LTL formulas based on alternation depth of temporal op-
erators Until and Release. We provide a relationship between the Until-Release
hierarchy and the hierarchy by Manna and Pnueli [23].

Our new classification provides us with an exact relationship between the
type of a formula and the type of an automaton, which is checked for non-
emptiness in the model checking process of the formula.

In the second part of the paper we enquire into particular automata and
analyse the complexity of their non-emptiness check in connection with both
explicit and implicit representation of automata. This gives us an exact rela-
tionship between types of properties and the complexity of their verification.
Finally, we discuss the possibility of exact determination of the type of a for-
mula.

Related work The previous work on verification, which takes into account a
classification of properties, is partly devoted to the proof-based approach to
verification [5]. Papers on specialised model checking algorithms either cover
only part of the hierarchy or have a heuristic nature. Vardi and Kupferman [20]
study the model checking of safety properties. Schneider [26] is concerned with
a translation of persistence properties into weak automata. Bloem and Somenzi
study heuristics for the translation of a formula into weak (terminal) automa-
ton [28] and suggest specialised algorithms for the non-emptiness problem [1].
Our work covers all types of properties and brings out the correspondence be-
tween the type and the complexity of non-emptiness check.

Plan of the work Section 2 introduces the hierarchy of properties as presented
in [23] and establishes new characterisations of the hierarchy. First we sup-

2

plement the automata view and than we revise the characterisation through
formulas of linear temporal logic. Here we find a use for the Until/Release
alternation depth of formulas. Section 3 defines the model checking problem
and relates the type of a formula with the type of a corresponding automa-
ton. Section 4 draws distinctions in non-emptiness check for different types of
automata used in model checking. Algorithms for non-emptiness check using
both explicit and symbolic representation of the state space are displayed and
their complexity is discussed. Finally, Section 5 considers the task to determine
the type of a formula.

2 Hierarchy of Temporal Properties

The hierarchy studied by Manna and Pnueli [23] classifies properties into six
classes: guarantee, safety, obligation, persistence, recurrence, and reactivity proper-
ties.

Definition 1 (Language-theoretic view [23]).
Let P ⊆ Σω be a property over Σ.

– P is a safety property if there exists a language of finite words L ⊆ Σ∗ such that
for every w ∈ P all finite prefixes of w belong to L.

– P is a guarantee property if there exists a language of finite words L ⊆ Σ∗ such
that for every w ∈ P there exists a finite prefix of w which belongs to L.

– P is an obligation property if P can be expressed as a positive boolean combination
of safety and guarantee properties.

– P is a recurrence property if there exists a language of finite words L ⊆ Σ∗ such
that for every w ∈ P infinitely many prefixes of w belong to L.

– P is a persistence property if there exists a language of finite words L ⊆ Σ∗ such
that for every w ∈ P all but finitely many prefixes of w belong to L.

– P is a reactivity property if P can be expressed as a positive boolean combination
of recurrence and persistence properties.

In what follows, the abbreviation κ-property stands for a property of one
of the six above mentioned types. Inclusions, which relate the corresponding
classes into a hierarchy, are depicted in Fig. 1. Classes which are higher up
strictly contain classes which are lower down.

Properties from particular classes can be intuitively viewed as making dif-
ferent claims about occurrences of “good” and “bad” things during the compu-
tation. Characteristics of properties from particular classes are listed below.

– safety: something good always occurs (nothing bad occurs)
– guarantee: something good happens at least once
– obligation: conditional occurrence of a good thing
– recurrence: something good occurs infinitely many times
– persistence: something good occurs continuously from a certain point (bad

thing occurs only finitely many times)
– reactivity: conditional occurrence of infinitely many good things

3

2.1 Automata View

Manna and Pnueli [23] have defined the hierarchy of properties in terms of
deterministic Streett predicate automata. Automata for considered classes of
properties differ in restrictions on their transition functions and acceptance con-
ditions. In this section we provide a new characterisation of the hierarchy in
terms of deterministic ω-automata which uses only restrictions on acceptance
conditions (the transition function is always the same). We find this characteri-
sation more uniform and believe that it provides better insight into the hierar-
chy. On top of that we study other widely used types of ω-automata and show
that each of them exactly corresponds to one class in the hierarchy.

Accepting cycle

Weak automata

Fully accepting

Terminal aut.

Reachability

General automata

cycle

Recurrence Persistence

Obligation

Reactivity

GuaranteeSafety

Streett

Occ. Büchi

ΣLTL
2

ΠLTL
2

Büchi

ΣLTL
1

co-Büchi

Occ. co-Büchi

Occ. Streett

ΠLTL
1

Fig. 1. Relations between classes of the hierarchy and their different characterisations.
Classes which are higher up properly contain classes which are lower down. Classes
on the same level are dual with respect to complementation, while the classes obligation
and reactivity can be obtained by boolean combinations of properties from classes lower
down.

An ω-automaton is a tuple A = 〈Σ,Q, q0, δ, α〉, where Σ is a finite alphabet,
Q is a finite set of states, q0 ∈ Q is an initial state, δ is a transition function, and
α is an acceptance condition. The transition function determines four types of
automata: deterministic, nondeterministic, universal, and alternating. A nondeter-
ministic automaton has a transition function of the type δ : Q × Σ → 2Q. A
run π of such an automaton on an infinite word w = w(0)w(1) . . . over Σ is a

4

sequence of states π = r0, r1, . . . such that r0 = q0 and ri+1 ∈ δ(ri, w(i)) for
each i ≥ 0. A nondeterministic automaton accepts a word w if there exists an
accepting run (see below) on w. Universal automata are defined in the same
way, the only difference is that the universal automaton accepts a word w if all
runs on w are accepting. Deterministic automata are such that |δ(q, a)| = 1 for
all q ∈ Q, a ∈ Σ (there is a unique run on each word). Alternating automata
form a generalisation of nondeterministic and universal automata. For the def-
inition of alternating ω-automata see e.g. [24]. By the abuse of notation, we use
(q, r) ∈ δ with the meaning ∃a ∈ Σ : r ∈ δ(q, a).

For a run π we define the infinity set, Inf (π), to be the set of all states that
appear infinitely often in π and the occurrence set, Occ(π), to be the set of states
that appear at least once in π. Acceptance conditions α are defined with respect
to infinity set as follows:

– Büchi condition α ⊆ Q : a run π is accepting iff Inf (π) ∩ α 6= ∅
– co-Büchi condition α ⊆ Q : a run π is accepting iff Inf (π) ∩ α = ∅
– Streett condition α = {〈G1, R1〉, . . . , 〈Gn, Rn〉}, Gi, Ri ⊆ Q : a run π is ac-

cepting iff ∀i : (Inf (π) ∩Gi 6= ∅ ⇒ Inf (π) ∩ Ri 6= ∅)

For every acceptance condition we can define its ”occurrence” version (also
called Staiger-Wagner acceptance) [22, 31]:

– occurrence Büchi condition α ⊆ Q : a run π is accepting iff Occ(π) ∩ α 6= ∅
– occurrence co-Büchi condition α ⊆ Q : a run π is accepting iff Occ(π)∩ α = ∅
– occurrence Streett condition α = {〈G1, R1〉, . . . , 〈Gn, Rn〉}, Gi, Ri ⊆ Q : a run
π is accepting iff ∀i : (Occ(π) ∩ Gi 6= ∅ ⇒ Occ(π) ∩Ri 6= ∅)

A property P is defined to be specifiable by automata if there is an ω-automaton A
which accepts a word w if and only if w ∈ P .

The characteristic of the temporal hierarchy by Manna and Pnueli [23] makes
use of following special types of automata.

Definition 2 (Automata-theoretic view [23]).
LetA = 〈Σ,Q, q0, δ, {〈G1, R1〉, . . . , 〈Gn, Rn〉}〉 be a deterministic infinite occurrence
Streett automaton. Let Good = (Qr G1) ∪R1 and Bad = QrGood .

– A is a safety automaton if n = 1 and ∀q ∈ Bad , q′ ∈ Good : (q, q′) 6∈ δ
– A is a guarantee automaton if n = 1 and ∀q ∈ Good , q′ ∈ Bad : (q, q′) 6∈ δ
– A is an obligation automaton if n = 1 and there exists rank function σ : Q →
{0, . . . , k} such that:
• (q, q′) ∈ δ ⇒ σ(q) ≤ σ(q′)
• (q ∈ Bad , q′ ∈ Good , (q, q′) ∈ δ)⇒ σ(q) < σ(q′)
• (q ∈ Good , q′ ∈ Bad , (q, q′) ∈ δ)⇒ σ(q) < n

– A is a recurrence automaton if n = 1 and G1 = Q

– A is a persistence automaton if n = 1 and R1 = ∅
– A is a reactivity automaton otherwise

5

A theorem relating the language and automata views follows.

Theorem 1 ([23]). Let P be a property specifiable by automata. Then P is a κ-property
if and only if it is specifiable by a κ-automaton.

Our new characterisation of the hierarchy is based on deterministic au-
tomata as well. The most important difference is the fact that automata differ
only in their acceptance condition. The characterisation is summarized in the
first line of Table 1, particular relations are proved below.

Proposition 1. Let A be a guarantee, safety, or obligation automaton with an accept-
ing condition {〈G,R〉} and let π be a run of A. Then the run π is accepting if and only
if Inf (π) ⊆ (Qr G) ∪ R.

Proof:
”⇐” Let Inf (π) ⊆ (QrG)∪R. Then the implication Inf (π)∩G 6= ∅ ⇒ Inf (π)∩
R 6= ∅ is satisfied and π is accepting.
”⇒” A direct consequence of the requirements on transition functions of guar-
antee, safety, and obligation automata.

Lemma 1. Property P is specifiable by a guarantee automaton if and only if it is speci-
fiable by a deterministic occurrence Büchi automaton.

Proof:
”⇒” Let A = 〈Σ,Q, q0, δ, {〈G,R〉}〉 be a guarantee automaton. Let us define an
occurrence Büchi automaton A′ = 〈Σ,Q, q0, δ, (Q r G) ∪ R〉. We claim that A′

is equivalent to A. Let w be an infinite word and π the run of A on w. Since
both automata have the same transition function, π is the run of A′ on w as
well. By Proposition 1, the automaton A accepts w ⇔ Inf (π) ⊆ (Qr G) ∪ R⇔
Occ(π) ∩ (Q r G) ∪ R 6= ∅ (by the definition of a guarantee automaton) ⇔
A′ accepts w.
”⇐” Let A = 〈Σ,Q, q0, δ, α〉 be a deterministic occurrence Büchi automaton.
Let us define an automaton A′ = 〈Σ,Q ∪ Q′, q0, δ′, {〈Q, ∅〉}〉, where Q′ = {q′ |
q ∈ Q} and

– if q ∈ α and δ(q, a) = r then δ′(q, a) = r′

– if q ∈ Qr α and δ(q, a) = r then δ′(q, a) = r
– if δ(q, a) = r then δ′(q′, a) = r′

It is easy to see that A′ is a guarantee automaton equivalent to A.

Lemma 2. Property P is specifiable by a safety automaton if and only if it is specifiable
by a deterministic occurrence co-Büchi automaton.

Proof: Analogous to the previous one.

Lemma 3. Property P is specifiable by an obligation automaton if and only if it is
specifiable by a deterministic occurrence Streett automaton.

6

Proof:
”⇒” Let A = 〈Σ,Q, q0, δ, {〈G,R〉}〉 be an obligation automaton with ranking
function σ : Q → {0, . . . , k}, and sets Good = (Q r G) ∪ R, Bad = Q r Good .
We define an occurrence Streett automaton A′ = 〈Σ,Q, q0, δ, α′〉 where α′ =
{〈G0, R0〉, . . . , 〈Gk, Rk〉} and for 0 ≤ l ≤ k:

– Gl = {q | q ∈ Bad and σ(q) = l}
– Rl = {q | q ∈ Good and σ(q) > l}

We claim that A′ is equivalent to A. Let w be an infinite word and π the
run of A on w. Due to the monotonicity of σ there exists a number m such that
∀q ∈ Inf (π) : σ(q) = m.

– A accepts w: By Proposition 1 we have Inf (π) ⊆ Good and due to mono-
tonicity
• ∀l ≥ m : Occ(π) ∩ Gl = ∅
• ∀l < m : Occ(π) ∩ Rl 6= ∅

Hence π is the accepting run of A′ on w.
– A does not accept w: Similar arguments get hold of Inf (π) ⊆ Bad and
• Occ(π) ∩Gm 6= ∅
• Occ(π) ∩Rm = ∅

Thus π is not accepting and A′ does not accept w.

”⇐” Let A be a deterministic occurrence Streett automaton A = 〈Σ,Q, q0, δ,
{〈G1, R1〉, . . . , 〈Gn, Rn〉}〉. We define an automaton A′ = 〈Σ,Q× 2Q, (q0, {q0}),
δ′, {〈∅, P 〉}〉, where

– δ′((q, S), a) = (δ(q, a), S ∪ {δ(q, a)})
– P = {(q, S) | ∀1 ≤ i ≤ n : S ∩ Gi 6= ∅ ⇒ S ∩Ri 6= ∅}

A′ is an obligation automaton with ranking function σ(q, S) = |S|. Moreover,
A accepts w iff the run π of A on w satisfies ∀1 ≤ i ≤ n : Occ(π) ∩ Gi 6= ∅ ⇒
Occ(π)∩Ri 6= ∅. This happens if and only if the run π′ ofA′ onw gets eventually
trapped within the set P , i.e. A′ accepts w′.

Lemma 4. Property P is specifiable by a recurrence automaton if and only if it is
specifiable by a deterministic Büchi automaton.

Proof: A recurrence automaton with an accepting condition {〈Q,R〉} is clearly
equivalent to a deterministic Büchi automaton with the accepting condition R
and vice versa.

Lemma 5. Property P is specifiable by a persistence automaton if and only if it is
specifiable by a deterministic co-Büchi automaton.

Proof: A persistence automaton with an accepting condition {〈G, ∅〉} is clearly
equivalent to a deterministic co-Büchi automaton with the accepting condition
G and vice versa.

7

Since reactivity automata are just unconstrainted deterministic Streeett au-
tomata, we obtain the following characterization of hierarchy classes specifiable
by automata:

Theorem 2. LetP be a property specifiable by automata. ThenP is a guarantee, safety,
obligation, persistence, recurrence, or reactivity property if and only if it is specifiable
by a deterministic occurrence Büchi, occurrence co-Büchi, occurrence Streett, co-Büchi,
Büchi, or Streett automaton respectively.

To make the picture complete we have examined other types of automata
as well (see Table 1). For every possible combination of transition function and
acceptance condition the class of specifiable properties exactly coincides with
one class in the hierarchy. Results for infinite occurrence acceptance conditions
follow from [21]. Universal occurrence Büchi and nondeterministic occurrence
co-Büchi automata can be determinised through the power set construction and
thus they recognise the same classes as their deterministic counterparts. The
other results for occurrence acceptance condition follow from [22].

Infinite occurrence (Inf) Occurrence (Occ)
Büchi co-Büchi Streett Büchi co-Büchi Streett

Deterministic recurrence persistence reactivity guarantee safety obligation
Nondeterministic reactivity persistence reactivity persistence safety persistence
Universal recurrence reactivity reactivity guarantee recurrence recurrence
Alternating reactivity reactivity reactivity persistence recurrence reactivity

Table 1. The expressivity – each of 24 possible inter-combinations of the transition func-
tion and acceptance condition corresponds to one of the six hierarchy classes.

Several other types of acceptance conditions have been studied in the theory
of automata over infinite words, in particular Müller, Rabin and parity accep-
tance conditions. It can be shown that automata with any of these acceptance
conditions can be effectively transformed into automata with Streett acceptance
conditions [31, 21]. Therefore these types of automata also exactly recognise
classes from the hierarchy.

2.2 Linear Temporal Logic View

In this section we characterise the hierarchy of properties through temporal
logic formulas. We revise the classification by Chang, Manna, and Pnueli [5]
and propose a new hierarchy of LTL formulas based on an alternation depth.

The set of LTL formulas is defined inductively starting from a countable
set AP of atomic propositions, Boolean operators, and the temporal operators
X (Next) and U (Until):

Ψ := a | ¬Ψ | Ψ ∨ Ψ | Ψ ∧ Ψ | XΨ | Ψ UΨ

8

LTL formulas are interpreted in the standard way [11] on infinite words over the
alphabet 2AP . We adopt standard abbreviations R , F ,G for temporal operators
Release (αRβ ≡ ¬(¬αU¬β)), Future (Fα ≡ true Uα) and Globally (Gα ≡
false Rα) respectively. A property P is defined to be specifiable by LTL if there is
an LTL formula ϕ such that w |= ϕ if and only if w ∈ P .

Chang, Manna, and Pnueli [5] have proposed the classification of LTL for-
mulas into 6 types: guarantee, safety, obligation, recurrence, persistence, and
reactivity formulas (in the following the notation κ-formula means the formula
of type κ). Every LTL formula is a reactivity formula. Guarantee formulas are
defined inductively in the ΨG line below, similarly for other types (type names
are abbreviated by they first letter).

ΨG := a |¬a |ΨG ∨ ΨG |ΨG ∧ ΨG |XΨG |FΨG |ΨG UΨG |¬ΨS

ΨS := a |¬a |ΨS ∨ ΨS |ΨS ∧ ΨS |XΨS |GΨS |ΨS RΨS |¬ΨG

ΨO := ΨS |ΨG |ΨO ∨ ΨO |ΨO ∧ ΨO |XΨO |ΨO UΨG |ΨO RΨS |¬ΨO

ΨP := ΨS |ΨG |ΨP ∨ ΨP |ΨP ∧ ΨP |XΨP |FΨP |ΨP UΨP |ΨP RΨS |¬ΨR

ΨR := ΨS |ΨG |ΨR ∨ ΨR |ΨR ∧ ΨR |XΨR |GΨR |ΨR RΨR |ΨR UΨG |¬ΨP

Names of formula types connote a correspondence between κ-formulas and
κ-properties. However, the correspondence is not direct. For example the for-
mula G p∨ (pU q) specifies a safety property although it is not a safety formula.
Yet it is equivalent to the safety formula qR (p ∨ q). In fact, the following corre-
spondence holds:

Theorem 3 ([5]). A property that is specifiable by LTL is a κ-property if and only if it
is specifiable by a κ-formula.

In recent years, considerable effort has been devoted to the study of LTL
hierarchies which were defined with respect to the number of nested temporal
operators Until, Since and Next ([14, 30, 19]). These hierarchies provide interest-
ing characterizations of LTL definable languages. However, they do not seem
to have a direct connection to the model checking problem. We propose a new
hierarchy which is based on alternation depth instead of nested depth, and es-
tablish its connection with the hierarchy of properties. In the next Section we
demonstrate that this classification directly reflects the hardness of the verifica-
tion problem for particular properties.

Let us define hierarchies ΣLTL
i and ΠLTL

i , which reflect alternations of Un-
til and Release operators in formulas. We use the Σ/Π notation since the way
the hierarchy is defined strongly resembles the quantifier alternation hierarchy
of first-order logic formulas or fixpoints alternation hierarchy of µ-calculus for-
mulas [12].

Definition 3.
The class ΣLTL

0 = ΠLTL
0 is the least set containing all atomic propositions and closed

under the application of boolean and Next operators.

9

The class ΣLTL
i+1 is the least set containing ΠLTL

i and closed under the application of
conjunction, disjunction, Next and Until operators.

The class ΠLTL
i+1 is the least set containing ΣLTL

i and closed under the application of
conjunction, disjunction, Next and Release operators.

Theorem 4. A property that is specifiable by LTL is a guarantee (safety, persistence,
recurrence respectively) property if and only if it is specifiable by a formula from the
class ΣLTL

1 (ΠLTL
1 , ΣLTL

2 , ΠLTL
2 respectively) (see Fig. 1).

Proof: One can transform any guarantee (safety, persistence, recurrence respec-
tively) formula into an equivalent ΣLTL

1 (ΠLTL
1 , ΣLTL

2 , ΠLTL
2 respectively) for-

mula using identities αR β ≡ G β ∨ (β U (α ∧ β)), αUβ ≡ F β ∧ (β R (α ∨ β)),
Fα ≡ true Uα, Gα ≡ false Rα and standard identities for pushing negation
“inward”. The rest is a consequence of Theorem 3.

Theorem 5. A property is specifiable by LTL if and only if it is specifiable by a positive
boolean combination of ΣLTL

2 and ΠLTL
2 formulas.

Proof: Follows from the previous Theorem and the fact that every reactivity
property is a positive boolean combination of persistence and recurrence prop-
erties [23].

Thus we have that the type of a formula can be derived from its alternation
depth. As a consequence we obtain the following, quite surprising fact:

Corollary 1. Both ΣLTL
i and ΠLTL

i hierarchies collapse in the sense that every LTL
formula is specifiable both by a ΣLTL

3 and ΠLTL
3 formula.

3 Model Checking and Hierarchy of Properties

The model checking problem is to determine for a given reactive system K
and a temporal formula ϕ whether the system satisfies the formula. A com-
mon approach to model checking of finite state systems and LTL formulas is to
construct an automaton A¬ϕ for the negation of the property and to model the
system as an automaton K. The product automaton K × A¬ϕ is then checked
for non-emptiness. The product automaton is a nondeterministic infinite occur-
rence Büchi automaton. For the formal definition of the problem and detailed
description of the algorithm we refer to [6].

Our aim is to analyse the complexity of the non-emptiness check depending
on the type of the verified property. As the complexity of the non-emptiness
check is determined by attributes of an automaton, the question is whether for
different types of formulas one can construct different types of automata. We
give a comprehensive answer to this question in this section. In the next sec-
tion we demonstrate how the complexity of the non-emptiness check varies
depending on the type of automata.

To classify nondeterministic infinite occurences Büchi automata we adopt
the criteria proposed by Bloem, Ravi, and Somenzi [1]. They differentiate gen-
eral, weak, and terminal automata according to the following restrictions posed
on their transition functions:

10

- general: no restriction
- weak: there exists a partition of the set Q into components Qi and an ordering
≤ on these sets, such that for each q ∈ Qi, p ∈ Qj , if ∃a ∈ Σ : q ∈ δ(p, a) then
Qi ≤ Qj . Moreover for each Qi, Qi ∩ α = ∅, in which case Qi is a rejecting
component, or Qi ⊆ α, in which case Qi is an accepting component.

- terminal: for each q ∈ α, a ∈ Σ it holds δ(q, a) 6= ∅ and δ(q, a) ⊆ α.

Each transition of a weak automaton leads to a state in either the same or
lower component. Consequently each run of a weak automaton gets eventu-
ally trapped within one component. The run is accepting iff this component
is accepting. The transition function of a terminal automaton is even more re-
stricted – once a run of a terminal automaton reaches an accepting state the run
is accepting regardless of the suffix. Terminal and weak automata are jointly
called specialised automata. It shows up that the classes of properties specifiable
by weak and terminal automata coincide with classes of the hierarchy.

Theorem 6. A property P specifiable by automata is a guarantee (persistence) prop-
erty if and only if it is specifiable by a terminal (weak) automaton.

Proof: A terminal automaton can be, thanks to the property of its transition
function, determinised by a power-set construction. The resulting automaton
can be viewed as a deterministic occurrence Büchi automaton. On the other
hand, each deterministic occurrence Büchi automaton can be easily transformed
into equivalent terminal automaton by a copy construction. Since deterministic
occurrence Büchi automata recognise guarantee properties (Theorem 2), so do
terminal automata.

In a similar way a connection between weak automata and nondeterministic
infinite occurences co-Büchi automata can be established. The transformation
can be found in [21].

Theorem 6 raises a natural question whether and how effectively one can
construct for a given guarantee (persistence) formula the corresponding ter-
minal (weak) automaton. A construction of an automaton for an LTL formula
was first proposed by Wolper, Vardi and Sistla [33]. This basic construction has
been improved in several papers ([16, 28, 13, 20]) where various heuristics have
been used to produce automaton as small and as ”weak” as possible. Although
these heuristics are quite sophisticated, they do not provide any insight into the
relation between the formula and the ”weakness” of the resulting automaton.

We present a new modification of the original construction which yields
for a formula from the class ΣLTL

1 and ΣLTL
2 a specialised automaton. Similar

constructions were independently used by Schneider [26].

Theorem 7. For every ΣLTL
1 (ΣLTL

2) formula ϕ we can construct a terminal (weak)
automaton accepting the property defined by ϕ.

Proof: States of the automaton are sets of subformulas of the formula ϕ. The
transition function is constructed in such a way that the following invariant is
valid: if the automaton is in a state S then the remaining suffix of the word

11

should satisfy all formulas in S. The acceptance condition is used to enforce
the fulfillment of Until operators. For ΣLTL

1 and ΣLTL
2 formulas the acceptance

condition can be simplified thanks to the special structure of alternation of Until
and Release operators in the formula.

Let ϕ be a ΣLTL
1 or ΣLTL

2 formula over the set AP of atomic propositions.
We define the automaton Aϕ = 〈Σ,Q, qstart, δ, α〉 as follows:

Σ = 2AP

Q = qstart ∪ Q′, where qstart is a special initial state and Q′ is the set of all
subsets of sub(ϕ) = {ψ | ψ is a subformula of ϕ} ∪ {p,¬p | p ∈ AP} that do
not have any propositional inconsistency, i.e. S ∈ Q′ if S ⊆ sub(ϕ) and

– p ∈ S ⇔ ¬p 6∈ S for all p ∈ AP
– ψ1 ∧ ψ2 ∈ S ⇒ ψ1 ∈ S and ψ2 ∈ S
– ψ1 ∨ ψ2 ∈ S ⇒ ψ1 ∈ S or ψ2 ∈ S

δ : Let S, S′ ∈ Q, then S′ ∈ δ(S,A) if A = S′ ∩ AP and
– Xψ ∈ S ⇒ ψ ∈ S′

– ψ1 Uψ2 ∈ S ⇒ ψ2 ∈ S or (ψ1 ∈ S and ψ1 Uψ2 ∈ S′)
– ψ1 Rψ2 ∈ S ⇒ ψ1 ∧ ψ2 ∈ S or (ψ2 ∈ S and ψ1 Rψ2 ∈ S′)
– S ∈ α⇒ S′ ∈ α
– S = qstart ⇒ ϕ ∈ S′

α : accepting set respects the type of the property:
– if ϕ is a ΣLTL

1 formula then α = {S ∈ Q | S ⊆ AP}
– if ϕ is aΣLTL

2 formula then α = {S ∈ Q | there is no Until formula in S}

To verify the correctness of the construction we have to show that:

- the automaton Aϕ accepts the property defined by ϕ, that is w |= ϕ⇔ Aϕ ac-
cepts w. This can be proved by a structural induction on ϕ.

- the automaton Aϕ is terminal (weak). This can be easily seen from the way
the transition function is defined due to the fact that the formula is from
the class ΣLTL

1 (ΣLTL
2). The partition of the set Q for the weak automaton is

Q2 = Qr α,Q1 = α.

The major difference in comparison to the original construction is in the way
the acceptance condition is defined. The transition function is modified in order
to respect the intended partition of states.

4 Non-Emptiness Algorithms

In the previous section we showed that we can effectively construct specialised
automata for formulas from lower classes of the hierarchy. Since the verified
system K can be modelled as an automaton without acceptance conditions, the
type of the product automaton is determined entirely by the type of the au-
tomaton A¬ϕ, that is even the product automaton is specialised. In this section
we study algorithms for its non-emptiness check.

Every Büchi automaton can be represented as an oriented graph with ver-
tices corresponding to states and edges corresponding to the transition function

12

of the automaton. Every infinite path in the graph corresponds to a run of the
automaton. The question whether there exists an accepting run thus can be re-
duced to the question whether there exists a path with some special properties
in the graph. The required properties for particular automata are listed below.

Terminal non-emptiness check = reachability of an accepting state
Once a terminal automaton reaches an accepting state, it accepts the whole
word. The language recognised by a terminal automaton is non-empty iff
an accepting state is reachable.

Weak non-emptiness check = reachability of a ”fully accepting” cycle
States of a weak automaton are partitioned into components and therefore
states from each cycle in the graph are either all accepting (the cycle is fully
accepting) or all non-accepting. The language recognised by a weak au-
tomaton is non-nonempty iff a fully accepting cycle is reachable.

General non-emptiness check = reachability of an accepting cycle
In general case, cycles in the graph may contain accepting as well as non-
accepting states. The language is non-nonempty iff a cycle containing at
least one accepting state is reachable.

Terminal, weak, and general automata correspond to guarantee, persistence
and reactivity properties respectively. One may ask whether for other types of
properties and their corresponding automata the non-emptiness check reduces
to different graph problems. This is not the case. A fully accepting cycle detec-
tion and an accepting cycle detection are unavoidable even for the safety and
recurrence properties respectively. Thus from the model checking point of view
the hierarchy splits into three stripes, as indicated on Fig. 1.

Model checking algorithms are usually divided into explicit and symbolic,
according to the used representation of a considered product automaton. In
the explicit representation each state is manipulated individually. The symbolic
representation works with sets of states which are typically represented by bi-
nary decision diagrams (BDDs) [2, 6].

4.1 Explicit Algorithms

With the explicit representation, the product automaton is represented by adja-
cency lists. The algorithm traverses the graph and visits individual states.

Terminal non-emptiness: any complete traversal of the state space suffices.
Weak non-emptiness: can be solved efficiently by a depth first search (DFS). A

fully accepting cycle is detected by DFS when an accepting state that is
currently on the DFS stack it reached.

General non-emptiness: the most efficient explicit algorithm for this case is the
nested DFS algorithm [8, 17] which traverses the state space using DFS and
detects accepting cycles by nested DFS executed from accepting states.

The asymptotic time complexity of all above mentioned algorithms is the same
though they differ on constant factors. The application of algorithms for spe-
cialised automata brings along several benefits as for instance a possibility for

13

employing “guided search” heuristics [10]. The partial-order reduction can be
employed more directly in the case of the simple DFS than in the case of the
nested DFS [17]. For terminal automata the algorithm is not tied up with P-
complete DFS [25] and hence it allows for better distribution [29]. Some of
these benefits were experimentally demonstrated by Edelkamp, Lafuente and
Leue [10]. They extended the model checker SPIN by a non-emptiness algo-
rithm which to a certain extent takes the type of an automaton into considera-
tion.

4.2 Symbolic Algorithms

Symbolic algorithms work with sets of states represented by BDDs [3] and
perform basic set operations (union, intersection) and an image operation. The
symbolic approach has been originally used for branching time logic model
checking. A symbolic approach to LTL was initially based on the transforma-
tion to fair CTL model checking [7] and only recently it was reformulated di-
rectly for LTL [18]. We review this method with respect to weak and terminal
automata.

Symbolic algorithm for the non-emptiness check is based on the computa-
tion of two fixpoints:

Reachability(S) = µZ.(S ∪ image(Z))

Elimination(S) = νZ.(S ∩ image(Z))

The function Reachability(S) computes the set of states that are reachable from
the set S. The function Elimination(S) computes the set of all states q, for which
either q lies on a cycle in S or q ∈ S and q is reachable in S from a cycle in S
(the computation is performed by successive removal of states that do not have
predecessors in S). There are several possibilities how to formulate an algo-
rithm for non-emptiness check of general automata [15]. Algorithms displayed
in Fig. 2 correspond to the “One Way Catch Them Young” strategy.

It is conventional to analyse the complexity of symbolic algorithms with
respect to the number of symbolic steps (that is the number of union, inter-
section, and image computations). The complexity of the algorithm for general
automata is quadratic, since it involves computation of nested fixpoints. The al-
gorithms for weak and terminal automata perform only linear number of sym-
bolic steps as they involve only simple fixpoint computations. Thus for sym-
bolic algorithms it is even asymptotically more efficient to use specialised algo-
rithms. Moreover, the arguments concerning heuristics and distributed compu-
tations stated for the explicit case hold for the symbolic case as well. Results of
experiments performed by Bloem, Ravi, and Somenzi [1] confirm these claims.

5 Determining the Type of Formula

In the previous sections we showed that the verification of an LTL specifiable
property can be more efficient if the resulting product automaton is weak or

14

proc General Nonemptiness(A)
S := Reachability(q0);
old := ∅;
while (S 6= old) do

old := S;
S := Reachability(S ∩ α);
S := Elimination(S);

od
return S 6= ∅;

end

proc Weak Nonemptiness(A)
S := Reachability(q0);
S := Elimination(S ∩ α);
return S 6= ∅;

end

proc Terminal Nonemptiness(A)
S := Reachability(q0) ∩ α;
return S 6= ∅;

end

Fig. 2. Symbolic non-emptiness algorithms, their input is a Büchi automaton A;
Weak Nonemptiness and Terminal Nonemptiness work correctly for weak and termi-
nal automata respectively.

terminal. In other words, it is preferable if the property we want to verify is
formulated as a recurrence or safety formula1. The problem is how to determine
the type of a property. We remind the reader the formula G p ∨ (pU q) (see
Section 2.2) specifying a safety property although it is not a safety formula.

Theorem 8 ([23]). It is decidable whether a given deterministic Streett automaton
specifies a property of type κ.

Corollary 2. It is decidable whether a given LTL formula ϕ specifies a property of the
type κ.

Proof: For a given formula ϕ we construct a nondeterministic Büchi automaton
Aϕ accepting models of ϕ [32]. The determinisation of the automaton yields
an equivalent deterministic Streett automaton [21] . Theorem 8 allows us to
determine the type of the property.

Unfortunately, the decision procedure sketched in the proof of Corollary 2
is exponential due to necessary determinisation of the automaton. Moreover,
Sistla [27] has shown that even the problem of deciding whether a given for-
mula specifies a safety property is PSPACE-complete. This indicates that we
cannot hope for any much more efficient algorithm for deciding whether a
given LTL formula ϕ specifies a property of the type κ.

Thus a natural objection to model checking strategy based on the precise
classification of the property type is that the effort needed for determining the
type prevails over the advantage gained by the use of a specialised algorithm
for the non-emptiness check. We advocate this approach as follows.

Although the algorithm for determining the type of formula has very high
worst-case complexity it still may be the case that it can be well accomplished.
We call to mind that formulas are usually quite “short”. Moreover, it is typical to

1 Please remember that in the verification process the negation of the formula is trans-
lated into an automaton. Therefore recurrence and safety formulas are translated into
weak and terminal automata respectively.

15

make many tests for one fixed formula during the system development process.
In such a case, the work needed for determining the type of the formula is
amortised over its verification.

One can benefit from the presented classification of properties even in some
other ways. First, when translating a formula into an automaton, various heuris-
tics can be employed to generate an automaton “as weak as possible” (this ap-
proach has been used in [28, 13]). Secondly, when formulating a desired prop-
erty as an LTL formula one can take into consideration the Until-Release hi-
erarchy and avoid the combinations of temporal operators resulting in a hard
non-emptiness check.

To stress the significance of the specialised algorithms we have studied the
Specification Patterns System [9] that is a collection of the most often verified
properties. It shows up that most of the properties are either of safety (41%) or
recurrence (54%) type and thus in most cases the resulting automaton is either
terminal or weak. Moreover, algorithms for specialized automata can be more
effectively transformed to distributed ones [4].

6 Conclusions

The contribution of the paper is twofold. First, it provides a new classification of
temporal properties through deterministic ω-automata and through the Until-
Release hierarchy.

Secondly, the paper introduces a new classification of LTL properties with
respect to the complexity of their verification problem. Linear temporal prop-
erties are sorted into three major classes: reactivity, recurrence and safety. The
verification of safety properties reduces to the non-emptiness check of terminal
automata that can be solved either by searching the state space (the explicit rep-
resentation) or by simple fixpoint computation (the symbolic representation).
The verification of recurrence properties reduces to the non-emptiness check of
weak automata that can be solved by simple depth-first search or by simple fix-
point computation. In general, simpler non-emptiness check algorithms are not
only more time efficient but also allow for more additional time/space saving
methods. The paper cites several experimental works confirming these claims
and observations.

References

1. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking
of linear time logic properties. In Proc. Computer Aided Verification, volume 1633 of
LNCS, pages 222–235. Springer, 1999.

2. R.E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE
Transactions on Computers, volume C-35(8), pages 677 – 691, 1986.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

4. I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In 10th International
SPIN Workshop on Model Checking of Software, Portland, Oregon, 2003.

16

5. E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property classes.
In Proc. Automata, Languages and Programming, volume 623 of LNCS, pages 474–486.
Springer, 1992.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
7. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-

ing. In Proc. Computer Aided Verification, volume 818 of LNCS, pages 415–427.
Springer, 1994.

8. C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design,
1:275–288, 1992.

9. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for
finite-state verification. In Proc. Workshop on Formal Methods in Software Practice,
pages 7–15. ACM Press, 1998.

10. S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking with
HSF-SPIN. In Proc. SPIN workshop, volume 2057 of LNCS, pages 57–79. Springer,
2001.

11. E. A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook of
Theoretical Computer Science: Volume B, Formal Models and Semantics, pages 995–1072.
North-Holland Publishing Company, 1990.

12. E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the proposi-
tional mu-calculus. In Proc. IEEE Symposium on Logic in Comuter Science, pages 267 –
278. Computer Society Press, 1986.

13. K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Proc. CONCUR,
volume 1877 of LNCS, pages 153–167. Springer, 2000.

14. K. Etessami and T. Wilke. An Until hierarchy for temporal logic. In Proc. IEEE Sym-
posium on Logic in Computer Science, pages 108–117. Computer Society Press, 1996.

15. K. Fisler, R. Fraer, G. Kamhi Y. Vardi, and Zijiang Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. Tools and Algorithms for Construction and Analysis
of Systems, volume 2031 of LNCS, pages 420–434. Springer, 2001.

16. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proc. Protocol Specification Testing and Verification,
pages 3–18. Chapman & Hall, 1995.

17. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proc.
SPIN Workshop, pages 23–32. American Mathematical Society, 1996.

18. Y. Kesten, A Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic
specifications. In Proc. Automata, Languages and Programming, volume 1443 of LNCS,
pages 1–16. Springer, 1998.

19. A. Kučera and J. Strejček. The stuttering principle revisited: On the expressiveness
of nested X and U operators in the logic LTL. In Proc. Computer Science Logic, volume
2471 of LNCS, pages 276–291. Springer, 2002.

20. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods
in System Design, 19(3):291–314, 2001.

21. C. Löding. Methods for the transformation of omega-automata: Complexity and
connection to second order logic. Master’s thesis, Christian-Albrechts-University of
Kiel, 1998.

22. C. Löding and W. Thomas. Alternating automata and logics over infinite words.
In Proc. IFIP International Conference on Theoretical Computer Science, volume 1872 of
LNCS, pages 521–535. Springer, 2000.

23. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. ACM Sympo-
sium on Principles of Distributed Computing, pages 377–410. ACM Press, 1990.

17

24. D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267 – 276, 1987.

25. J.H. Reif. Depth-first search is inherrently sequential. Information Processing Letters,
20(5):229–234, 1985.

26. K. Schneider. Improving automata generation for linear temporal logic by consid-
ering the automaton hierarchy. In Proc. Logic for Programming, Artificial Intelligence,
and Reasoning, volume 2250 of LNCS, pages 39–54. Springer, 2001.

27. A. P. Sistla. Safety, liveness, and fairness in temporal logic. Formal Aspects of Com-
puting, 6(5):495–512, 1994.

28. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc.
Computer Aided Verification, volume 1855 of LNCS, pages 248–263. Springer, 2000.

29. U. Stern and D.L. Dill. Parallelizing the Murϕ verifier. In Proc. Computer Aided
Verification, volume 1254 of LNCS, pages 256–267. Springer, 1997.

30. D. Therien and T. Wilke. Nesting Until and Since in linear temporal logic. In Proc.
Symposium on Theoretical Aspects of Computer Science, volume 2285 of LNCS, pages
455–464. Springer, 2002.

31. W. Thomas. Languages, automata and logic. In Handbook of Formal Languages, vol-
ume 3, pages 389–455. Springer, 1997.

32. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. IEEE Symposium on Logic in Computer Science, pages 322–331.
Computer Society Press, 1986.

33. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about inifinite computation paths.
In Proc. Symp. on Foundations of Computer Science, pages 185 – 194, Tuscon, 1983.

18

Copyright c© 2003, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

