RTIS Iy
o™ F%

v, FIMU

Faculty of Informatics
Masaryk University

. FA
@\\}ﬁg\ Cy, Z’y
@
Ay o gronS

TOOLS DAY

Affiliated to CONCUR 2002

Proceedings

by

Ivana Cerna

(Ed.)

FI MU Report Series FIMU-RS-2002-05
Copyright (© 2002, FI MU August 2002

Foreword

These are proceedings of the Tools Day 2002 held in Brno, Czech Republic,
on August 24, 2002, as a satellite event of CONCUR’02, the 13th Interna-
tional Conference on Concurrency Theory.

Formal verification provides an elegant approach to validating the cor-
rectness of software and hardware systems behaviour. Verification tools
have enjoyed a substantial and growing use over the last few years, show-
ing ability to discover subtle flaws. While until recently these tools were
viewed as of academic interest only, they are now routinely used in indus-
trial applications. The aim of the Tools Day was not only to present recent
development in the area, but also to give tools developers and users the
opportunity to discuss future trends and needs.

Eight regular papers, together with keynote presentations by Ziyad
Hanna and Kim G. Larsen, form the content of these proceedings.

I would like to thank the organizing committee members for their sup-
port in composing the Tools Day, and the CONCUR’02 Organizing Com-
mittee for arranging all local affairs.

Brno, August 2002 Ivana Cernd

111

Contents

Invited talks

Formal Verification Framework and Applications for the Massive Usage

atIntel 1
Ziyad Hanna

UPPAAL Implementation Secrets ..., 2

Kim G. Larsen
Tools Presentations

The Model-Checking Kit i, 22
C. Schroeter, S. Schwoon, J. Esparza

An Overview of CADP 2001 ..o, 32
H. Garavel, F. Lang, R. Mateescu

Simulating Nondeterministic Systems at Multiple Levels of Abstraction 44
D.K. Kirli, A. Chefter, L. Dean, S.J. Garland, N.A. Lynch,
T.N. Win, A. Ramirez-Robredo

The Parallel PV Model Checker 60
G. Gopalakrishnan, R. Palmer

New Petri Net Programming Features in PEP 72
C. Bui Thanh, C. Stehno

ETMCC: A Markov Chain Model Checker iiiiiiiiino... 79
H. Hermanns, J.P. Katoen, J. Meyer-Kayser, M. Siegle

RAPTURE: A Tool for Verifying Markov Decision Processes 84
B. Jeannet, PR. D’ Argenio, K.G. Larsen

YAHODA: the Database of Verification Tools T TTTI P 99
J. Crhova, P. Krédl, J. Strejcek, D. Safrének, P. Simecek

iv

Formal Verification Framework and
Applications for the Massive Usage
at Intel

Ziyad Hanna

Intel, Israel

Abstract. The continuous development and innovations of formal veri-
fication technologies during the last decade; put lots of hope and signifi-
cantly raised the confidence level of the Industrial design teams to apply
formal methods for improving the overall chip design verification cycle.
In particular, we at Intel have been developing formal verification tech-
nologies and tools and employing them for the benefits of the majority of
Pentium and Itanium projects. In this talk, I will present our experience
in this domain, the usage model, overview our Intel Formal verification
framework (FORTE), and discuss the major applications (FEV, FPV)
for verifying the design correctness and design implementation. During
the talk, I will convey the main challenges and the future of formal ver-
ification that we see at Intel.

UPPAAL Implementation Secrets

Gerd Behrmann? Johan Bengtsson! Alexandre David! Kim G. Larsen®

Paul Pettersson’ Wang Yi!

! Department of Information Technology, Uppsala University, Sweden,
[johanb,adavid,paupet,yi]@docs.uu.se.
% Basic Research in Computer Science, Aalborg University, Denmark,
[behrmann,kgl]@cs.auc.dk.

Abstract In this paper we present the continuous and on-going de-
velopment of datastructures and algorithms underlying the verification
engine of the tool UPPAAL. In particular, we review the datastructures
of Difference Bounded Matrices, Minimal Constraint Representation and
Clock Difference Diagrams used in symbolic state-space representation
and -analysis for real-time systems.

In addition we report on distributed versions of the tool, and outline the
design and experimental results for new internal datastructures to be
used in the next generation of UPPAAL.

Finally, we mention work on complementing methods involving acceler-
ation, abstraction and compositionality.

1 Introduction

UppAAL [LPY97] is a tool for modeling, simulation and verification of real-time
systems, developed jointly by BRICS at Aalborg University and the Depart-
ment of Computer Systems at Uppsala University. The tool is appropriate for
systems that can be modeled as a collection of non-deterministic processes with
finite control structure and real-valued clocks, communicating through channels
or shared variables. Typical application areas include real-time controllers and
communication protocols.

Since the first release of UPPAAL in 1995, the tool has been under constant
development by the teams in Aalborg and Uppsala. The tool has consistently
gained in performance over the years, which may be ascribed both to the devel-
opment of new datastructures and algorithms as well as constant optimizations
of their actual implementations. By now (and since long) UpPPAAL has reached
a state, where it is mature for application on real industrial development of
real-time systems as witnessed by a number of already carried out case-studies?.

Tables 1 and 2 show the variations of time and space consumption for three
different versions of UPPAAL applied to five examples from the literature: Fis-
cher’s mutual exclusion protocol with five processes [Lam87], Philips audio-
control protocol with bus-collision detection [BGK*96], a Power-Down Con-
troller [HLS99], a TDMA start-up algorithm with three nodes [LP97], and a

! See www.uppaal.com for detailed list.

I || 1998]| 2000 | DBM [Min | Ctrl | Act | PWL [State [[2002]

Fischer 5 126.30(13.50|| 4.79| 6.02| 3.98| 2.13| 3.83| 12.66|| 0.19
Audio - 2.23|| 1.50{ 1.79| 1.45| 0.50| 1.57| 2.28|| 0.45
Power Down *1|1407.82(|207.76|233.63|217.62|53.00|125.25|364.87|13.26
Collision Detection||128.64|| 17.40|| 7.75| 8.50| 7.43| 7.94| 7.04| 19.16|| 6.92
TDMA 108.70(| 14.36|| 9.15| 9.84| 9.38| 6.01| 9.33| 16.96|| 6.01

Tablel. Time requirements (in seconds) for three different UPPAAL versions.

CSMA/CD protocol with eight nodes [BDM198]. In the column “1998” and
“2000” we give the run-time data of UPPAAL versions dated January 1998 and
January 2000 respectively. In addition, we report the data of the current ver-
sion dated June 2002. The numbers in column “DBM” were measured with-
out any optimisations, “Min” with Minimal Constraints Representation, “Ctrl”
with Control Structure Reduction [LPY95], “Act” with Active Clock Reduction
[DT98], “PWL” with the Passed and Waiting List Unification, “State” with
Compact Representation of States, and finally “2002” with the best combina-
tion of options available in the current version of UPPAAL. The different versions
have been compiled with a recent version of gcc and were run on the same Sun
Enterprise 450 computer equipped with four 400 MHz processors and 4 Gb or
physical memory. In the diagrams we use “-” to indicate that the input model
was not accepted due to compability issues, and “*” to indicate that the veri-
fication did not terminate within one hour. We notice that both the time and
space performance has improved significantly over the years. For the previous
period December 1996 to September 1998 a report on the run-time and space
improvements may be found in [Pet99]. Similar diagrams for the time period
November 1998 to Januari 2001 are reported in [ABB*01].

Despite this success improvement in performance, the state-explosion prob-
lem is a still a reality? which prevents the tool from ever® being able to provide
fully automatic verification of arbitrarily large and complex systems. Thus, to
truely scale up, automatic verification should be complemented by other meth-
ods. Such methods investigated in the context of UPPAAL include that of accel-
eration [HLO2] and abstractions and compositionality [JLS00].

The outline of the paper is as follows: Section 2 summaries the definition of
timed automata, the semantics, and the basic timed automaton reachability al-
gorithm. In section 3 we present the three main symbolic datastructures applied
in UpPAAL: Difference Bounded Matrices, Minimal Constraint Representation
and Clock Difference Diagrams and in section 4 we review various schemes for
compact representations for symbolic states. Section 5 introduces a new exlo-
ration algorithm based on a unification of Passed and Waiting list datastructures
and Section 6 reviews our considerable effort in parallel and distributed reach-

2 Model-checking is either EXPTIME- or PSPACE-complete depending on the expres-
siveness of the logic considered.
3 unless we succeed in showing P=PSPACE

I [1998]] 2000 [[DBM | Min | Ctrl [Act [PWL] State [[2002]

Fischer 5 8.86(8.14|| 9.72| 6.97| 6.40| 6.35| 6.74| 4.83|| 3.21
Audio - 3.02(| 5.58| 5.53| 5.58| 4.33| 4.75| 3.06|| 3.06
Power Down *1]1218.90(162.18|161.17|132.75|44.32|18.58|117.73|| 8.99
Collision Detection||17.00|| 12.78|| 25.75| 21.94| 25.75|25.75|10.38| 13.70(|10.38
TDMA 8.42(| 8.00|| 11.29| 8.09| 11.29({11.29| 4.82| 6.58|| 4.82

Table2. Space requirements (in Mb) of for different UPPAAL versions.

ability checking. Section 7 presents recent work on acceleration techniques and
section 8 reviews work on abstraction and compositionality. Finally, we conclude
by stating what we consider open problems for future research.

2 Preliminaries

In this section we summaries the basic definition of timed automata, their con-
crete and symbolic semantics and the reachability algorithm underlying the cur-
rently distributed version of UPPAAL.

Definition 1 (Timed Automaton). Let C be the set of clocks. Let B(C') be
the set of conjunctions over simple conditions on the forms x < ¢ and £ — y 1<
¢, where z,y € C, <€ {<,<,=,>,>} and ¢ is a natural number. A timed
automaton over C is a tuple (L,lo, E, g,7,I), where L is a set of locations, ly € L
is the initial location, E € L X L is a set of edges, g : E — B(C) assigns guards
to edges, 7 : E — 2C assigns clocks to be reset to edges, and I : L — B(C)
assigns invariants to locations.

Intuitively, a timed automaton is a graph annotated with conditions and
resets of non-negative real valued clocks.

Definition 2 (TA Semantics). A clock valuation is a function u : C = Rxg
from the set of clocks to the non-negative reals. Let RC be the set of all clock
valuations. Let ug(x) = 0 for all z € C. We will abuse the notation by considering
guards and invariants as sets of clock valuations.

The semantics of a timed automaton (L,lg, E, g,r,I) over C is defined as a
transition system (S, sg, =), where S = L x RC is the set of states, so = (lo, uo)
is the initial state, and —-C S x S is the transition relation such that:

- (Lu) = (Lu+d) ifueI(l) andu+de I(l)
- (l,u) = (I',u') if there ezxists e = (1,1") € E s.t. u € g(e), u' = [r(e) — O]u,
and u' € I(l)

where for d € R, u+d maps each clock x in C to the value u(x)+d, and [r — OJu
denotes the clock valuation which maps each clock in r to the value 0 and agrees
with u over C' \ r.

The semantics of timed automata results in an uncountable transition system.
It is a well known-fact that there exists a exact finite state abstraction based on
convex polyhedra in RY called zones (a zone can be represented by a conjunction
in B(C)). This abstraction leads to the following symbolic semantics.

Definition 3 (Symbolic TA Semantics). Let Zg = A\, > 0 be the initial
zone. The symbolic semantics of a timed automaton (L,ly, E,g,r,I) over C is
defined as a transition system (S, so, =) called the simulation graph, where S =
L x B(C) is the set of symbolic states, so = (lo, Zo A I(lp)) is the initial state,

=={(s,u) €S xS |Je,t:s>t 3 u} : is the transition relation, and:

~ (1,2) 2 (I, norm(M, (Z AI(1))T AI()))
—(1,2) S (U, re(gle) A ZANIQD)) A1) ife = (1,I') € E.

where Z' = {u+d | u € ZANd € R>o} (the future operation), and r.(Z) =
{[r(e) = OJu | w € Z} (the reset operation). The function norm : N x B(C) —
B(C) normalises the clock constraints with respect to the mazimum constant M
of the timed automaton.

The relation = contains the delay transitions and = the edge transitions.
Given the symbolic semantics it is straight forward to construct the reachability
algorithm, shown in Figure 1. The symbolic semantics can be extended to cover
networks of communicating timed automata (resulting in a location vector to be
used instead of a location), timed automata with data variables (resulting in the
addition of a variable vector).

3 Symbolic Datastructures

To utilize the above symbolic semantics algorithmically, as for example in the
reachability algorithm of Figure 1, it is important to design efficient data struc-
tures and algorithms for the representation and manipulation of clock con-
straints. In this section, we present three such datastructures: Diffence Bounded
Matrices, Minimal Constraint Representation and Clock Difference Diagrams.

Difference Bounded Matrices

Difference Bounded Matrices (DBM, see [Bel57,Dil89]) is well-known data struc-
ture which offers a canonical representation for constraint systems. A DBM rep-
resentation of a constraint system Z is simply a weighted, directed graph, where
the vertices correspond to the clocks of C' and an additional zero—vertex 0. The
graph has an edge from z to y with weight m provided x —y < m is a con-
straint of Z. Similarly, there is an edge from 0 to z (from z to 0) with weight
m, whenever x < m (x > —m) is a constraint of Z*. As an example, consider
the constraint system E over {zg, z1, 2,23} being a conjunction of the atomic
constraints xg —x1 < 3, x3 — o < 5, 3 — 1 < 2,3 —x3 < 2, 3 — 21 < 10,
and z; — 9 < —4. The graph representing E is given in Figure 2 (a).

4 We assume that Z has been simplified to contain at most one upper and lower bound
for each clock and clock—difference.

W = {(lo, Zo A 1(l0))}
P=g
while W # & do
(I, Z) = W.popstate()
if testProperty(l, Z) then return true
ifV(,Y)eP:Z ZY then
P=PU{(,2)}
v{i',z'): (1,Z2) = (I',Z") do
ifVl,Y)eW :Z €Y’ then
w=wu{l,z"}
endif
done
endif
done
return false

Figurel. The timed automaton reachability algorithm, with P being the passed-list
containing all explored symbolic states, and W being the waiting-list containing en-
countered symbolic states waiting to be explored. The function testProperty evaluates
the state property that is being checked for satisfiability. The while loop is refered to
as the exploration loop.

In general, the same set of clock assignments may be described by several
constraint systems (and hence graphs). To test for inclusion between constraint
systems Z and Z'5, which we recall is essential for the termination of the reacha-
bility algorithm of Figure 1, it is advantageous, that Z is closed under entailment
in the sense that no constraint of Z can be strengthened without reducing the
solution set. In particular, for Z a closed constraint system, Z C Z' holds if
and only if for any constraint in Z' there is a constraint in Z at least as tight;
i.e. whenever (x —y < m) € Z' then (x —y < m') € Z for some m' < m.
Thus, closedness provides a canonical representation, as two closed constraint
systems describe the same solution set precisely when they are identical. To close
a constraint system Z simply amounts to derive the shortest—path closure for
its graph and can thus be computed in time O(n?), where n is the number of
clocks of Z . The graph representation of the closure of the constraint system E
from Figure 2 (a) is given in Figure 2 (b). The emptiness-check of a constraint
system Z simply amounts to checking for negative—weight cycles in its graph
representation. Finally, given a closed constraint system Z the operations ZT
and r(Z) may be performed in time O(n). For more detailed information on
how to efficiently implement these and other operations on DBM’s we refer the
reader to [Ben02,Rok93].

5 To be precise, it is the inclusion between the solution sets for Z and Z'.

Figure2. Graph for E (a), its shortest—path closure (b), and shortest—path reduction

(©).

Minimal Constraint Representation

For the reasons stated above a matrix representation of constraint systems in
closed form is an attractive data structure, which has been successfully employed
by a number of real-time verification tools, e.g. UPPAAL [BLL*96] and KRoO-
NOs [DY95]. As it gives an explicit (tightest) bound for the difference between
each pair of clocks (and each individual clock), its space—usage is of the order
O(n?). However, in practice it often turns out that most of these bounds are re-
dundant, and the reachability algorithm of Figure 1 is consequently hampered in
two ways by this representation. Firstly, the main—data structure P (the passed
list) will in many cases store all the reachable symbolic states of the automaton.
Thus, it is desirable, that when saving a symbolic state in the passed list, we
save a representation of the constraint—system with as few constraints as pos-
sible. Secondly, a constraint system Z added to the passedlist is subsequently
only used in checking inclusions of the form Z' C Z. Recalling the method for
inclusion—check from the previous section, we note that (given Z' is closed) the
time—complexity of the inclusion—check is linear in the number of constraints of
Z. Thus, again it is advantageous for Z to have as few constraints as possible.

In [LLPY97,LLPY02] we have presented an O(n?®) algorithm, which given
a constraint system constructs an equivalent reduced system with the mini-
mal number of constraints. The reduced constraint system is canonical in the
sense that two constrain systems with the same solution set give rise to identi-
cal reduced systems. The algorithm is essentially a minimization algorithm for
weighted directed graphs. Given a weighted, directed graph with n vertices, it
constructs in time O(n®) a reduced graph with the minimal number of edges
having the same shortest path closure as the original graph. Figure 2 (c) shows
the minimal graph of the graphs in Figure 2 (a) and (b), which is computed by
the algorithm.

The key to reduce a graph is obviously to remove redundant edges, i.e. edges
for which there exist alternative paths whose (accumulated) weight does not

exceed the weight of the edgesthemselves. E.g. in the graph of Figure 2 (a)
the edge (x1,z2) is clearly redundant as the accumulated weight of the path
(1,23, (x3,22) has a weight (4) not exceeding the weight of the edge itself
(10). Being redundant, the edge (z1, z2) may be removed without changing the
shortest-path closure (and hence the solution-set of the corresponding constraint
system). In this manner both the edges (x1,z2) and (x2,z3) of Figure 2 (b) are
found to be redundant. However, thought redundant, we cannot just remove the
two edges as removal of one clearly requires the presence of the other. In fact,
all edges between the vertices x1, 2 and x3 are redundant, but obviously we
cannot remove them all simultaneously without affecting the solution-set. The
key explanation of this phenomena is that x;, z2 and x3 constitute a zero-cycle.
In fact, for zero-cycle free graphs simulataneous removal of redundant edges leads
to a canonical shortest-path reduction form. For general graphs the reduction is
based on a partitioning of the vertices according to membership of zero-cycles.

Our experimental results demonstrated significant space-reductions compared
with traditional DBMimplmentation: on a number of benchmark and indus-
trial examples the space saving was between 75% and 94%. Additionally, time-
performance was improved.

Clock Difference Diagrams

Difference Bound Matrices (DBM’s) as the standard representation for time
zones in analysis of Timed Automata have a well-known shortcoming: they are
not closed under set-union. This comes from the fact that a set represented by
a DBM is convex, while the union of two convex sets is not necessarily convex.

Within the symbolic computation for the reachability analysis of UPPAAL,
set-union however is a crucial operation which occurs in every symbolic step.
The shortcoming of DBM’s leads to a situation, where symbolic states which
could be treated as one in theory have to be handled as a collection of several
different symbolic states in practice. This leads to trade-offs in memory and time
consumption, as more symbolic states have to be stored and visited during in
the algorithm.

DBM’s represent a zone as a conjunction of constraints on the differences
between each pair of clocks of the timed automata (including a fictitious clock
representing the value 0). The major idea of CDD’s (Clock Difference Diagrams)
is to store a zone as a decision tree of clock differences, generalizing the ideas
of BDD’s (Binary Decision Diagrams, see [Bry86]) and IDD’s (Integer Decision
Diagrams, see [ST98])

The nodes of the decision tree represent clock differences. Nodes on the same
level of the tree represent the same clock difference. The order of the clock
differences is fixed a-priori, all CDD’s have to agree on the same ordering. The
leaves of the decision tree are two nodes representing true and false, as in the
case of BDD’s.

Each node can have several outgoing edges. Edges are labeled with integral
intervals: open, half-closed and closed intervals with integer values as the borders.
A node representing the clock difference X — Y together with an outgoing edge

1 2 3 45 6

(a) () @X X
(x) 0,2]
[1,3] [4,6]
Y
(v) [0,1] [2,3]
[1,3] x-v) x-v)
[an] [_37 0]
True

Figure3. Three example CDD’s. Intervals not shown lead implicitly to False.

with interval I represents the constraint ” X — Y within I”. The leafs represent
the global constraints true and false respectively.

A path in a CDD from a node down to a leaf represents the set of clock values
with fulfill the conjunction of constraints found along the path. Remember that
a constraint is found from the pair node and outgoing edge. Paths going to false
thus always represent the empty set, and thus only paths leading to the true
node need to be stored in the CDD. A CDD itself represents the set given by
the union of all sets represented by the paths going from the root to the true
node. From this clearly CDD’s are closed under set-union. Figure 3 gives three
examples of two-dimensional zones and their representation as CDDs. Note that
the same zone can have different CDD representations.

All operations on DBM’s can be lifted straightforward to CDD’s. Care has
to be taken when the canonical form of the DBM is involved in the operation, as
there is no direct equivalent to the (unique) canonical form of DBM’s for CDD’s.

CDD’s generalize IDD’s, where the nodes represent clock values instead of
clock differences. As clock differences, in contrast to clock values, are not inde-
pendent of each other, operations on CDD’s are much more elaborated than the
same operations on IDD’s. CDD’s can be implemented space-efficient by using
the standard BDD’s technique of sharing common substructure. This sharing
can also take place between different CDD'’s.

Experimental results have shown that using CDD’s instead of DBM’s can
lead to space savings of up to 99%. However, in some cases a moderate increase
in run time (up to 20%) has to be paid. This comes from the fact that operations
involving the canonical form are much more complicated in the case of CDD’s
compared to DBM’s. More on CDD’s can be found in [LWYP99] and [BLP*+99].
A similar datastructure is that of DDD’s presented in [MLAH99a,MLAH99b].

4 Compact Representation of States

Symbolic states are the core objects of state space search and one of the key
issues in implementing a verifier is how to represent them. In the earlier versions
of UPPAAL each entity in a state (i.e. an element in the location vector, the value
of an integer variable or a bound in the DBM) is mapped on a machine word.
The reason for this is simplicity and speed. However the number of possible
values for each entity is usually small, and using a machine word for each of
them is often a waste of space.

To conquer this problem two additional, more compact, state representations
have been added. In both of them the discrete part of each state is encoded as
a number, using a multiply and add scheme. This encoding is much like looking
at the discrete part as a number, where each digit is an entity in the discrete
state and the base varies with the number of different digits.

In the first packing scheme, the DBM is encoded using the same technique
as the discrete part of the state. This gives a very space efficient but computa-
tionally expensive representation, where each state takes a minimum amount of
memory but where a number of bignum division operations have to be performed
to check inclusion between two DBMs.

In the second packing scheme, some of the space performance is sacrificed to
allow a more efficient inclusion check. Here each bound in the DBM is encoded
as a bit string long enough to represent all the possible values of this bound plus
one test bit, i.e. if a bound can have 10 possible values then five bits are used to
represent the bound. This allows cheap inclusion checking based on ideas of Paul
and Simon [PS80] on comparing vectors using subtraction of long bit strings.

In experiments we have seen that the space performance of these represen-
tations are both substantially better than the traditional representation, with
space savings of between 25% and 70%. As we expect, the performance of the
first packing scheme, with an expensive inclusion check, is somewhat better,
space-wise, than the packing scheme with the cheap inclusion check.

Considering the time performance for the packed state representations we
have found that the price for using the encoding with expensive inclusion check
is a slowdown of 2 — 12 times, while using the other encoding sometimes is even
faster than the traditional representation. For more detailed information on this
we refer the interested reader to [Ben02].

5 Passed and Waiting List Unification

The standard reachability algorithm currently applied in UPPAAL is based on
two lists: the passed and the waiting lists. These lists are used in the exploration
loop that pops states to be explored from the waiting list, explores them, and
keeps track of already explored states with the passed list. The first algorithm
of Figure 4 shows this algorithm based on two distinct lists.

We have unified these structures to a PWList and a queue. The queue has
only references to states in PWList and is a trivial queue structure: it stores

10

nothing by itself. The PWList acts semantically as a buffer that eliminates du-
plicate states, i.e. if the same state is added to the buffer several times it can
only be retrieved once, even when the state was retrieved before the state is
inserted a second time. To achieve this effect the PWList must keep a record of
the states seen and thus it provides the functionality of both the passed list and
the waiting list.

Definition 4 (PWList). Formally, a PWList can be described as a pair (P,W) €
25 x 29, where S is the set of symbolic states, and the two functions put :
29 x 25 x § = 29 x 29 and get : 25 x 25 — 25 x 25 x S, such that:

~ put(P, W, (1,2)) = (PU{(, 2)},W") where

— {W u{t.2)} (.2 ¢P

w otherwise
— get(P,W) = (P,W\{({,2)},(,2)) for some (I,Z) e W.

Here P and W play the role of the passed list and waiting list, respectively,
but as we will see this definition provides room for alternative implementations.
It is possible to loosen the elimination requirement such that some states can
be returned several times while still ensuring termination, thus reducing the
memory requirements [LLPY97].

The reachability algorithm can then be simplified as shows in Figure 4. The
main difference with the former algorithm shows when a state is pushed to
PWList: it is pushed conceptually to the passed and the waiting lists at the
same time. States to be explored are considered already explored for the inclusion
checking of new generated states. This greedy behaviour improves performance.

The reference implementation uses a hash table based on the discrete part of
the states to find them. Every state entry has its symbolic part represented as
a zone union (single linked list of zones). The queue is a simple linked list with
references to the discrete and symbolic parts. Only one hash computation and
one inclusion checking are necessary for every state inserted into this structure,
compared to two with the former passed and waiting lists. Furthermore we gather
states with a common discrete part. The former representation did not have this
zone union structure. This zone union structure is particularly well-suited for
other union representations of zones such as CDDs [BLP+99,LWYP99].

A number of options are realisable via different implementations of the PWList
to approximate the representation of the state-space such as bitstate hashing
[Hol87], or choose a particular order for state-space exploration such as breadth
first, depth first, best first or random [BHV00,BFH'01]. The ordering is orthog-
onal to the storage structure and can be combined with any data representation.

This implementation is built on top of the storage structure that is in charge
of storing raw data. The PWList uses keys as references to these data. This
storage structure is orthogonal to a particular choice of data representation, in
particular, algorithms aimed at reducing the memory footprint such as convex
hull approzimation [WT95] or minimal constraint representation [LLPY97] are

11

W = {(lo, Zo A I(lo))}
P=g
while W # & do
(1, Z) = W.popState()
if testProperty(l, Z)
then return true
fVvLY)eP:ZZY
then
P=PU{(,2))
vU',z): (1,Z2) = (I',Z") do
ifvl,Y)ew:2' ¢Y'

Q =PW = {(lo, Zo A I(lo)) }
while Q # & do
(1, Z) = Q.popState()
if test Property(l, Z)
then return true
v',z"):(1,2) = (I',Z") do
V(Y)Y ePW:2' ¢ Y
then
PW = PW U{(l',Z')}

then Q.append(l', Z")
w=wu{l,z"} endif
endif done
done done
endif return false

done
return false

Figure4. Reachability algorithm with classical passed (P) and waiting (W) lists
adapted to a the unified list (Q and PW).

possible implementations. We have implemented two variants of this storage,
namely one with simple copy and the other one with data sharing.

Depending on the careful options given to UPPAAL our new implementation
has been experimentally show to give improvements of up to 80% in memory and
improves speed significantly. The memory gain is expected due to the showed
sharing property of data. The speed gain (in spite of the overheads) comes from
only having a single hash table and from the zone union structure: the discrete
test is done only once, then comes only inclusion checks on all the zones in
one union. This is showed by the results of the simple copy version. For more
information we refer the interested reader to [DBLY].

6 Parallel and Distributed Reachability Checking

Parallel and distributed reachability analysis has become quite popular during
recent years. Most work is based on the same explicit state exploration algorithm:
The state space is partitioned over a number of nodes using a hash function.
Each node is responsible for storing and exploring those states assigned to it by
the hash function. The successors of a state are transfered to the owning nodes
according to the hash function. Given that all nodes agree on the hash function
to use and that the hash function maps states uniformly to the nodes, this results
in a very effective distributed algorithm where both memory and CPU usage are
distributed uniformly among all nodes.

In [BHV00] we reported on a version of UPPAAL using the variation in Fig-
ure 5 of the above algorithm on a parallel computer (thus providing efficient

12

Wa = {(lo, Zo A I(l0)) | h(lo) = A}
Pys=9
while —terminated do
(1, Z) = Wa.popState()
ifV(,Y)€ Ps:Z¢ZY then
Py :PAU{(laZ)}
vi',z'"): (1,2) = (I'Z") do
d=hn(',Z")
itV Y)eW,:Z €Y' then
Wa=Wau{{l',Z")}
endif
done
endif
done

Figure5. The distributed timed automaton reachability algorithm parameterised on
node A. The waiting list W and the passed list P is partitioned over the nodes using
a function h. States are popped of the local waiting list and added to the local passed
list. Successors are mapped to a destination node d.

interprocess communication). The algorithm would only hash on the discrete
part of a symbolic state such that states with the same discrete part would map
to the same nodes, thus keeping the inclusion checking on the waiting list and
passed list. Due to the symbolic nature of the reachability algorithm, the number
of states explored depends on the search order. One noticeable side effect of the
distribution was an altered search order which most of the time would increase
the number of states explored. Replacing the waiting list with a priority queue
always returning the state with the smallest distance to the initial state solved
the problem.

More recently [Beh] we have ported the algorithm to a multi-threaded ver-
sion and a version running on a Linux Beowulf Cluster using the new PWList
structure. Surprisingly, initial experiments on the cluster showed severe load
balancing problems, despite the fact that the hash function distributed states
uniformly. The problem turned out to be that the exploration rate of each node
depends on the load of the node ¢ (due to the inclusion checking). Slight load
variations will thus result in slight variations of the exploration rate of each
node. A node with a high load will have a lower exploration rate, and thus the
load rapidly becomes even higher. This is an unstable system. On the parallel
machine used in [BHVO00] this is not a problem for most input systems (probably
due to the fast interprocess communication which reduces the load variations).
Increasing the size of the hash table used for the waiting list and/or using the
new PWList structure reduces this effect. Even with these modifications, some
input systems cause load balancing problems, e.g. Fischer protocol for mutual
exclusion. Most remaining load balancing problems can be eliminated by an ex-

6 The load of a node is defined as the length of its waiting list.

13

plicit load balancing layer which uses a proportional controller that redirects
states from nodes with a high load to nodes with a low load.

The multi-threaded version uses a different approach to ensure that all threads
are equally balanced. All threads share the same PWList, or more precisely, the
hash table underlying the PWList is shared but the list of states needed to be
explored is thread local. Thus, if a thread inserts a state it will be retrieved by
the same thread. With this approach we avoid that the threads need to access
the same queue. Each bucket in the hash table is protected by a semaphore. If
the hash table has much more buckets than we have threads, then the risk of
multiple simultaneous accesses is low. By default, each thread keeps all succes-
sors on the same thread (since the hash table is shared it does not matter to
which thread a state is mapped). When the system is unbalanced some states
are redirected to other threads. Experiments show that this results in very high
locality.

Experiments with the parallel version are very encouraging, showing excel-
lent speedups (in the range of 80-100% of optimal on a 4 processor machine).
The distributed version is implemented using MPI” over TCP/IP over Fast Eth-
ernet. This results in high processing overhead of communication causing low
speedups in the range of 50-60% of optimal at 14 nodes. Future work will focus
on combining the two approaches such that nodes located on the same physical
machine can share the PWList. Also, experiments with alternatives to MPI over
TCP/IP will be evaluated, such as VIA.® Finally, it is unclear if the sharing
of sub-elements of a state introduced in the previous section will scale to the
distributed case.

7 Accelerating Cycles

An important problem concerning symbolic model checking of timed automata,
is encountered when the timed automata in a model use different time scales.
This, for example, is often the case for models of reactive programs with their en-
vironment. Typically, the automata that model the reactive programs are based
on microseconds whereas the automata of the environment function in the or-
der of seconds. This difference can give rise to an unnecessary fragmentation of
the symbolic state space. As a result, the time and memory consumption of the
model check process increases.

The fragmentation problem has already been encountered and described by
Hune and Iversen et al during the verification of LEGO Mindstorms programs
using UpPAAL [Hun00,IKL*00]. The symbolic state space is severely fragmented
by the busy-waiting behaviour of the control program automata. Other exam-
ples were the phenomena, of fragmantation is likely to show up include reactive
programs, and polling real-time systems, e.g., programmable logic controllers
[Die99]. The validation of communication protocols will probably also suffer

" The Message Passing Interface.
8 The Virtual Interface Architecture.

14

from the fragmentation problem when the context of the protocol is taken into
account.

In [HLO2] we have proposed an acceleration technique for a subset of timed
automata, namely those that contain special cycles, that addresses the frag-
mentation problem. The technique consists of a syntactical adjustment that can
easily be computed from the timed automaton itself. It is proven that the syn-
tactical adjusment is exact with repsect to reachability properties, and it is
experimentally validated that the technique effectively speed-up the symbolic
reachability analysis.

L2 LO
L3 y<=5 y<=2

Figure6. Timed automaton P.

The timed automaton of figure 6 offers a simplified modeling of a control
program combined with an environment. The cycle L0, L1, L2 corresponds to
cyclic execution of a control program consisting of three atomic instructions with
the invariants and guards on the clock y providing execution time information.
Whenever the control cycle is in location L0, the enviroment (modelled by the
clock z) is consulted potentially leading to an exit of the control cycle. The size
of the threshold constant LARGE determines how slow the environment is relative
to the execution time of control program instructions: the larger the constant
the slower. Depending on the value of LARGE the cycle in automaton P must
be executed a certain (large) number of times before the edge to location L4 is
enabled. In a symbolic forward exploration the cycle must similarly be explored
a large number of times with a fragmentation of the symbolic states involving
location LO as a consequence.

The acceleration technique proposed in [HLO02] eliminates the fragmentation
that is due to special cycles. The subset of cycles we can accelerate may use only
a single clock y in the invariants, guards and resets. Though this might seem like
a strong restriction, this kind of cycles often occur in control graphs of single-
processor polling real-time systems. To be acceleratable all ingoing edges to the
first location of the cycle C' should reset the clock y. This guarantees that C
has a window [a, b], in the sense that any execution of C has accumulated delay

15

between a and b, and, conversely, for any delay d between a and b any execution
of C' can be ’adjusted’ to have accumulated delay d. Now, the acceleration of such
a cycle C' is given by addition of a simple unfolding of C', where the invariant
of the (copy of the) intial location is removed. Figure 7 illustrates the result of

L2 LO
L3 y<=5 y<=2 L4

@ y>3) v:>_=03 M) z>=LARGE {)

y>=1

Figure7. The accelerated version of P.

adding the unfolded cycle to the model. Provided 3a < 2b it can be proved that in
terms of rechability (of original locations) the two models are equivalent. Thus,
the acceleration is ezact. In case (n + 1)b < na a similar result holds provided
the cycle is unfolded n times. If moreover the clock y is reset on the first edge
of C, all reachable states may be obtained by a single execution of the unfolded
cycle. Consequently, a symbolic breadth-first analysis of the accelerated version
of P in Figure 7 experimentally proves to be insensitive to the value of LARGE.
In [HLO2] and [Hen02] the proposed acceleration technique has been succes-
fully applied to analysis of models of LEGO Mindstorm byte code. In particular,
the acceleration technique allowed UPPAAL to establish (at the byte code level)
several properties of the Production Cell which could not otherwise be analysed.

8 Abstraction and Compositionality

Despite the vast improvement in performance of UPPAAL due to the development
improved datastructures and algorithms, the state-explosion is a reality. Thus, in
order for the application of a verification tools to truely scale up it is imperative
that they are complemented by other methods.

16

One such method is that of abstraction. Assume that SYS is a model of
some considered real-time system, and assume that we want some property ¢
to be established, i.e. SYS |= ¢. Now, the model, SYS, may be too complex
for our tools to settle this verification problem automatically (despite all of
our algorithmic efforts). The goal of abstraction is to replace the problem with
another, hopefully tractable problem ABS | ¢, where ABS is an abstraction
of SYS being smaller in size and less complex. This method requires the user
not only to supply the abstraction but also to argue that the abstraction is
safe in the sense that all relevant properties established for ABS also hold for
SYS; i.e. it should be established that SYS < ABS, for some property-preserving
relationship < between models®. Unfortunately, this brings the problem of state-
explosion right back in the picture because establishing SYS < ABS may be as
computationally difficult as the original verification problem SYS = ¢.

To alleviate the above problem, the method of abstraction may be com-
bined with that of compositionality. Here, compositionality refers to principles
allowing properties of composite systems to be inferred from properties of their
components. In particular we want to establish the safe abstraction condition,
SYS < ABS, in a compositional way, that is, assuming that SYS is a composite
system of the form SYS; || SYS2, we may hope to find simple abstractions ABS;
and ABS, such that:

SYSl S ABSl and SYSQ S ABSQ

Provided the relation < is a precongruence with respect to the composition
operator ||, we may now complete the proof of the safe abstraction condition by
establishing:

ABS; || ABS, < ABS

This approach nicely factors the original problem into the smaller problems
and, and may be applied recursively until problems small enough to be handled
by automatic means are reached.

The method of abstraction and compositionality is an old-fashion recipe
with roots going back to the original, foundational work on concurrency theory
[Mil89,H0a78,0G76,Jon83,CM88]. In [JLS00] we have instantiated the method
to UPPAAL, where real-time systems are modelled as networks of timed au-
tomata communicating over (urgent) channels and shared discrete (e.g. integer)
variables. A fundamental relationship between timed automata preserving safety
properties — and hence useful in establishing safe abstraction properties — is
that of timed simulation. However, in the presence of urgent communication and
shared variables, this relationship fails to be a precongruence, and hence does
not support compositionality. In [JLS00] we identify a notion of timed ready sim-
ulation supporting both abstraction and compositionality for UPPAAL models.
In addition, a method for automatically testing for the existence of timed ready
simulation between timed automata using reachability analysis is presented (see

%i.e. A< B and B |= ¢ should imply that A |= ¢.

17

also [ABL98]). Thus UPPAAL itself may be applied for such tests. The usefulness
of the developed method is demonstrated by application to the verification of
an industrial design: a system for audio/video power control developed by the
company Bang & Olufsen. The size of the full protocol model is of such complex-
ity that UPPAAL immediately encounters the state-explosion problem in a direct
verification. However by application of the compositionality result and testing
theory we were able to carry through a verification of the full protocol model. In
[SS01] a similar approach is applied to the verification of the IEEE 1394a Root
contentin Protocol using UPPAAL.

9 Conclusion

In addition to the techniques described in the previous sections, UPPAAL offers a
range of other verification options including active clock reduction and approx-
imate analysis based on convex-hull, supertrace and hash compaction. We refer
the reader to www.uppaal.com for information on this.

The long effort effort spend on developing and implementing efficient datas-
tructures and algorithms for analysing timed systems has succesfully payed off
in terms of tools mature for industrial real-time applications. However, there is
still room and need for improvements. Below we give an incomplete list of what
could be some of the main algorithmic challanges for future research in the area:

— Continued search for appropriate BDD-like datastructures allowing for ef-
ficient representation and analysis of real-timed systems. CDDs and DDDs
may be seen as promissing first attempts.

— Partial order reduction for timed systems, and more generally, methods for
exploiting structure (e.g. hierarchicies) and (in)dependencies.

— Exploitation of symmetries to reduction explored and stored state-space.

— Extension of distributed and parallel reachability algorithm towards full
TCTL model checking.

— Development of techniques allowing efficient use of disk (secondary memory)
for storing explored state-spaces.

— Extension of acceleration technique to allow for more general cycles (e.g.
involving more than one clock).

— Application of abstract interpretation in particular for dealing with models
where the discrete part plays a major role (which is increasingly the case).

References

[ABB*01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim G. Larsen, M. Oliver Moller, Paul Pettersson, Carsten Weise, and
Wang Yi. UPPAAL - Now, Next, and Future. In F. Cassez, C. Jard,
B. Rozoy, and M. Ryan, editors, Modelling and Verification of Parallel
Processes, number 2067 in Lecture Notes in Computer Science, pages 100—
125. Springer—Verlag, 2001.

18

[ABL9S]

[BDM198]

[Beh]
[Bel57]
[Ben02]

[BFH101]

[BGK*96]

[BHV00]

[BLL"96)

[BLP*99]

[Bry86]
[CM8S]
[DBLY]
[Die99]

[Dil8Y]

Luca Aceto, Augusto Burgueno, and Kim G. Larsen. Model checking
via reachability testing for timed automata. In Bernhard Steffen, editor,
Proc. 4th Int. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), volume 1384 of Lecture Notes in
Computer Science, pages 263—280. Springer, 1998.

Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: A model-Checking Tool for Real-Time
Systems. In Proc. of the 10th Int. Conf. on Computer Aided Verifica-
tion, number 1427 in Lecture Notes in Computer Science, pages 546-550.
Springer—Verlag, 1998.

Gerd Behrmann. A performance study of distributed timed automata
reachability analysis. Submitted.

Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

Johan Bengtsson. Clocks, DBMs and STates in Timed Systems. PhD
thesis, Faculty of Science and Technology, Uppsala University, 2002.
Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim Larsen, Paul
Petterson, and Judi Romijn. Efficient guiding towards cost-optimality in
uppaal. In Proc. of TACAS’2001, Lecture Notes in Computer Science.
Springer—Verlag, 2001.

Johan Bengtsson, W.O. David Griffioen, Kare J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of
an Audio Protocol with Bus Collision Using UPPAAL. In Rajeev Alur and
Thomas A. Henzinger, editors, Proc. of the 8th Int. Conf. on Computer
Aided Verification, number 1102 in Lecture Notes in Computer Science,
pages 244-256. Springer—Verlag, July 1996.

Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed
model checking - How the search order matters. In Proc. of 12th In-
ternational Conference on Computer Aided Verification, Lecture Notes in
Computer Science, Chicago, Juli 2000. Springer-Verlag.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL in 1995. In Proc. of the 2nd Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, number 1055
in Lecture Notes in Computer Science, pages 431-434. Springer—Verlag,
March 1996.

Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang
Yi. Efficient Timed Reachability Analysis Using Clock Difference Dia-
grams. In Proc. of the 11th Int. Conf. on Computer Aided Verification,
number 1633 in Lecture Notes in Computer Science. Springer—Verlag, 1999.
Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manip-
ulation. IEEFE Trans. on Computers, 1986.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Ad-
dison Wesley, 1988.

Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi. The
next generation of uppaal. Submitted.

H. Dierks. Specification and Verification of Polling Real-Time Systems.
PhD thesis, Carl von Ossietzky Universitdt Oldenburg, July 1999.

David Dill. Timing Assumptions and Verification of Finite-State Concur-
rent Systems. In J. Sifakis, editor, Proc. of Automatic Verification Methods
for Finite State Systems, number 407 in Lecture Notes in Computer Sci-
ence, pages 197-212. Springer—Verlag, 1989.

19

[DTY8]

[DY95]

[Hen02]

[HLO02]

[HLS99]

[Hoa78]

[Hol87]

[Hun00]

[IKL*00]

[JLS00]

[Jon83]

[Lam87]

[LLPY97]

[LLPY02]

Conrado Daws and Stavros Tripakis. Model checking of real-time reacha-
bility properties using abstractions. In Bernard Steffen, editor, Proc. of the
4th Workshop on Tools and Algorithms for the Construction and Analysis
of Systems, number 1384 in Lecture Notes in Computer Science, pages
313-329. Springer—Verlag, 1998.

C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with KRONOS. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 66-75. IEEE Computer Society Press, December 1995.
Martijn Hendriks. Devlopment of reactive programs using uppaal. Master’s
thesis, KUN, Nijmegen University, 2002.

Martin Hndriks and Kim G. Larsen. Exact acceleration of real-time model
checking. In Theory and Practice of Timed Systems, volume 65 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
2002.

Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal verification of a
power controller using the real-time model checker UPPAAL. In Proceedings
of AMST 1999, volume 1601 of Lecture Notes in Computer Science, pages
277-298, 1999.

C.AR. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666-677, 1978.

Gerard J. Holzmann. On limits and possibilities of automated protocol
analysis. In Proc. 7th IFIP WG 6.1 Int. Workshop on Protocol Specifica-
tion, Testing, and Verification, pages 137-161, 1987.

Thomas S. Hune. Modeling a language for embedded systems in timed
automata. Technical Report RS-00-17, BRICS, Basic Research in com-
puter Science, August 2000. 26 pp. Earlier version entitled Modelling a
Real-Time Language appeared in FMICS99, pages 259-282.

Torsten K. Iversen, Kare J. Kristoffersen, Kim G. Larsen, Morten Laursen,
Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson, and Chris B.
Thomasen. Model-Checking Real-Time Control Programs — Verifying
LEGO Mindstorms Systems Using UPPAAL. In Proc. of 12th Euromicro
Conference on Real-Time Systems, pages 147-155. IEEE Computer Soci-
ety Press, June 2000.

Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Scaling up Uppaal
- automatic verification of real-time systems using compositionality and
abstraction. In Proceedings of FTRTFT 2000, volume 1926 of Lecture
Notes in Computer Science, pages 19-30, 2000.

C. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems,
5(4):596—620, 1983.

Leslie Lamport. A Fast Mutual Exclusion Algorithm. ACM Trans. on
Computer Systems, 5(1):1-11, February 1987. Also appeared as SRC Re-
search Report 7.

Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Effi-
cient Verification of Real-Time Systems: Compact Data Structures and
State-Space Reduction. In Proc. of the 18th IEEE Real-Time Systems
Symposium, pages 14-24. IEEE Computer Society Press, December 1997.
Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Compact
data structure and state-space reduction for model-checking real-time sys-
tems. Real-Time Systems - the International Journal of Time-Critical
Computing Systems, 2002. To appear — accepted for publication.

20

[LP97]

[LPY95]

[LPY97]

[LWYP99)

[Mil89]

Henrik Lonn and Paul Pettersson. Formal Verification of a TDMA Proto-
col Startup Mechanism. In Proc. of the Pacific Rim Int. Symp. on Fault-
Tolerant Systems, pages 235—242, December 1997.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Sym-
bolic Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE
Real-Time Systems Symposium, pages 76-87. IEEE Computer Society
Press, December 1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1-2):134-152,
October 1997.

Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock Dif-
ference Diagrams. Nordic Journal of Computing, 6(3):271-298, 1999.

R. Milner. Communication and Concurrency. Prentice Hall, Englewood
Cliffs, 1989.

[MLAH99a] J. Mgller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference

decision diagrams. In Proceedings 13th International Conference on Com-
puter Science Logic, volume 1683 of Lecture Notes in Computer Science,
pages 111-125, Madrid, Spain, September 1999.

[MLAH99b] J. Mgller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully sym-

[0G76]

[Pet99]

[PS80]

[Rok93]

[SS01]

[ST98]

[WT95]

bolic model checking of timed systems using difference decision diagrams.
In Proceedings First International Workshop on Symbolic Model Checking,
volume 23-2 of Electronic Notes in Theoretical Computer Science, Trento,
Italy, July 1999.

S. Owicki and D. Gries. An Axiomatic Proof Technique for Parallel Pro-
grams 1. Acta Informatica, 6(4):319-340, 1976.

Paul Pettersson. Modelling and Analysis of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Department of Com-
puter Systems, Uppsala University, February 1999.

Wolfgang J. Paul and Janos Simon. Decision Trees and Random
Access Machines. In Logic and Algorithmic, volume 30 of Monogra-
phie de L’Enseignement Mathématique, pages 331-340. L’Enseignement
Mathématique, Université de Genéve, 1980.

Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits. PhD
thesis, Stanford University, 1993.

D.P.L. Simons and M.I.A. Stoelinga. Mechanical verification of the IEEE
1394a root contention protocol using Uppaal2k. Springer International
Journal of Software Tools for Technology Transfer, 2001.

Karsten Strehl and Lothar Thiele. Symbolic Model Checking of Pro-
cess Networks Using Interval Diagram Techniques. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD-98), pages 686—692, 1998.

Howard Wong-Toi. Symbolic Approzimations for Verifying Real-Time Sys-
tems. PhD thesis, Standford University, 1995.

21

The Model-Checking Kit*

Claus Schroéter, Stefan Schwoon and Javier Esparza

Laboratory for Foundations of Computer Science,
University of Edinburgh,
email: {clau0603,schw1201,jav}@Qdcs.ed.ac.uk

Abstract. The Model-Checking Kit [8] is a collection of programs which
allow to model finite state systems using a variety of modelling languages,
and verify them using a variety of checkers, including deadlock-checkers,
reachability-checkers, and model-checkers for the temporal logics CTL
and LTL [7].

1 Introduction

Research on automatic verification has shown that no single model-checking
technique has the edge over all others in any application area. Moreover, it is
very difficult to determine a priori which technique is the most suitable for a
given model. It is thus sensible to apply different techniques to the same model.
However, this is a very tedious and time-consuming task, since each algorithm
uses its own description language. The Model-Checking Kit [8] has been designed
to provide a solution to this problem in an academic setting, with potential
applications to industrial settings.

There exist many different models for concurrent systems. Within the Kit
we chose 1-safe Place/Transition nets as the basic model for the following two
reasons: (i) They are a very simple model with nearly no variants. In contrast
most other models have many different variants. For instance, communicating
automata can be synchronous or asynchronous, and communication can be for-
malised in different ways. Process algebras have a wealth of different opera-
tors and semantics, and there also exist many different high-level net models.
(if) Many different verification techniques which can deal with 1-safe P/T nets
are available. Since 1-safe P/T nets have a well-defined partial order semantics,
partial order techniques like stubborn sets [21] and net unfoldings [18] can be
applied (as a matter of fact, these techniques were originally introduced for Petri
nets). Since a marking of a 1-safe P/T net is just a vector of booleans, symbolic
techniques based on BDDs [5], like those implemented in SMV [17], can also be
used. And, of course, the standard interleaving semantics of Petri nets allows to
apply explicit state exploration algorithms, like those of SPIN [13].

For systems modelled in a language with a 1-safe net semantics, all the tech-
niques listed above are in principle applicable. Since each of these techniques
has both strengths and weaknesses, it would be highly desirable to apply them

* http://www7.in.tum.de/gruppen/theorie/KIT/

all and to compare the results. However, a user who wishes to employ two or
more verification packages does not have an easy task. In particular, the pack-
ages have different input formats, and so the user is forced to enter input data
multiple times, a rather tedious task and one prone to introduce errors and
inconsistencies.

To amend this situation the Kit provides a shell which allows the user to
specify input data (i.e. systems and properties) in a variety of input languages.
Once a system and a property have been specified, the user can choose any of
the model-checkers available in the shell to verify the property. The user is not
required to be familiar with the different ways in which 1-safe P/T nets are
represented to the different checkers.

The paper is structured as follows. In Section 2 we introduce a small example
and use it to show how the Kit works. In Section 3 we present the modelling
languages and verification techniques which are supported by the Kit. Section 4
gives a brief overview of the Kit’s available options and their use. In Section 5
we present some experimental results which show performance differences of
the individual verification techniques. Finally, we close with some conclusions in
Section 6.

2 An Example

We show how the Kit works by means of a small example. We modelled Pe-
terson’s mutual exclusion algorithm [19] in B(PN)? as depicted in Figure 1 (a).
B(PN)?2 [3], originally well-known from the PEP-tool [10], is a parallel program-
ming language and one of the Kit’s input languages. The notation is mostly
self-explanatory, but for the sake of clarity we would like to point out two
things: (i) (t’=1) means value assignment, whereas (t=1) means test of equality;
(if) incs1: denotes a label which can be used in formulae to mark a program
point between two actions.

Suppose we want to check a mutual exclusion property, i.e. whether there
exists a global system state in which both processes enter their critical sections
simultaneously. The Kit allows this property to be expressed as "incsl" &
"incs2". The Kit takes the formula and the B(PN)? description and translates
them into a 1-safe P/T net and a corresponding formula (e.g. P9 & P14, where
P9, P14 are place names of the net). Then the Kit invokes the model-checker
chosen by the user (which would usually be one of the available reachability-
checkers in this case). It checks whether there exists a reachable marking with
tokens on both P9 and P14 simultaneously, and returns the result to the Kit.
In case (a) the answer is ‘no’ which means that the mutex property holds. But
what happens in case of an error? For that let us suppose that the user made a
typo within the specification and wrote (11°=0 or t=1) in Process 2 instead of
(i1=0 or t=1). This causes a violation of the mutex property and the model-
checker returns a transition sequence leading to the state which puts tokens
simultaneously onto the places which represent the critical regions of the pro-
cesses. As shown in Figure 1 (b) the Kit interprets this transition sequence at the

23

begin
var i1, i2: {0..1} init O;
var t: {1,2} init 1;
begin Processl
do <true> enter
<il’=1>;
<t'=1>;
<i2=0 or t=2>;
incsl:
<il'=0>;
repeat
od
endProcessl

begin Process2

end Process2

do <true> enter
<i2'=1>;
<t'=2>;
<i1=0 or t=1>;
incs2:
<i2'=0>;
repeat

Algorithm 1
-—

(a)

Algorithm 2
Algorithm 3

Kit

YESl

initialise [i1=0]
initialise [i2=0]
initialise | t=1 |
execute (true)
execute (i1’=1)
prevalues {i1=0}
postvalues {il=1}
execute (t’=1)
prevalues {t=1}
postvalues {t=1}
execute (i2=0 or t=2)
prevalues {t=1, i2=0}

postvalues {t=1, i2=0}

— now at label incsl

YES

(T30, 723, ..) Algorithm 2

(b)

Fig. 1. Peterson’s mutex algorithm in B(PN)?

Algorithm 1

Algorithm 3

execute (true)

execute (i2'=1)
prevalues {i2=0}
postvalues {i2=1}

execute (t'=2)
prevalues {t=1}
postvalues {t=2}

execute (i1'=0 or t=1)
prevalues {t=2, i1=1}
postvalues {t=2, i1=0}

— now at label incs2

level of the chosen input language (i.e. B(PN)?) and outputs the result suitably

formatted to the user.

3 Modelling languages and verification techniques

In this section we briefly introduce the different modelling languages and verifi-
cation techniques supported by the Kit. Furthermore, we give a quick overview
of how to describe properties.

3.1 Modelling a system

The Kit offers several languages for modelling a system. These languages can
be divided into so-called net languages and high-level languages which abstract
from net details.

e High-Level Languages
Loosely speaking, these description languages abstract from structural net
concepts like places, transitions, and arcs. The Kit currently offers three
such languages called B(PN)?, CFA, and IF. B(PN)? [3] (Basic Petri Net
Programming Notation) is a structured parallel programming language of-
fering features such as loops, blocks, and procedures. It is well-known from

24

the PEP-tool [10]. CFA [9,8] (Communicating Finite Automata) is a lan-
guage for the description of finite automata which communicate via shared
variables or channels of finite length. It offers very flexible communication
mechanisms and is also one of the modelling languages of the PEP-tool [10].
Finally, IF [4] (Interchange Format) is a language proposed in order to model
asynchronous communicating real-time systems. It is the common model de-
scription language of the European ADVANCE [1] (Advanced Validation
Techniques for Telecommunication Protocols) project.
e Net languages

The Kit supports two net languages, PEP and SENIL. In these languages
one has to define places, transitions, and arcs explicitly. PEP [2] is the low
level net language of the PEP-tool [10]. It is supported by the Kit mostly
because some tools can automatically export models into this format. SE-
NIL [8] (Simple Extensible Net Input Language) is designed to make it easy
to specify small P/T nets by hand; it is suitable for small nets with at most
a few dozens of nodes, but not for larger projects.

3.2 Describing properties

The Kit can be used to check several types of properties, e.g. deadlock-freeness,
reachability, safety and liveness properties. Except for deadlock-freeness these
properties will be expressed as formulae.

Reachability properties In our framework a reachability property is a state-
ment about states of the system. For example, the mutual exclusion property
of critical regions can be understood as a reachability property. It amounts to
the question whether there exists a reachable global state of the system in which
two processes enter their critical regions simultaneously. These properties can be
expressed with so-called state formulae. A state formula is a propositional logic
formula consisting of atomic propositions and logical operators.

Safety and liveness properties Safety and liveness properties are expressed
as formulae of temporal logics like CTL and LTL. They are the most popular
temporal logics, and together they can express all common safety and liveness
properties. Here we give just a brief introduction to LTL and CTL according
to [7].

e LTL means Linear-Time Temporal Logic. The underlying structure of time
is a totally ordered set. Under the assumption that the time corresponds to
(N, <), the time is discrete, has an initial moment with no predecessors and is
infinite into the future. LTL formulae consist of atomic propositions, boolean
connectives and temporal operators. Temporal operators are Gp (“always p”,
“henceforth p”), Fp (“sometime p”, “eventually p”), Xp (“nexttime p”) and
pUq (“p until ¢”). The Kit supports only the next-free fragment of LTL.

25

e CTL, meaning Computation Tree Logic, is a branching time logic. The un-
derlying structure of time is assumed to have a branching tree-like nature.
It corresponds to an infinite tree where each node may have finitely many
successors and must have at least one successor. These trees have a natu-
ral correspondence with the computations of concurrent systems or nonde-
terministic programs. A CTL formula consists of a path quantifier [A (all
paths), E (there exists a path)] followed by an arbitrary linear-time formula,
allowing boolean combinations and nestings of linear-time operators (G, F,
X, U).

3.3 Verification techniques

As mentioned in the introduction many different verification techniques for 1-
safe Petri nets are available. These techniques include among others the explicit
construction of the state space, stubborn sets [21], BDDs [5], and net unfold-
ings [18]. The explicit construction of the state space is the classical approach,
and still adequate in cases where the state space explosion is not very acute. Stub-
born sets are used to avoid constructing part of the state space. They exploit
information about the concurrency of actions. Using symbolic techniques (e.g.
BDDs) one can succinctly represent large sets of states. They can reach spec-
tacular compactification ratios for regularly structured state spaces. Approaches
which are based on unfolding techniques make use of an explicitly constructed
partial-order semantics of the system. It contains information not only on the
reachability relation, but also on causality and concurrency. This technique is
adequate for systems exhibiting a high degree of concurrency.

When planning the Kit we intended to integrate various checkers such that
each of the verification approaches mentioned above is represented by at least
one checker. This has led to the following selection:

e The PEP-tool [10] (Programming Environment based on Petri nets) is a
programming and verification environment for parallel programs written in
B(PN)?2 or CFA. Programs can be formally analysed using methods which
are based on the unfolding technique [18]. The PEP-tool is distributed by the
Theory group (subgroup Parallel Systems) of the University of Oldenburg.
PEP contributes to the Kit a deadlock-checker, a reachability-checker, and
a model-checker for LTL.

e PROD [22] is an advanced tool for efficient reachability analysis. It im-
plements different advanced reachability techniques for palliating the state
explosion problem, including partial-order techniques like stubborn sets [21],
and techniques which exploit symmetries. PROD is distributed by the For-
mal Methods Group of the Laboratory for Theoretical Computer Science
at the Helsinki University of Technology. PROD contributes to the Kit a
deadlock-checker, a reachability-checker, a CTL- and LTL-checker.

e The SMV system [17] is a tool for checking finite state systems against
specifications in the temporal logic CTL. The input language of SMV is
designed to allow the description of finite state systems that range from

26

completely synchronous to completely asynchronous, and from the detailed
to the abstract. SMV is distributed by the Carnegie Mellon University. Its
verification algorithms are based on BDDs [5] and it contributes to the Kit
a deadlock-checker and a CTL-checker.

e SPIN [13] is a widely distributed software package that supports the for-
mal verification of distributed systems. It can be used as a full LTL model-
checking system, but it can also be used as an efficient on-the-fly verifier
for more basic safety and liveness properties. Many of the latter properties
can be expressed and verified without the use of LTL. SPIN uses explicit
construction of the state space. It is distributed by the Formal Methods and
Verification Group of Bell Labs. SPIN contributes to the Kit an LTL-checker.

¢ The tool MCSMODELS [12] is a model-checker for finite complete prefixes
(i.e. net unfoldings [18]). It currently uses the PEP-tool [10] to generate the
prefixes. These prefixes are then translated into logic programs with stable
model semantics, and the integrated Smodels solver is used to solve the
generated problems. MCSMODELS is distributed by the Formal Methods
and Logic Groups of the Laboratory for Theoretical Computer Science at
the Helsinki University of Technology. MCSMODELS contributes to the Kit
a deadlock-checker and a reachability-checker.

o CLP [14] is a linear-programming model-checker. It uses net unfoldings [18]
and can check among others deadlock-freeness, reachability, and coverability
of a marking. CLP is distributed by the Parallelism Research Group of the
University of Newcastle upon Tyne and contributes to the Kit a deadlock-
checker.

4 How to use the Kit

In this section we show how to use the Kit for verification tasks. The Kit is a
command-line oriented tool (called check) without any graphical user interface.
The available options are listed by calling check without any arguments. Figure
2 shows an overview of its current version.

For a correct program call one has to type

check [options] <input>:<checker> <modelfile> <formulafile>
where

e <input> is a place holder for one of the available modelling languages, i.e.
cfa, bpn2, if, pep, senil.
Note: <input> may be omitted; in this case check guesses the input language
by looking at the extension of <modelfile> (which should be .cfa, .bpn2,
.if, .11 net, or .senil, in the order of the languages mentioned above).
The user is free to use arbitrary extensions, but then the language has to be
specified explicitly.

e <checker> should be replaced by one of the available algorithms, see the list
at the bottom of Figure 2.

27

Usage: check [options] <input>:<checker> <modelfile> <formulafile>
or: check -r <name> [options] <checker> <formulafile>

Options:

-s <name> save intermediate results under <name>

-r <name> resume from intermediate results saved under <name>
-t <dir> place temporary files in <dir> (default is ’.°’)

-v run in verbose mode

Available input formats:

cfa concurrent finite automata
bpn2 B(PN) "2 language

if IF language

pep PEP low level net format
senil SENIL net format

Available algorithms:

CTL : prod-ctl, smv-ctl
LTL : prod-1tl, pep-1tl, spin-1tl
Deadlock : prod-dl, smv-dl, pep-dl, mcs-dl, clp-dl

Reachability: prod-reach, pep-reach, mcs-reach

Fig. 2. The Kit’s available options

e <modelfile> is the name of the file containing the system specification.
e <formulafile> is the name of the file containing the formula to be checked.
Note: For deadlock-checking no formula file is needed.
o [options] are as follows:
¢ -s <name>
Temporary files representing intermediate results will be saved in a tar-
archive mckit_save_<name>.tar. Some algorithms profit from the reuse
of intermediate results. For example, if one uses a method based on the
unfolding technique for verifying many properties on the same system, it
is sensible to calculate the unfolding only once and not for every property
over and over again. So the unfolding can be saved with this option for
reuse (see option -r).
e -r <name>
With this option one can reuse intermediate results saved before with
option -s <name>. This is sensible if one wants to check many properties
on the same system. Then the translation from the modelling language
into the correct input format for the checker should be done only once
and not for every single property. When using this option one should omit
the modelling language and the modelfile. Then the correct program call
is:
check -r <name> [options] <checker> <formulafile>

The selected checker can then take advantage of the files saved in the
file mckit_save_<name>.tar.

28

| | prod-dl | smv-dl | pep-dl | mcs-dl | clp-dl |

peterson 7.04 (0.09) 0.24 0.04 0.05 0.03
plate(5) 46.68 (1.38) mem 4.80 0.53 0.54
client/server | 61.06 (0.79) 111.80 0.76 0.54 0.55
key(4) 37.63 (0.20) mem mem mem mem
fifo(30) 36.74 (0.72) mem mem mem mem

Fig. 3. Results for Deadlock-Checking

5 Experimental results

In this section we compare the performances of the algorithms by means of
experimental results on several systems. The results demonstrate the point we
made in the beginning, namely that no single method has the edge over all others.
We present results for checking deadlock-freeness and some safety properties.

All experiments were performed on a Linux PC with 64 MByte of RAM
and a 230 MHz Intel Pentium IT CPU. The times are measured in seconds. The
systems we used are as follows:

peterson: Mutual exclusion algorithm [19].

— plate(5): Production cell which handles 5 plates [11,15].

— client/server: Client/Server system with 2 clients and 1 server [1].

key(4): Manages keyboard/screen interaction in a window manager for 4 cus-
tomer tasks [6].

— fifo(30): 1-bit-FIFO with depth 30 [16,20].

The systems are modelled in different languages. Peterson’s mutual exclusion
algorithm is modelled in B(PN)?, and the client/server system in IF. All other
examples are modelled in PEP’s low-level net format.

Figure 3 shows the results for deadlock-checking. We split PROD’s verifica-
tion times for the following reason: At first, PROD reads the net description file
and produces a corresponding C file. Then this C file is compiled and linked to
an executable reachability graph generator program. Finally, the actual verifi-
cation task is done by performing this executable program. Since PROD spends
most of the time for the generation of the executable file, the pure verification
times are quoted in parentheses.

Peterson’s mutual exclusion algorithm is a small example, and all verification
techniques behave well. But a look at the systems plate(5) and client/server al-
ready shows a big difference in the performances. The unfolding based techniques
outperform PROD and SMV here. Actually, SMV runs out of memory during
the verification of the production cell (signified by ‘mem’). On the contrary, the
systems key(4) and fifo(30) are examples in which PROD beats the other tools.

The results for safety properties are depicted in Figure 4. The properties
were expressed as LTL-formulas, and they were checked using LTL checkers.
For the production cell we checked a mutual exclusion property: exactly one of

29

prod-ltl | pep-ltl | spin-ltl |

plate(5) 67.22 (2.52) 1.20 mem
client /server 257.57 (30.83) 2.51 20.74
key(4) 4206.00 (4152.66) mem 11.53

Fig. 4. Results for LTL-Checking

three places of the net carries a token. For the client/server system we checked
that a buffer overflow can not occur. For the key(4) system we checked a mutual
exclusion property for two places. A look at the results confirms that the checkers
behave quite differently here as well. We are able to verify the property for the
production cell with PROD and PEP, but not with SPIN. On the contrary, for
the client/server system SPIN checks the formula much faster than PROD. The
key(4) system is an example which can be verified quickly with SPIN, but not
with PEP.

It is important to notice that the performance of each of the tools may
degrade a lot when used as part of the Kit. For instance, it is easy to model a
system in PROMELA such that checking some easy reachability property with
SPIN takes virtually no time; if the same system is modelled in, say CFA, and
then checked again with SPIN, the verification can run out of memory. The
reason is that the Kit transforms the initial CFA model into a 1-safe Petri net,
and this net into PROMELA. If the model is data intensive, the net (and with
it the PROMELA model) can easily blow-up. Another reason for a degraded
performance is that the user of the Kit does not have access to all the flags of
each of the checkers (future versions of the Kit should include this feature).

6 Conclusions

The Model-Checking Kit is a collection of programs which allow to model a finite-
state system using a variety of modelling languages, and (attempt to) verify it
using a variety of checkers. It has been successfully applied in a lab course on
automatic verification. Special care has been taken to design it in a modular way
and to make it easy to use and easy to install. Experiments with beta-testers
have shown that a moderately skilled user can install the tool and verify the
first property of a small system within half an hour. Furthermore, the Kit has
a high degree of portability since all programs are written in plain C and we do
not offer any graphical user interface. The Kit can be used for comparing the
performances of different verification methods. However, it must be emphasised
that, since each of the Kit’s checkers has been optimised for its own modelling
language, the Kit’s internal language conversions can lead to important losses in
performance. Finally, the Kit is an open library. Due to its modular design it is
easy to add new description languages or checkers, and to replace old versions of
checkers by new ones. Anyone who is interested in adding new languages and/or
tools is cordially invited to contact the authors.

30

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

. ADVANCE - Advanced Validation Techniques for Telecommunication Protocols.

http://verif.liafa.jussieu.fr/~haberm/ADVANCE/main.html.

E. Best and B. Grahlmann. PEP Documentation and User Guide 1.8. Universitit
Oldenburg, 1998.

E. Best and R. P. Hopkins. B(PN)2 - a Basic Petri Net Programming Notation.
In PARLE’93, LNCS 694, pages 379 — 390. Springer-Verlag, 1993.

. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, L. Mounier, J. P. Krimm, and

J. Sifakis. The Intermediate Representation IF. Technical Report. Vérimag, 1998.
R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677 — 691, Aug. 1986.

J. C. Corbett. Evaluating Deadlock Detection Methods, 1994.

E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer
Science, volume B, pages 997 — 1067. Elsevier Science Publishers B. V., 1990.

J. Esparza, C. Schréter, and S. Schwoon. The Model-Checking Kit.
http://www7.in.tum.de/gruppen/theorie/KIT/.

B. Grahlmann, M. Médller, and U. Anhalt. A new Interface for the PEP-tool -
Parallel Finite Automata. 2nd Workshop of Algorithms and Tools for Petri nets.
Oldenburg, 1995.

B. Grahlmann, S. Rémer, T. Thielke, B. Graves, M. Damm, R. Riemann, L. Jenner,
S. Melzer, and A. Gronewold. PEP: Programming Environment Based on Petri
Nets. Hildesheimer Informatik Berichte, (14), May 1995. Universitidt Hildesheim.
M. Heiner and P. Deusen. Petri net based qualitative analysis - A case study.
Technical report 1-08/1995. Brandenburg Technische Universitdt Cottbus, 1995.
K. Heljanko. Combining Symbolic and Partial Order Methods for Model Checking
1-Safe Petri Nets. PhD thesis, Helsinki University of Technology, 2002.

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

V. Khomenko. CLP.
http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html.
C. Lewerentz and T. Lindner. Formal Development of Reactive Systems: Case
Study Production Cell. LNCS 891. Springer-Verlag, 1995.

A. J. Martin. Self-timed FIFO: An exercise in compiling programs into VLSI
circuits. In From HDL Descriptions to Guruanteed Correct Circuit Designs, pages
133 — 153. Elsevier Science Publishers, 1986.

K. L. McMillan. Symbolic Model Checking - An approach to the state explosion
problem. PhD thesis, Carnegie Mellon University, 1992.

K. L. McMillan. Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits. In CAV’92, LNCS 663, pages 164 — 174.
Springer-Verlag, 1992.

M. Raynal. Algorithms For Mutual Exclusion, 1986.

O. Roig, J. Cortadella, and E. Pastor. Verification of Asynchronous Circuits by
BDD-based Model Checking of Petri Nets. In ATPN’95, LNCS 935, pages 374 —
391. Springer-Verlag, 1995.

A. Valmari. On-the-Fly Verification with Stubborn Sets. In CAV’98, LNCS 697,
pages 397 — 408. Springer-Verlag, 1993.

K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD Reference
Manual. Technical Reports, B(13):1 — 56, Aug. 1995.

31

An Overview of CADP 2001

Hubert Garavel, Frédéric Lang, and Radu Mateescu

INRIA Rhone-Alpes — VASY — 655, avenue de I'Europe, Montbonnot Saint Martin —
F-38 334 Saint Ismier Cedex, France
{Hubert .Garavel ,Frederic.Lang,Radu. Mateescu}@inrialpes fr

Abstract. CADP is a toolbox for specifying and verifying asynchronous
finite-state systems described using process algebraic languages. It of-
fers a wide range of state-of-the-art functionalities assisting the user
throughout the design process: compilation, rapid prototyping, interac-
tive and guided simulation, verification by equivalence/preorder checking
and temporal logic model-checking, and test generation. The languages,
models, and verification techniques used in CADP have a broad applica-
tion domain, allowing to deal with communication protocols, distributed
systems, embedded software, mobile telephony, asynchronous hardware,
cryptography, security, human-computer interaction, etc. CADP is cur-
rently used both in industrial companies and academic institutions for
research and teaching purposes. During the last years, over 50 applica-
tions and case-studies performed using CADP have been reported.

1 Introduction

CaApP (the CmSAR/ALDEBARAN Development Package!) is a toolbox for pro-
tocol engineering, which offers a wide range of functionalities, from interactive
simulation to the most recent formal verification techniques. CADP is dedicated
to the efficient compilation, simulation, formal verification, and testing of de-
scriptions written in the Iso language LoTos [19], a value passing process al-
gebra. It also accepts other input languages such as finite state machines and
networks of communicating finite state machines.

July 2001 has seen the release of the new version CADP 2001 “Ottawa”2.
Among many other features, CADP provides several tools for computing bisim-
ulations (minimizations and comparisons), several model-checkers for various
temporal logics and p-calculus, and several verification algorithms including ex-
haustive verification, on-the-fly verification, symbolic verification using Binary
Decision Diagrams, and compositional verification based on refinement. It con-
tains many improvements and five new tools.

The architecture of CADP 2001 is displayed in Figure 1 and explained through-
out the paper, which is organized as follows. Section 2 introduces the different

! Detailed information is available at http://www.inrialpes.fr/vasy/cadp.

2 CaDpP 2001 “Ottawa” was named in honor of Professor Luigi Logrippo and his re-
search team at the University of Ottawa, who are actively promoting formal methods,
especially LOTOS, in the telecommunication industry.

languages and models used by the CADP tools. Section 3 describes the main
tools of CADP. Section 4 presents the new tools contained in CADP 2001. Fi-
nally, Section 5 gives concluding remarks.

2 Description languages and intermediate models

The CADP toolbox accepts three different input formalisms, materialized by the
three grey boxes in Figure 1:

— high-level protocol descriptions written in the Iso language LoTos [19]:
CADP contains two compilers (C£SAR and CESAR.ADT) which translate
LoTos descriptions into C code that can be used for simulation, verifica-
tion, and testing purposes;

— low-level protocol descriptions specified as Labeled Transition Systems (LTSs,
for short), i.e., finite state machines the transitions of which are labeled by
action names;

— intermediate-level networks of communicating LTSs, i.e., finite state ma-
chines running in parallel and synchronizing together by means of ren-
dezvous; these networks can be expressed in two different formats: Exp (LTSs
combined together using LOTOS parallel composition and hiding operators)
and Fc2 (Ltss combined together using a synchronization product).

The latest releases of the CADP toolbox devote a growing importance to the
concept of intermediate formats and programming interfaces. In the sequel of
this section, we present the OPEN/C&ESAR environment, which allows the CADP
tools to be applied to protocol descriptions written in other languages than
Loros (e.g., uCRL, SDL, UML/RT), and the BCG environment, which provides
a compact LTs description format together with efficient and useful tools and
libraries.

2.1 The OPEN/CAESAR environment

OPEN/CESAR [13] is an extensible, language-independent Application Program-
ming Interface (API) that allows user-defined programs for simulation, execu-
tion, verification (partial, on-the-fly, etc.), and test generation to be developed
in a simple and modular way. Various modules have already been written in the
OPEN/CESAR framework, including: EVALUATOR, an on-the-fly model-checker
(Section 4.2), Ocis, an interactive simulator with X-window interface (Sec-
tion 4.3), TGV, a tool for the generation of conformance test suites based on
verification technology (Section 4.5), and many other tools for random execu-
tion, deadlock detection, reachability analysis, sequence searching, abstraction
of an LTs w.r.t. an interface, etc.

Basically, the OPEN/CZESAR environment offers primitives to transform a
system description into an LTS represented implicitly by its initial state and its
successor function. Then, every tool connected to the OPEN/CAESAR environ-
ment can take the resulting implicit LTs as input. Three languages have access

33

— Bisimulation
—* Visualization
— etc. (FC2Tools)

’—> Bisimulation (Aldebaran)

EXP
(networks of

FC2
(networks of

EXP2FC2

LOTOS communicating LTSs) communicating LTSs)
g
o2 Q Y
o2 e, T
ol : S, i
o> 7, o
-0 2. °
= R S
Generator Other
explicit LTS implicit LTS~ _ languages and
(BCG) (OPEN/CAESAR) formats
BCG_Open
w
3
I_ Verification (Evaluator)
2 — Test(TGV)
explicit LTS — Simulation (OCIS)
(other format) L » etc
Bisimulation (Aldebaran)
Minimization (BCG_Min) — Scripting (SVL)

Verification (XTL)
Visualization (BCG_Draw)
etc.

— Graphical Interface (Eucalyptus)

Fig. 1. Architecture of CADP 2001 “Ottawa”

34

to the OPEN/C&ESAR environment, namely the Bca graph format (Section 2.2),
the LoTos language, and networks of communicating automata in the Exp for-
mat. Since OPEN/CESAR is open and well-documented, users can easily extend
the environment by adding their own modules or connect their own languages
to fit specific needs.

2.2 The BCG graph format and libraries

Bcea (Binary-Coded Graphs) [11] is both a format for the representation of ex-
plicit Litss and a collection of libraries and programs dealing with this format.
Compared to Ascri-based formats for Lrss, the Bca format uses a binary rep-
resentation with compression techniques resulting in much smaller (up to 20
times) files. BCG is independent from any source language but keeps track of the
objects (types, functions, variables) defined in the source programs.

The Bca format supports tools for drawing BcG graphs with an automatic
layout of states and transitions, editing the display of BCG graphs interactively,
providing information about BCG graphs such as the size of the graph, its number
of states and transitions or the list of its labels, performing conversions between
the BcG format and a dozen of other formats, hiding and renaming the labels of
a graph according to regular expressions, generating dynamic libraries for Bca
graphs, minimizing graphs according to strong or branching bisimulation (see
the BcG_MIN tool, Section 4.1), etc.

Simple application programming interfaces are available to read and to pro-
duce a Bca graph. Moreover, the BcG_OPEN tool establishes a gateway between
the Bca format (explicit Lrss) and the OPEN/C&ESAR environment (implicit
LTss).

3 Main tools of CADP

The CADP toolbox contains several tools. In the sequel, we describe the most
significant of these tools.

3.1 The ALDEBARAN tool for computing bisimulations

Jointly developed by the VASY team and the VERIMAG laboratory, ALDEBARAN [6]
is a tool for verifying communicating systems, represented by Ltss. It allows the
reduction of Lrss modulo various equivalence relations (such as strong bisim-
ulation, observational equivalence, 7*- a bisimulation, branching bisimulation,
safety equivalence, etc.). It also allows to perform comparison according to strong
bisimulation preorder, 7*- a preorder, or safety preorder.

The verification algorithms used in ALDEBARAN are based either on the
Paige-Tarjan algorithm for computing the relational coarsest partition [26], on
the “on-the-fly” techniques proposed by Fernandez-Mounier [7], or on symbolic
LTs representations using Binary Decision Diagrams (BDDs) [3]. ALDEBARAN
has diagnosis capabilities that provide the user with explanations (counter-
example sequences) when two LTss are found to be not equivalent.

35

3.2 The CAESAR compiler

CESAR [9] is a compiler that translates the behavioral part of a LOTOS speci-
fication into either a C program (to be executed or simulated) or into an LTs.

CAaSAR translation algorithms proceed in several steps. First the LoTos de-
scription is translated into a simplified process algebra called SUBLOTOS. Then
an intermediate Petri Net model is generated, which provides a compact, struc-
tured and user-readable representation of both the control and data flow. Even-
tually the LTs is produced by performing reachability analysis on the Petri Net.

CESAR accepts full LoT0oS with very slight contextual restrictions as regards
process recursion. Despite these restrictions, the subset of LoT0S handled by
CA&SAR is large and usually sufficient for real-life needs.

The current version of CESAR allows the generation of large LTSs (some mil-
lion states) within a reasonable lapse of time. Moreover, the efficient compiling al-
gorithms of CZESAR can also be exploited in the framework of the OPEN/C&ESAR
environment.

The most recent version of the CESAR compiler provides a functionality
called EXEC/CA&SAR [15] for C code generation. This C code interfaces with the
real world, and can be embedded in applications. This allows rapid prototyping
directly from the LOTOS specification.

3.3 The CESAR.ADT compiler

CESAR.ADT [10] is a compiler that translates the data part of LOTOS specifi-
cations into libraries of C types and functions. Each LOTOS sort is translated
into an equivalent C type and each LOTOS operation is translated into an equiv-
alent C function (or macro-definition). CESAR.ADT also generates C functions
for comparing and printing abstract data types values, as well as iterators for
the sorts of finite domain.

CESAR.ADT accepts full LoTos with the following (quite natural) restriction,
as regards the data part: constructor operations must be identified; equations
are oriented; there is a decreasing priority between equations; equations between
constructors are not allowed. Also, parameterized types are not compiled (yet).

CESAR.ADT is fast: translation of large programs (several thousands of lines)
is usually achieved in a few seconds. CESAR.ADT can be used in conjunction with
CZESAR, but it can also be used separately to compile and execute efficiently large
abstract data types descriptions.

3.4 The XTL model-checker

XTL (eXecutable Temporal Language) [23] is a functional-like programming lan-
guage designed to allow an easy, compact implementation of various temporal
logic operators. These operators are evaluated over an LTS encoded in the Bca
format. Besides the usual predefined types (booleans, integers, etc.), the XTL
language defines special types, such as sets of states, transitions, and labels of
the Ls. It offers primitives to access the informations contained in states and

36

labels, to obtain the initial state, and to compute the successors and predecessors
of states and transitions. The temporal operators can be easily implemented us-
ing these functions together with recursive user-defined functions working with
sets of states and/or transitions of the Lrs. A compiler for XTL has been de-
veloped, and several temporal logics like HML [18], CTL [4], ACTL [25], and
LrAac [28] have been easily implemented in XTL.

3.5 The EUCALYPTUS graphical user interface

EUCALYPTUS [12] is a graphical user interface written in Tcl/Tk that integrates
the CADP tools in a unified, user-friendly interface. This interface has the name
of the project within which it was developed: the Euro-Canadian project “EU-
CALYPTUS”.

Additionally, EUCALYPTUS integrates complementary software such as the
APERO data type pre-processor for LOTO0s [27], the ELUDO simulator of LOoTOS
descriptions [31], or the F¢2 tools [1], together with the graphical editor AuTo-
GRAPH [29].

4 New tools of CADP 2001

The new release of CADP contains five new tools: BCG_MIN, EVALUATOR 3.0,
Ocis, Svi, and TaGv.

4.1 The new BCG_MIN tool for computing bisimulations

Jointly developed by the VASY team and Holger Hermanns (University of Twente),
BcG_MIN implements various minimization algorithms for graphs encoded in
the BCG format. It can be used to minimize “standard” LTss, as well as “prob-
abilistic” and “stochastic” Lirss, which may carry respectively probabilistic and
stochastic labels and generalize many theoretical models published in the liter-
ature (for instance the Discrete Time Markov Chains and the Continuous Time
Markov Chains).

Compared to former LTS minimization tools (including ALDEBARAN and
Fc2 tools), BCG_MIN only implements two equivalences, namely strong and
branching bisimulation. For these two equivalences, however, it offers compelling
advantages:

— BcG_MIN can handle larger LTss, at least larger by an order of magnitude;
for instance, the largest LTS reduced so far by BCG_MIN has more than
7 million states and 40 million transitions; according to Prof. Jan Friso
Groote [17], BcG_MIN is “the best implementation of the standard (i.e.,
Groote & Vaandrager [16]) algorithm for branching bisimulation”;

— BcG_MIN uses BCa as its native format, thus leading to speed improvement,
because BCG occupies much less disk space than most graph formats;

37

— BCG_MIN is able to print state equivalence classes in a user-friendly way,
by relating the state numbers of the minimized graph to the state numbers
of the original graph; in the case of branching equivalence, the 7-cycles are
properly displayed.

4.2 The new EVALUATOR 3.0 model-checker

EVALUATOR 3.0 [24] is a new version of the EVALUATOR tool, which performs
on-the-fly verification of regular alternation-free p-calculus formulas on LTss
represented implicitly according to the OPEN/C&ESAR API. Compared to the
previous version 2.0 [8], EVALUATOR 3.0 brings major improvements:

— The input specification language of EVALUATOR 3.0 is more powerful than
the one of EVALUATOR 2.0:

e action formulas can contain any combination of boolean operators and
basic predicates over transition labels (which can be now given also as
Unix regular expressions over character strings);

e regular transition sequences can be succinctly described using regular
formulas built from action formulas and the usual regular expression
operators;

¢ it is also possible to define macro operators parameterized by formulas
and to group them into separate libraries that may be included in the
main specification.

— The model-checking algorithm of EVALUATOR 3.0 uses a new on-the-fly
boolean resolution algorithm, which has a much better average complex-
ity than the algorithm used in EVALUATOR 2.0. It explores less states before
deciding the truth value of the formula, which leads sometimes to dramatic
reductions (several orders of magnitude) of the execution time. Moreover,
EVALUATOR 3.0 has been optimized in order to work more efficiently when
verifying temporal formulas on explicit LTss encoded as Bca files. Due to
these optimizations, the memory consumption and the execution time of
EVALUATOR 3.0 have been reduced by up to 5% and 20%, respectively.

— The diagnostics generated by EVALUATOR 3.0 are improved [22]. Diagnostics
are portions of LirSs explaining either the satisfaction or the refutation of
a formula: if the formula is false, a diagnostic is a counter-example; if the
formula is true, a diagnostic is an example. In particular, the diagnostics
obtained for derived “pure” branching-time logics like CTL and AcTL fully
explain the semantics of their operators. EVALUATOR 3.0 may also serve to
search regular execution sequences in the LTs, by asking for diagnostics of
regular modalities.

Three libraries are also available that encode the operators of the ACTL

temporal logic as well as a set of generic temporal property patterns defined by
Prof. Matthew Dwyer from Kansas State University [5].

38

4.3 The new OCIS interactive graphical simulator

A new interactive, graphical simulator named Ocis (OPEN/CESAR Interactive
Simulator) was added to CADP. Designed to replace the venerable XSIMULATOR,
Ocis enables visualization and error detection during the design phase of systems
containing parallelism and asynchronous communication between tasks. Its main
features are:

— visualization of simulation scenarios as execution traces, trees, or Message
Sequence Charts (Mscs),

manipulation of simulation scenarios, which can be edited, saved as Bca
graphs, and loaded again during another simulation session,

manual (step by step) and automatic (pattern-guided) navigation in the
system under simulation,

— source-level debugging, with access to parallel tasks, state variables, etc.
— possibility to modify the source code and to re-compile it without leaving
the current simulation session.

Ocits was designed to be as much as possible language-independent and
should therefore be usable for any specification language or formalism interfaced
with the OPEN/CESAR API.

4.4 The new SVL scripting language

A new tool named SvL (Script Verification Language) [14] was added to CADP.
The SvL language and its associated compiler target at simplifying and automat-
ing the verification of LOTOS programs. SVL behaves as a tool-independent co-
ordination language on top of the CADP and Fc2 tools, in the same way as
EUCALYPTUS is a tool-independent graphical user interface.

SvL offers high-level operators for generation, parallel composition, min-
imization, label hiding, label renaming, abstraction, comparison, and model-
checking of Lirss. It supports several methods of verification (e.g., enumerative,
compositional, and on-the-fly), which can be easily combined together.

A compiler for SVL has been developed, which translates an SVL verifica-
tion scenario into a Bourne shell script, which will perform all the operations
needed to execute the verification scenario, e.g., invoking verification tools with
appropriate options and parameters, generating intermediate files, etc.

SvL has been used in several case-studies: most of the CADP demo examples
(19 demos over a total of 29) take advantage of SVL readability and conciseness.
In most cases, SVL allows the user to get rid of Makefiles and shell-scripts as
well as many auxiliary files which are generated automatically from a simple
SVL script. Because of its expressiveness and robustness, SVL subsumes totally
the DES2AUT tool [21] used in previous versions of CADP.

39

4.5 The new TGV test generator

The latest version of the Tav (Test Generation based on Verification technol-
ogy) [20] tool, jointly developed by the PAMPA team of INRIA Rennes/IRISA and
the VERIMAG laboratory, has been integrated into the CADP toolbox. TGV is a
tool for the automatic generation of test suites from formal specifications. These
test suites are used to assess the conformance of a protocol implementation with
respect to the formal specification of this protocol. TGV takes two main inputs:

— a specification of the protocol’s behavior, defined as an implicit LTS using the
OPEN/C&ESAR API (this API allows TGV to be used for various languages:
LoTos, SpbL, UML/RT, etc.),

— a test purpose, which selects the subset of the protocol’s behavior to be
tested; the test purpose is defined as an explicit LTS, the states of which are
either normal states, accepting states (i.e., final states characterizing parts of
the protocol satisfying the test purpose), or refusing states (i.e., final states
characterizing parts of the behavior that are irrelevant to the test purpose).

To produce conformance test suites automatically, TGv applies algorithms
coming from verification technology. Test generation is done “on-the-fly” on the
synchronous product of the specification with the test purpose; this product
allows to avoid state explosion by exploring only the subset of the protocol
specification permitted by the test purpose. The test cases generated by Tav
are LTss, the transitions of which carry test verdicts such as “pass”, “fail”, and
“inconclusive”.

5 Conclusion

CADP contains a lot of tools and offers a wide variety of functionalities. CADP
2001 “Ottawa” provides several of the best algorithms for simulation and verifica-
tion. It supports libraries that make the addition of new tools and the connection
to new languages and description formats extremely modular. It also contains
a graphical user interface and a scripting language that make its use easier for
both expert and non-expert users.

Moreover, CADP is supported, maintained and constantly improved. It is
available on LINUX, SOLARIS, and WINDOWS platforms. It is widely distributed:
in June 2001, it had been licensed to 239 sites and during year 2000, licenses
were granted for 770 machines around the world; from January 1st, to June 26th,
2001, licenses were granted for 797 machines. Additionally, the CADP tools are
integrated into the Web-based, open communication platform ETI (Electronic
Tool Integration Platform) [30, 2].

During the last years, over 50 applications and case-studies performed using
CADP have been published® and 10 research tools based upon the OPEN/CESAR
and BcG environments of CADP have been developed?.

3 Information is available at http://www.inrialpes.fr/vasy/cadp/case-studies.
4 Information is available at http://www.inrialpes.fr/vasy/cadp/software.

40

Acknowledgements

We would like to thank all the people who contributed to the development of
CADP:

— Moez Cherif, Hubert Garavel, Marc Herbert, Bruno Hondelatte, Pierre Kessler,
Frédéric Lang, Stéphane Martin, Radu Mateescu, Aldo Mazilli, Frédéric Per-
ret, Mihaela Sighireanu, and Irina Smarandache of the VASY project at INRIA
Rhone-Alpes (Grenoble, France),

— Laurent Mounier and Aline Sénart of the VERIMAG laboratory (Grenoble,
France),

— Thierry Jéron, Pierre Morel, and Séverine Simon of the PAMPA project at
INRIA/IRISA (Rennes, France),

— Holger Hermanns at the University of Twente (The Netherlands).

We are also extremely grateful to all the scientists who contributed to the
development, of CADP in the past and who provided us with valuable feedback
and advices about the use of CADP.

At last, we thank Solofo Ramangalahy for his useful comments about this

paper.

References

1. Amar Bouali, Annie Ressouche, Valérie Roy, and Robert de Simone. The Fc2Tools
set: a Toolset for the Verification of Concurrent Systems. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-
Aided Verification (New Brunswick, New Jersey, USA), volume 1102 of Lecture
Notes in Computer Science. Springer Verlag, August 1996.

2. Volker Braun, Jirgen Kreileder, Tiziana Margaria, and Bernhard Steffen. The
ETI Online Service in Action. In Rance Cleaveland, editor, Proceedings of the 5th
International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS 1999), volume 1579 of Lecture Notes in Computer Science,
pages 439—443, Amsterdam (The Netherlands), 1999.

3. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

4. E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-
State Concurrent Systems using Temporal Logic. In 10th Annual Symposium on
Principles of Programming Languages. ACM, 1983.

5. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Prop-
erty Specifications for Finite-State Verification. In Proceedings of the 21st Inter-
national Conference on Software Engineering ICSE’99 (Los Angeles, CA, USA),
May 1999.

6. Jean-Claude Fernandez. An Implementation of an Efficient Algorithm for Bisim-
ulation Equivalence. Science of Computer Programming, 13(2-3):219-236, May
1990.

7. Jean-Claude Fernandez and Laurent Mounier. “On the Fly” Verification of Be-
havioural Equivalences and Preorders. In K. G. Larsen and A. Skou, editors, Pro-
ceedings of the 3rd Workshop on Computer-Aided Verification (Aalborg, Denmark),
volume 575 of Lecture Notes in Computer Science, Berlin, July 1991. Springer Ver-
lag.

41

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Jean-Claude Fernandez and Laurent Mounier. A Local Checking Algorithm for
Boolean Equation Systems. Rapport SPECTRE 95-07, VERIMAG, Grenoble,
March 1995.

Hubert Garavel. Compilation et vérification de programmes LOTOS. These de
Doctorat, Université Joseph Fourier (Grenoble), November 1989.

Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Description
Techniques FORTE’89 (Vancouver B.C., Canada), pages 147-162. North-Holland,
December 1989.

Hubert Garavel. Binary Coded Graphs: Definition of the BCG Format. Rapport
SPECTRE C28, Laboratoire de Génie Informatique — Institut IMAG, Grenoble,
January 1991.

Hubert Garavel. An Overview of the Eucalyptus Toolbox. In Z. Brezo¢nik and
T. Kapus, editors, Proceedings of the COST 247 International Workshop on Ap-
plied Formal Methods in System Design (Maribor, Slovenia), pages 76—-88. Univer-
sity of Maribor, Slovenia, June 1996.

Hubert Garavel. OPEN/CAESAR: An Open Software Architecture for Verifica-
tion, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings of the First
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS’98 (Lisbon, Portugal), volume 1384 of Lecture Notes in
Computer Science, pages 68-84, Berlin, March 1998. Springer Verlag. Full version
available as INRIA Research Report RR-3352.

Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional
Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Dan-
hyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems FORTE’ 2001 (Cheju
Island, Korea), pages 377-392. IFIP, Kluwer Academic Publishers, August 2001.
Full version available as INRIA Research Report RR-4223.

Hubert Garavel, César Viho, and Massimo Zendri. System Design of a CC-
NUMA Multiprocessor Architecture using Formal Specification, Model-Checking,
Co-Simulation, and Test Generation. Springer International Journal on Software
Tools for Technology Transfer (STTT), 3(3):314-331, July 2001. Also available as
INRIA Research Report RR-4041.

Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching
Bisimulation and Stuttering Equivalence. In M. S. Patterson, editor, Proceedings
of the 17th ICALP (Warwick), volume 443 of Lecture Notes in Computer Science,
pages 626-638. Springer Verlag, 1990.

J.F. Groote and J.C. van Pol. State space reduction using partial tau-confluence.
Research Report SEN-R0008, CWI, Amsterdam, The Netherlands, 2000.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32:137-161, 1985.

ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization — Information Processing Systems — Open Sys-
tems Interconnection, Genéve, September 1988.

T. Jéron and P. Morel. Test generation derived from model-checking. In N. Halb-
wachs and D. Peled, editors, Proceedings of the Conference on Computer-Aided
Verification CAV’99 (Trento, Italy), volume 1633 of Lecture Notes in Computer
Science, pages 108-122. Springer Verlag, July 1999.

42

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Genera-
tion from LOTOS Programs. In Ed Brinksma, editor, Proceedings of TACAS’ 97
Tools and Algorithms for the Construction and Analysis of Systems (University
of Twente, Enschede, The Netherlands), volume 1217 of Lecture Notes in Com-
puter Science, Berlin, April 1997. Springer Verlag. Extended version with proofs
available as Research Report VERIMAG RR97-01.

Radu Mateescu. Efficient Diagnostic Generation for Boolean Equation Systems. In
Susanne Graf and Michael Schwartzbach, editors, Proceedings of 6th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’2000 (Berlin, Germany), volume 1785 of Lecture Notes in Computer Sci-
ence, pages 251-265. Springer Verlag, March 2000. Full version available as INRTA
Research Report RR-3861.

Radu Mateescu and Hubert Garavel. XTL: A Meta-Language and Tool for Tem-
poral Logic Model-Checking. In Tiziana Margaria, editor, Proceedings of the Inter-
national Workshop on Software Tools for Technology Transfer STTT’98 (Aalbory,
Denmark), pages 33—42. BRICS, July 1998.

Radu Mateescu and Mihaela Sighireanu. Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus. In Stefania Gnesi, Ina Schieferdecker, and
Axel Rennoch, editors, Proceedings of the 5th International Workshop on Formal
Methods for Industrial Critical Systems FMICS’2000 (Berlin, Germany), GMD
Report 91, pages 65-86, Berlin, April 2000. Also available as INRIA Research
Report RR~3899.

R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transi-
tion Systems. In Iréne Guessarian, editor, Semantics of Systems of Concurrent Pro-
cesses, volume 469 of Lecture Notes in Computer Science, pages 407-419. Springer
Verlag, April 1990.

Robert Paige and Robert E. Tarjan. Three Partition Refinement Algorithms. SIAM
Journal of Computing, 16(6):973-989, December 1987.

Charles Pecheur. Improving the Specification of Data Types in LOTOS. Doctor-
ate thesis, University of Liege, November 1996. Collection of Publications of the
Faculty of Applied Sciences, Nr 171.

Jean-Pierre Queille and Joseph Sifakis. Fairness and Related Properties in Tran-
sition Systems — A Temporal Logic to Deal with Fairness. Acta Informatica,
19:195-220, 1983.

Valérie Roy and Robert de Simone. Auto/Autograph. In R. P. Kurshan and E. M.
Clarke, editors, Proceedings of the 2nd Workshop on Computer-Aided Verification
(Rutgers, New Jersey, USA), volume 3 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 477-491. AMS-ACM, June 1990.
Bernhard Steffen, Tiziana Margaria, and Volker Braun. The Electronic Tool Inte-
gration Platform: Concepts and Design. Springer International Journal on Soft-
ware Tools for Technology Transfer (STTT), 1-2(1):9-30, December 1997.

B. Stepien, J. Tourrilhes, and J. Sincennes. ELUDO: The University of Ottawa
LOTOS Toolkit. Technical report, University of Ottawa, 1994. Obtainable by FTP
on lotos.csi.uottawa.ca.

43

Simulating Nondeterministic Systems at Multiple Levels of
Abstraction

Dilsun Kirlh Kaynar, Anna Chefter, Laura Dean, Stephen J. Garland
Nancy A. Lynch, Toh Ne Win, Antonio Ramirez-Robredo
MIT Laboratory for Computer Science*

Abstract

IOA is a high-level distributed programming language based on the formal I/O automaton
model for asynchronous concurrent systems. A suite of software tools, called the IOA toolkit,
has been designed and partially implemented to facilitate the analysis and verification of dis-
tributed systems using techniques supported by the formal model. An important proof technique
for distributed systems defined by a hierarchy of abstractions involves the notion of a simulation
relation between pairs of automata at different levels in the hierarchy. The IOA toolkit’s sim-
ulator tests purported simulation relations by executing the low-level automaton and, given a
proposed correspondence between its steps and those of the higher-level automaton, generating
and checking an execution of the higher-level automaton. Once checked by the simulator, the
simulation relation and the step correspondence can be used in conjunction with the toolkit’s
proof tools to construct a formal proof that the low-level automaton implements the higher-level
one. This paper presents a case study that illustrates this use of the IOA toolkit to prove correct
an algorithm for mutual exclusion. The case study shows how tools like the IOA simulator can
play an important role in proving distributed systems correct.

1 Introduction

The input/output (I/O) automaton model [LT89, Lyn96] is a labeled transition system model
suitable for describing systems with asynchronously interacting components. In this model, a
component is represented as an I/O automaton which is a nondeterministic, possibly infinite-state,
state machine. The external behavior of each automaton is defined by a simple mathematical object
called a trace.

The I/O automata model supports viewing systems at multiple levels of abstraction. A system
can be described first at a high-level of abstraction, capturing only the essential requirements about
its behavior, and then be refined successively until the desired level of detail is reached. The model
defines what it means for an automaton to implement another (in terms of trace inclusion), and it
introduces the notion of a simulation relation as a sufficient condition to prove an implementation
relation between two automata. A parallel composition operator, also included in the model, allows
one to decompose the description, analysis and verification of large and complex systems.

IOA [GL00, GL98] is a formal language for describing I/O automata. It can be regarded as
a high-level distributed programming language. Its design was driven by a motivation to support
both simulation [Che98, RR00, Dea01] and verification [Bog01]. The IOA toolkit is a partially

*Corresponding address: 200 Technology Square, Cambridge, MA 02139, USA, dilsun@theory.lcs.mit.edu. Cur-
rently, Chefter is employed by Merill Lynch, Dean is employed by Oryxa, and Ramirez is in the PhD program in
mathematics at Stanford University.

implemented set of software tools that support the design, analysis, and development of systems
within the I/O automaton framework. The toolkit contains a front-end that checks whether system
descriptions (IOA programs) comply with IOA’s syntax and static semantics, and that produces
an intermediate representation of the code for use by the back-end tools (a simulator, interfaces to
a number of existing theorem provers, model checkers, and an automatic code generator).

A key feature of the I/O automaton model is nondeterminism. Nondeterminism allows systems
to be described in their most general forms and to be verified considering all possible behaviors
without being tied to a particular implementation of a system design. The results obtained for a
nondeterministic system carry over to different implementations of the same system. Nondetermin-
ism also makes it easier to prove correctness in the absence of extraneous, unnecessary restrictions.
A key challenge in the design of IOA has been to provide support for both simulation and ver-
ification in a unified framework. Nondeterminism in IOA assists verification in the ways noted
above. On the other hand, nondeterminism complicates simulation, which must choose particular
executions. Therefore, simulation requires mechanisms for resolving nondeterminism. The IOA
language and toolkit provide such mechanisms. Moreover, these mechanisms turn out to be useful
not just for simulation, but for verification as well.

In this paper, we describe by means of a case study how the IOA toolkit can be used for
simulating and subsequently verifying distributed algorithms. We focus on the capability of the
IOA simulator to simulate pairs of I/O automata at different levels of abstraction. Users present
the paired simulator with descriptions of two automata, a candidate simulation relation, and a
mapping, called a step correspondence, from the actions of the lower-level automaton to sequences
of actions of the higher-level one. The simulator simulates the low-level automaton, checks whether
the trace of the high-level automaton induced by the step correspondence is identical to that of the
low-level automaton, and checks whether the candidate simulation relation holds throughout the
simulated executions.

In our case study we present an algorithm for mutual exclusion and use the paired simulator to
obtain evidence that this algorithm satisfies the mutual exclusion property. We then verify that the
algorithm satisfies this property with LP [GG91]. The toolkit facilitates the automatic translation
of the algorithm and the candidate simulation relation into the language of LP.

Related work Other toolkits such as AsmL [GSVO01] tools, Mocha [dAAGT00], the SMV sys-
tem [McM], and TLC [LYO01] support simulation or verification of concurrent and distributed sys-
tems. The TOA toolkit differs from these in that it combines paired simulation capability with
theorem-proving based verification. AsmL facilitates simulating systems at different levels of ab-
straction, checking step by step whether a system satisfies its specification, but it does not support
using paired simulation in conjunction with proof tools. The verification components of Mocha,
SMV, and TLC use model checking and hence are limited to exploring finite state spaces; the proof
tools in the IOA toolkit apply to finite and infinite systems alike. Another feature that distin-
guishes the TOA toolkit from other tools is the connection of its simulator to a program analysis
tool [ECGNO1] for automatic invariant discovery.

2 1I/0 automata and the IOA Language

This section includes a brief introduction to the I/O automaton model and the IOA Language. We
refer the reader to [Lyn96, GL98] for an in-depth introduction.

45

2.1 Theoretical background

An I/O automaton is a simple type of state machine in which the transitions between states are
associated with named actions w. The actions are classified as either input, output, or internal.
The input actions are assumed not to be under the automaton’s control, whereas the automaton
itself controls which output and internal actions should be performed. An I/O automaton consists
of a signature, which lists its actions, a set of states, some of which are distinguished as start states,
a state-transition relation, which contains triples of the form (state, action, state), and an optional
set of tasks. We do not consider automata with tasks in this paper.

An action 7 is said to be enabled in a state s if there is another state s’ such that (s, ,s’) is
a transition of the automaton. Input actions are enabled in every state. The operation of an I/0O
automaton is described by its ezecutions sy, 1, S1,.-., which are alternating sequences of states
and actions, and its traces, which are the externally visible behavior occurring in executions. One
automaton is said to implement another if all its traces are also traces of the other. The parallel
composition operator allows an output action of one automaton to be identified with input actions
in other automata; this operator respects the trace semantics.

The I/O automaton model provides support for system descriptions at multiple levels of ab-
straction. The process moving through a series of abstractions, from higher to lower levels, is called
successive refinement. To prove that one automaton implements another, one needs to show that
for any execution of the lower level automaton there is a corresponding execution of the higher
level automaton. The notion of a simulation relation proves useful in constructing proofs of imple-
mentation relations.

Definition 2.1 (Forward simulation). A forward simulation from automaton A to automaton
B is a relation f on states(A) x states(B) with the following properties:

1. For every start state a of A, there exists a start state b of B such that f(a,b).
2. If a is a reachable state of A, b is a reachable state of B such that f(a,b), and a = a’, then

there exists a state b’ of B and an execution fragment 3 of B such that b Ly , f(a',b') holds,
and trace(r) = trace(f).

Theorem 2.1. If there is a forward simulation relation from A to B, then every trace of A is a
trace of B. (See [Lyn96] for a proof.)

2.2 The IOA language

In the IOA language, the description of an I/O automaton has four main parts: the action signature,
the states, the transitions, and the tasks of the automaton. States are represented by collections of
typed variables. The transition relation is usually given in precondition-effect style, which groups
together all transitions that involve a particular action into a single piece of code. Each definition
has a precondition (indicated by the keyword pre), which describes a condition on the state that
should be true before the transition can be executed, and an effect (indicated by the keyword eff)
which describes how the state changes when the transition is executed. The entire piece of code in
the effect of a transition is executed indivisibly. If pre is not specified, then it is assumed to always
hold.

The code may be written either in an imperative style, as a sequence of assignment, conditional,
and looping instructions, or in declarative style, as a predicate relating state variables in the pre-
and post-states, transition parameters, and nondeterministic parameters. It is also possible to use
a combination of these two styles.

46

Nondeterminism appears in IOA in two ways: explicitly in the form of choose constructs in
state variable initializations and the effects of the transition definitions, and implicitly, in the form
of action scheduling uncertainty. We present examples for both forms of nondeterminism later in
the paper and describe how they are resolved by the IOA simulator.

2.3 Example: Specification of mutual exclusion

We present a sample IOA program to illustrate some of the language constructs discussed above
and to introduce the mutual exclusion problem that constitutes the basis of our case study. We
build on this example gradually as we discuss simulation and proof techniques based on simulation
relations.

The mutual exclusion problem involves the allocation of a single, indivisible, non-shareable
resource among n processes. The resource could be an output device that requires exclusive access
to produce sensible output or a data structure that requires exclusive access in order to avoid
interference among the operations of different processes. A process with access to the resource is
modeled as being in a critical region, which is a designated subset of its states. When a process
is not involved in any way with the resource, it is said to be in the remainder region. In order to
gain admittance to its critical region, a process executes a trying protocol; after it is done with the
resource, it executes an ezit protocol. This procedure can be repeated so that each process follows
a cycle, moving from its remainder region to its trying region and arriving back at the remainder
region after going through critical and exit regions.

We consider mutual exclusion within the shared memory model explained in [Lyn96]. The shared
memory system contains n processes, numbered 1,...,n. The try, crit, exit, and rem actions are
the only external actions of a process. Input actions consist of ¢ry;, which models a request for
access to the resource by process i, and exit;, which models an announcement that process ¢ is done
with the resource. Output actions consist of crit;, which models the granting of access to process
1, and rem;, which tells process ¢ that it can continue with the remainder of its work. Formally, we
define a sequence of try;, crit;, exit;, and rem; actions to be well-formed for process i if it is a prefix
of the cyclically ordered sequence try;, crit;, exit;, rem;, try;, ... The automaton Mutex (Figure 1)
is an IOA specification of mutual exclusion for three processes in which the well-formedness of
interaction with the environment is guaranteed.

The state variable regionMap maps process indices to regions and keeps track of the current
region of each process. The initialization of regionMap to constant(rem) defines the start state.
The transition definitions are mostly self-explanatory. Each action updates the variable regionMap
to record the region entered upon its execution. The transition definition for crit imposes the
mutual exclusion condition: a process in a trying region is allowed to enter its critical region only
if there is no other process that is in region crit.

2.4 Example: An algorithm for mutual exclusion

Figure 2 contains IOA code for an algorithm for mutual exclusion. Comments in the code indicate
items that will be of particular interest when we discuss the mechanism for resolving nondetermin-
ism to enable simulation. We start, however, by explaining the algorithm briefly, pointing at the
sources of nondeterminism.

The algorithm described by the automaton DijkstraInt is a simplified version of a mutual
exclusion algorithm by Dijkstra presented in [Lyn96]. It abstracts away those parts in the original
algorithm dedicated to dealing with liveness. The suffix “Int” in the automaton name indicates
that we consider it to be an intermediate level algorithm: not at as high a level as the specification,

47

type Index =enumeration of pl, p2, p3
type Region =enumeration of rem, try, crit, exit

automaton Mutex
signature output try(p: Index), crit(p: Index), exit(p: Index), rem(p: Index)
states regionMap: Array[Index, Region] := constant(rem)
transitions
output try(p)
pre regionMap[p] =rem
eff regionMap[p] := try
output crit(p)
pre regionMap[p] =try AVu: Index (p #u =regionMap[u] #crit)
eff regionMap[p] := crit
output exit(p)
pre regionMap[p] =crit
eff regionMap[p] := exit
output rem(p)
pre regionMap[p] =exit
eff regionMap[p] := rem

Figure 1: Specification of mutual exclusion

yet less detailed than the original algorithm of Dijkstra.

The automaton Dijkstralnt uses two types, PcValue and Stage, in addition to those in Figure 1.
Values of type PcValue represent possible program counter values for a process, while values of type
Stage represent stages of the algorithm. The automaton has four external and four internal actions.
The external actions have the same names as those of Mutex in Figure 1. This is no coincidence, as
our ultimate aim is to show that DijkstraInt implements mutual exclusion as specified by Mutex.

The algorithm has two stages. The first, stagel, indicates that a process is either inactive or
is about to enter the second stage. The second, stage2, embodies the crucial steps and determines
whether a process is allowed to enter its critical region. A process can enter its critical region only if
all other processes are in stagel. The transition definition for action check details how this works.
Each process p uses a set S[p] to keep track of the processes that it has detected as being in stagel.
The state variables flag and pc record the stage of the algorithm for each process and control the
order of occurrence of the actions mimicking the program counter for a process.

Explicit nondeterminism in this example arises from the choose statement in the transition
definition for action check. When a process p performs the check action, it nondeterministically
chooses the process u to be checked. The predicate in the where clause allows the nondeterministic
choice to yield any process that is not already in the set S[p]. Implicit nondeterminism also arises in
this example, because there may be more than one action enabled at a time. Consider, for example,
the very first action to be performed by the automaton. Since the program counters (pc) of all
processes are initialized to rem, all processes are enabled to perform the try action. To simulate
this automaton, one must select one of these processes to start execution.

3 Simulation and nondeterminism resolution
The simulator runs sample executions of an IOA program, allowing the user to help select the
executions. It generates logs of execution traces and displays information upon the user’s request.

The IOA Language allows users to propose invariants, which the simulator checks in the selected
executions.

48

type PcValue =enumeration of rem, setflagl, setflag2, check, leavetry,
crit, reset, leaveexit
type Stage =enumeration of stagel, stage2

automaton Dijkstralnt
signature
output try(p: Index), crit(p: Index), exit(p: Index), rem(p: Index)

internal setflagl(p: Index), setflag2(p: Index), check(p: Index), reset(p:
states

flag: Array[Index, Stage] := constant(stagel),

pc: Array[Index, PcValue] := constant(rem),

S: Array[Index, Set[Index]] := constant({}),

u: Index
transitions

output try(p)
pre pclp] =rem
eff pclp] := setflagl
internal setflagl(p)
pre pclp] =setflagl
eff flag[p]l := stagel; pclp]l := setflag?2
internal setflag2(p)
pre pclp] =setflag2
eff flaglp]l := stage2; S[pl := {p}; pclp]l := check
internal check(p)
pre pclp] =check
eff u := choose x: Index where —(x €S[pl);
%% explicit nondeterminism to be resolved for simulation
if flag[u] =stage2 then S[p] := {}; pclp] := setflagl
else S[p]l := S[p]l U{u};
if Vi: Index (i €S[pl) then pc[p] := leavetry fi
fi
output crit(p)
pre pclp] =leavetry
eff pclp]l := crit
output exit(p)
pre pclp] =crit
eff pclp] := reset
internal reset(p)
pre pclp] =reset
eff flag[p] := stagel; S[p] := {}; pclp] := leaveexit
output rem(p)
pre pclp] =leaveexit
eff pclp] := rem
%% implicit nondeterminism to be resolved for simulation

Figure 2: An algorithm for mutual exclusion

49

Index)

The simulator requires that IOA programs be transformed into a form suitable for simulation.
The crucial problem in this transformation is resolving nondeterminism. The nondeterminism
resolution approach adopted by the IOA simulator is to assign a program, called an NDR program,
to each source of nondeterminism in an automaton. There is an NDR program corresponding to
every choose statement, and an NDR program for scheduling the actions of the automaton. We
explain the nondeterminism resolution mechanism of the IOA simulator by referring to the example
presented in Section 2.4.

3.1 Resolving explicit nondeterminism

A simple NDR program (determinator), given below, resolves the explicit nondeterminism for the
check action in the automaton DijkstraInt. It yields a process index that is not in S[p]. This
index is guaranteed to differ from p because p is placed in S[p] before check is enabled, and it is
guaranteed to exist because check is no longer enabled once S[p| contains all indices.

det do
if - (p1 €S[pl) then yield pi1
elseif —(p2 €S[p]) then yield p2
elseif - (p3 €S[pl) then yield p3
fi
od

3.2 Resolving implicit nondeterminism

To resolve implicit nondeterminism, users of the IOA simulator must specify a scheduling policy
using the language constructs of IOA. We present below a sample schedule block that implements
a randomized scheduling policy for three processes. It picks a random integer between 1 and 3 and
uses this integer to decide which process will be given the turn to perform an action. It checks the
enabling conditions for the randomly chosen process and fires the enabled action. The while loop
that contains these steps is nonterminating; the IOA simulator prompts the users for the maximum
number of steps to simulate and halts the execution automatically when the predetermined step is
reached.

schedule
states pick: Int, p: Index
do while true do
pick:= randomInt(1,3);
if pick =1 then p := p1
elseif pick =2 then p := p2
else p := p3
fi;
if pclp]l] =rem then fire output try(p)
elseif pc[p] =setflagl then fire internal setflagil (p)
elseif pc[p] =setflag2 then fire internal setflag2(p)
elseif pc[p] =check then fire internal check(p)
elseif pc[p] =leavetry then fire output crit(p)
elseif pclp] =crit then fire output exit(p)
elseif pc[p] =reset then fire internal reset (p)
else fire output rem(p)
fi
od
od

50

3.3 Checking invariants

The IOA simulator checks the validity of invariants proposed by users. We present below several
invariants for the automaton DijkstraInt that are key lemmas for proving the algorithm correct.
In Section 5 we take up the question of how the user discovers such lemmas.

Each process p uses a set S[p] to keep track of successfully checked processes, that is, of processes
that are not contending with p to enter the critical region. The first assertion states that two
processes cannot both be executing the second stage of the algorithm and be in each other’s set.
The second states that whenever the pc value for a process is leavetry or crit, its set contains
all of the processes. These two assertions express the key ideas we will use in our proof: if the pc
values for two processes were crit at the same time, it would be impossible for assertion1 and
assertion2 to be both true.

invariant assertionl of Dijkstralnt:
V i: Index Vj: Index —(i #j Aflagl[i]l =stage2 Aflagl[j]l =stage2
Ai €S[j] Aj €sliD

invariant assertion2 of Dijkstralnt:
Vi: Index ((pcl[i] =leavetry =Vj:Index (j €S[il))
A (pcli] =crit =V j:Index (j €S[il)))

3.4 Simulator output

The automaton Dijkstralnt from Figure 2 can be simulated with the IOA simulator after inserting
the NDR programs specified in Section 3 in the indicated places. The invariants to be checked need
to be appended to the code.

Some output of the simulator for running DijkstraInt is shown below. It displays the step
involving the first entry to the critical region (step 21) in a simulation for 200 steps. The simulator
reports errors if any of the invariants fail at a simulated step, if an NDR program attempts to fire
a transition that is not enabled, or if it attempts to yield a value that does not satisfy the where
clause of the corresponding choose statement.

[[L[[Begin step 21 [[LL

transition: output crit(pl) in automaton Dijkstralnt
%hihh Modified state variables:

pc ——> (ArraySort (ConstantValue rem) (pl crit) (p2 setflag2) (p3 rem))
1111 End step 21 1111

4 Paired Simulation

In this section, we describe how the simulator simulates execution of a pair of automata related by a
simulation relation as defined in Section 2. The key problem here is that simulation relation, being
merely a predicate that relates the states of two automata, does not identify how each step in the
implementation automaton corresponds to a sequence of steps in the specification automaton. In
general, there might be multiple step correspondences that realize a given valid simulation relation
between automata; even if there is only one, it can be difficult to find it. The problem of deriving a
specification-level execution from an implementation-level execution is analogous to that of deriving
a deterministic execution of a single automaton from a specification that allows nondeterminism.
The design of the paired simulator is based on the observation that it is reasonable and beneficial
to require users to specify a step correspondence. In most correctness proofs, determining when a
particular action in the specification is performed by the implementation turns out to be the key to

51

the proof. By requiring a user to specify the step correspondence, the simulator actually urges the
user to understand the relationship between the two levels. Once the main invariants and the step
correspondence is determined, the rest of the proof is likely to involve routine bookkeeping steps.

4.1 Encoding step correspondences

A step correspondence needs to specify, for a given low-level transition, a high-level execution
fragment such that execution of both the low-level transition and the high-level fragment preserves
the simulation relation. Thus, a step correspondence can be seen as an “attempted proof” of the
simulation relation, missing only the reasoning that shows that the simulation relation is preserved.
To specify the proposed proof of a simulation relation, the IOA forward simulation assertion allows
a section called proof for specifying the step correspondence. This section contains one entry for
each possible transition definition in the low-level automaton; each entry provides an algorithm for
producing a high-level execution fragment. In addition to these entries, the proof section contains
an initialization block, which specifies how to set the variables of the high-level automaton given
the initial state of the low-level automaton, and an optional states section that declares auxiliary
variables used by the step correspondence.

4.2 Example: Forward simulation from Dijkstralnt t0 Mutex

Figure 3 defines a forward simulation relation in IOA and contains a proof block for that relation.
Together with the IOA descriptions of Mutex and DijkstraInt augmented with the NDR programs
from Section 3, this block allows one to use the paired simulator to check whether the relation holds
in the simulated executions.

The candidate relation in this example is based on the relation between the values of the state
variable pc of the low-level automaton and those of the state variable regionMap of the specification
automaton. The intuition behind this relation is as follows. For each region in the specification of
mutual exclusion there are certain actions that can be performed by the low-level automaton. These
actions are determined by the pc values. The relation states that whenever the program counter
of a process at the low-level automaton is set to one of setflagl, setflag?2, check, or leavetry, the
regionMap of the specification automaton must show region try for the same process. The rest of
the relation is defined similarly. The delimiter “;” can be interpreted as conjunction.

In paired simulation, the simulation of the low-level algorithm drives the simulation of the high-
level one. For each external action performed by the low-level automaton, the proof block directs
the simulator to fire the action with the specified name at the high-level. The internal actions
are matched by empty execution fragments indicated by ignore statements. The simulator checks
whether the proposed simulation relation holds after the actions are performed. The following is a
sample output of the paired simulator, displaying the simulation step 17.

[[[[Begin step 17 [LLL
Executed impl transition: output crit(pl) in automaton Dijkstralnt
%h%h Modified state variables for impl automaton:
pc ——> (ArraySort (ConstantValue rem) (pl crit) (p2 setflag2) (p3 setflag?2))
Executed spec transition: output crit(pl) in automaton Mutex
%h%h Modified state variables for spec automaton:
regionMap --> (ArraySort (ConstantValue rem) (pl crit) (p2 try) (p3 try))
1111 End step 17 1111

Note that the simulator gives information about how the states of the two automata change
upon the occurrence of an action of the implementation automaton. In this example, each step

52

forward simulation from Dijkstralnt to Mutex :
V i: Index (Dijkstralnt.pc[i]l =setflagl VDijkstralnt.pc[i]l =setflag2 V
Dijkstralnt.pc[i] =check VDijkstraInt.pc[i] =leavetry
< Mutex.regionMap[i]l =try);
V i: Index (Dijkstralnt.pc[i] =crit <Mutex.regionMapl[il =crit);
V i: Index (DijkstraInt.pc[i] =rem <Mutex.regionMap[i] =rem);
V i: Index (Dijkstralnt.pc[i]l =reset VDijkstralnt.pc[i] =leaveexit
& Mutex.regionMap[i] =exit);
proof
initially Mutex.regionMap := constant (rem)
for output try(p:Index) do fire output try(p) od
for output crit(p:Index) do fire output crit(p) od
for output exit(p:Index) do fire output exit(p) od
for output rem(p:Index) do fire output rem(p) od
for internal setflagl(p:Index) ignore
for internal setflag2(p:Index) ignore
for internal check(p:Index) ignore
for internal reset(p:Index) ignore

Figure 3: Forward simulation from Dijkstralnt to Mutex

in the low-level execution is matched by either a single step or an empty execution fragment in
the specification. The IOA simulator can also handle paired simulations in which this is not the
case. It allows execution fragments to be specified by any IOA program consisting of assignments,
conditional, while, and fire statements. For example, a step correspondence in which an output
action a at the low-level is matched by a sequence consisting of an output action a that is preceded
and followed by an internal action b could be encoded as follows:

for output a do fire internal b; fire output a; fire internal b od

5 Using simulation results to help construct a proof of correctness

In the previous section we introduced a method for simulating pairs of automata at different levels of
abstraction with the aid of the IOA toolkit. It is important to note that paired simulation provides
only empirical evidence for the correctness of a simulation relation. In most cases it is desirable
to complement this evidence with a proof. In this section we describe the support provided by the
TIOA toolkit for formal verification.

5.1 Method

The TOA toolkit has been designed to support verification of safety properties, which specify that
a “bad’ event never happens. LP is an interactive theorem proving system for multisorted first-
order logic and is suitable for reasoning about safety properties expressible in this kind of logic.
It admits specifications of theories in the Larch Shared Language (LSL). The IOA toolkit includes
a tool called ioa21s1 [Bog01], which translates IOA definitions of automata, their invariants, and
simulation relations into LSL theories. The tool ica21sl combines the definition of an automaton
with standard LSL definitions of I/O automata to produce axioms in first-order logic that describe
the operation of the automaton. These are subsequently used to generate input for LP.

53

5.2 Example: Proof of forward simulation

We now describe how we proved that a candidate simulation relation, presented in Figure 3 and
checked with the paired simulator for selected executions, is actually a forward simulation relation
from DijkstraInt to Mutex. It then follows from Theorem 2.1 that DijkstraInt implements mutual
exclusion.

We first used ioa21sl to process the file containing the definitions of the two automata, their
invariants, and the simulation relation.! We then used the LSL Checker to prepare the axioms and
proof obligations for LP.

The proof of the simulation relation proceeds by induction. The basis step consists of showing
that the relation holds for the start state. The proof of the induction step takes the form of proof by
cases. The heart of the proof lies in providing a “witness” for an existential quantifier asserting the
existence of a simulating step sequence in the high-level automaton that preserves the simulation
relation and has the the same trace as a given step of the low-level automaton. The step sequence
already constructed for the paired simulator turns out to be exactly what is needed to provide this
witness.

Proofs of the invariants were routine proofs by induction. The proof of assertionl gave rise to
the need to prove two other simpler invariants:

invariant assertion3 of Dijkstralnt:
V i: Index (pc[i] =leavetry =>flag[i] =stage2)

invariant assertion4 of Dijkstralnt:
V i: Index (pcl[i]l =crit =-flagl[i] =stage2)

5.3 Automatic detection of invariants

Finding key invariants is an essential step in proofs of correctness. Any help from automatic tools
in finding these invariants would alleviate the burden on the user. For example, if a tool could
discover simple invariants such as assertion3 and assertion4, which LP can prove more or less
automatically, and if LP could use these to prove the invariants assertionl and assertion2 used
in the correctness proof, that proof would become much easier.

We have begun [WE02] developing this kind of automated proof assistance by connecting the
IOA simulator to Daikon [ECGNO1], a tool for dynamic invariant discovery. The user can instruct
the IOA simulator to record the values of state variables upon entry to and exit from each transition
in the course of a selected execution. Then Daikon can infer invariants about the pre-state and
post-state of each transition by examining these values.

In our preliminary experiments, Daikon was able to infer some potentially useful invariants.
For example, Daikon detected that flag[pl=stage2 in the pre-state of crit(p). The invariant
assertion3 in the previous is just the implication of this invariant by the precondition of the crit
action. We are continuing to work on the Daikon-IOA connection to detect other useful invariants
and to automate the formulation of invariants such as assertion3.

6 Overview of the implementation

A preliminary “IOA toolkit distribution” (software package including source and Java executables)
is available from the home page of the IOA project (http://theory.lcs.mit.edu/tds/ioa.html).

!The tool i0a21sl is still under development, and we had to edit its output to correct a number of small errors.

54

The front-end of the toolkit takes IOA descriptions and LSL specifications as input and outputs
an equivalent specification written in an intermediate language. Each back-end tool takes as input
the intermediate form of an TOA specification. There is common support for the back-end tools in
the form of an intermediate language parser and an internal representation of IOA elements, in the
form of a Java class hierarchy.

Data types are defined axiomatically in IOA so as to facilitate their translation into theorem
prover input languages. We provide definitions for built-in data types and allow the programmer to
define new data types using LSL. However, in order to simulate data type operations, the simulator
needs actual code for the specified operations. Each IOA sort is implemented by a Java class, and
each operator is implemented by a method on that class. The implementation classes extend the
ioa.runtime.ADT class, which provides two operators common to all IOA data types. The simulator
obtains implementations for sorts and operators by querying a global implementation registry.

The simulator shares runtime type libraries with the IOA code generator to ensure similar code
behavior and to reduce repeated code [Tsa02].

7 Discussion and conclusions

Formal correctness proofs for distributed systems can be long, hard, or tedious to construct. Sim-
ulation can be used as a way of testing system designs before delving into correctness proofs. It
either reveals bugs or increases confidence that a system behaves as expected. Simulation can also
assist users in constructing correctness proofs. It is this aspect of simulation that we focused on
throughout this paper.

We considered nondeterministic systems modeled using the I/O automata formalism and de-
scribed how these systems can be simulated with the support of the IOA language and the toolkit.
Our aim was to draw attention to a useful capability of the IOA simulator — paired simulation
— that allows users to check whether two automata at different levels of abstraction are related
by a simulation relation for the selected executions. In the I/O automaton model, the notion of
a simulation relation between two automata is a useful conceptual tool to prove the correctness
of systems. Hence, the ability to propose and check simulation relations with the IOA simulator
constitutes a valuable step towards a formal proof based on a simulation relation. The specification
of a relation is not the only thing that is required from a user by the paired simulator. A user is also
required to specify a step correspondence that will make the simulation relation hold throughout
paired simulation. This is particularly useful since finding the right step correspondence is usually
the key to the proof of a simulation relation. This indeed happened in our case study.

Another capability of the IOA simulator that helps the construction of proofs is invariant
checking. The invariants that are observed to be true for simulated executions constitute candidates
for useful lemmas. The invariants that we checked with the paired simulator in our case study were
later used as lemmas in the full proof.

The case study in this paper suggests a general methodology for the analysis and verification
of distributed systems with the IOA toolkit, using multiple levels of abstraction. The basic steps
are to:

1. Write the IOA code for the specification and the implementation automata;

2. For each automaton, resolve nondeterminism and perform simulation to test that the automa-
ton behaves as expected;

3. Formulate a candidate forward simulation relation from the implementation automaton to
the specification automaton, specify a step correspondence and perform paired simulation to

55

check whether the relation holds for the selected executions;

4. Formulate the potentially useful invariants for the proof of the simulation relation and check
whether they are true for the selected executions;

5. Use the tool i0a2lsl] to translate the IOA code for automata and the forward simulation relation
to LSL, and to generate proof obligations for LP; and

6. Prove with LP that the simulation relation holds for all possible executions, making use of
the step correspondence and the key invariants.

A current project aims at improving the connection between the program analysis tool Daikon
and the IOA simulator. We expect this connection to contribute to this methodology by automating
parts of the correctness proofs.

References

[Bog01]

[Che98]

[dAAG*00]

[Deal1]

[ECGNO1]

[GGI1]

[GLOS]

[GLOO]

[GSVO01]

[LT89]

Andrej Bogdanov. Formal verification of simulations between I/O automata. Master’s the-
sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 2001.

Anna E. Chefter. A simulator for the IOA language. Master’s thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
May 1998.

L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-
Kirsch, and B.Y. Wang. Mocha: FExploiting Modularity in Model Checking. University of
California at Berkeley Department of Electrical Engineering and Computer Sciences, Uni-
versity of Pennsylvania Department of Computer and Information Sciences, 2000. URL
http://www-cad.eecs.berkeley.edu/ mocha/refs.shtml.

Laura G. Dean. Improved simulation of Input/Output automata. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, September 2001.

Michael Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discover-
ing likely program invariants to support program evolution. IEEFE Transactions on Software
Engineering, 27(2):1-25, 2001.

Stephen Garland and John Guttag. A guide to LP, the Larch Prover. Technical report, DEC
Systems Reserach Center, 1991. Updated version avaliable at URL http://nms.lcs.mit.edu/
Larch/LP.

Stephen J. Garland and Nancy A. Lynch. The IOA language and toolset: Support for designing,
analyzing, and building distributed systems. Technical Report MIT/LCS/TR-762, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, August 1998.
URL http://theory.lcs.mit.edu/tds/papers/Lynch/I0A-TR-762.ps.

Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing distributed
systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based
Systems, chapter 13, pages 285-312. Cambridge University Press, USA, 2000.

Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Toward industrial strength abstract state
machines. Technical Report MSR-TR-2001-98, Microsoft Research, 2001. URL for software

http://www.research.microsoft.com/foundations/asml/

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3):219-246, September 1989. Centrum voor Wiskunde en Informatica, Amster-
dam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, November 1988.

56

[LY01]

[Lyn96]
[McM]

[RROO]

[Tsa02]

[WE02]

Leslie Lamport and Yuan Yu. TLC — The TLA+ Model Checker. Compaq Systems Research
Center, Palo Alto, California, 2001. URL http://research.microsoft.com/users/lamport/
tla/tlc.html.

Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
March 1996.

K. L McMillan. The SMV Language. Cadence Berkeley Labs, 2001 Addison Street, Berkeley,
CA 94 704, USA. URL http://www.cis.ksu.edu/santos/smv-doc/.

J. Antonio Ramirez-Robredo. Paired simulation of I/O automata. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, September 2000.

Michael Tsai. Code generation for the IOA language. Master’s thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA,
June 2002.

Toh Ne Win and Michael Ernst. Verifying distibuted algorithms via dynamic analysis and
theorem proving. Technical Report MIT-LCS-TR-841, MIT Laboratory for Computer Science,
May 2002.

A Proof Script

The following is the Larch proof script for the simulation relation presented in Section 4. The
set of axioms DijkstraInt2Mutex_Axioms is generated by the LSL checker by processing the LSL
specification of the simulation relation. The tactics that are referred to in the proof are given in
Section A.2.

A.1 Main simulation proof

execute DijkstraInt2Mutex_Axioms

declare variables u’: States[DijkstraInt], act: Actions[DijkstraInt], pi: ActionSeq[Mutex]

set name theorem
prove start(u:States[DijkstraInt]) => \E s:States[Mutex] (start(s:States[Mutex]) /\ F(u, s))
resume by specializing s:States[Mutex] to [constant(rem)]
execute tactic_implies

qed

prove

isStep(u:States[DijkstraInt], act, u’) /\ F(u, s)
/\ assertioni(u) /\ assertion2(u) /\ assertion3(u) /\ assertion4(u)
=> \E pi:ActionSeq[Mutex] (execFrag(s, pi) /\ trace(pi:ActionSeq[Mutex]) = trace(act)

/\ first(s, pi) = s /\ F(u’, last(s, pi)))

resume by induction on act
% try action
resume by =>
resume by specializing pi to try(ilc) * {}

execute tactic_and4cases

% crit action
resume by =>
resume by specializing pi to crit(ilc) * {}

resume by /\

57

critical-pairs *Hyp with *Hyp
execute tactic_4cases
resume by =>
resume by contradiction
critical-pairs *Hyp with *Hyp
% exit action
resume by =>
resume by specializing pi to exit(ilc) * {}
execute tactic_and4cases
% rem action
resume by =>
resume by specializing pi to rem(ilc) * {}
resume by /\
critical-pairs *Hyp with *Hyp
execute tactic_4cases
% setflagl action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
execute tactic_and4cases
% setflag2 action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
execute tactic_and4cases
% check action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
resume by /\
execute tactic_stage2_i2c
execute tactic_stage2_i2c
execute tactic_stage2_i2c
execute tactic_stage2_i2c
% reset action
resume by =>
resume by specializing pi to {}
critical-pairs *Hyp with *Hyp
exe tactic_and4cases
qed
quit

A.2 Tactics

% tactic_implies
resume by =>

% tactic_case
res by case ilc =i

% tactic_4cases

execute tactic_case
execute tactic_case
execute tactic_case
execute tactic_case

% tactic_and4cases
resume by /\

58

execute tactic_4cases

% tactic_stage2_i2c.lp
resume by case uc.flagl[i2c] = stage2
execute tactic_case
resume by case \A i:Index (i = i2c¢ \/ i \in uc.S[ilc])
execute tactic_case

59

The Parallel PV Model-Checker

Robert Palmer and Ganesh Gopalakrishnan*
{rpalmer,ganesh} @cs.utah.edu,
http://www.cs.utah.edu/formal_verification/

University of Utah, School of Computing

Abstract. Parallel PV is based on the sequential PV model-checker. Sequential
PV is an depth-first LTL-X model-checker for an enhanced subset of the Promela
language. Parallel PV is a breadth-first safety-only model-checker. It capitalizes
on PV’s two-phase partial-order reduction algorithm by carrying out partial order
reduction steps with no communication, and performs state space distribution at
global steps. This helps reduce the number of messages exchanged. Also, based
on state ownership information, parallel PV reduces the number of states that
are cached. This reduction is in addition to the selective state caching supported
by sequential PV. We report encouraging preliminary experimental results drawn
from the domain of ‘hardware’ protocols, as well as software models generated
by the Bandera tool. Implementation details of parallel PV and setup information
are also provided.

1 Introduction

Parallel processing can help speed-up model-checking by providing many CPUs that
can work on the problem, higher aggregate memory capacity, as well as higher mem-
ory bandwidth. While the problem remains exponential, the overall performance of the
model-checking algorithm can increase by significant factors. In this paper, we focus
on enumerative model-checkers which are widely used to verify many classes of mod-
els, such as high-level cache coherence protocols and Java software models, in which
models containing thousands of variables and involving global dependencies — such as
processor IDs passed around in messages — are to be verified. Such models have never
been shown to be capable of being efficiently represented or manipulated using BDDs.
There are many previous attempts to parallelize enumerative model-checkers such as
SPIN [16] and Muryp [10]; see section 2.3 for a brief survey.

Among the scores of methods used to reduce state-explosion, a prominent method —
partial order reduction — exploits the fact that whenever a set of independent transitions
{t1,...,tn} arise during exploration, they need not be explored in more than one lin-
ear order. Given the widely recognized importance of partial order reduction, efficient
methods to realize it in a parallel context must be explored. This topic has, hitherto, not
been studied extensively. We first motivate why partial order reduction and parallelism

* Supported by NSF Grants CCR-9987516 and CCR-0081406, and a gift from the Intel Corpo-
ration. The authors wish to thank Ratan Nalumasu who wrote the first version of PV, Heman-
thkumar Sivaraj for his help with MPI, and Omid Saadati for developing the PV to Bandera
link.

are two concepts that are closely related. We then briefly recap our partial order reduc-
tion algorithm “Twophase” implemented in our SPIN-like model-checker “PV,” (see
[22,28] for a full discussion). In this paper, we show that Twophase extends naturally
to a parallel context — more readily than algorithms that use in-stack checking — and
also leads to a very natural task-partitioning method. We show preliminary experimen-
tal results and describe the Parallel PV tool, interface, and operating environment.

2 Background

2.1 Partial order reduction and parallel processing

The earliest identifiable connection between parallel processing and the central idea be-
hind partial order reduction (long before that term was coined) appears in Lipton’s work
of 1975 on optimizing P/V programs [21] for the purpose of efficient reasoning. In that
work, Lipton identifies left and right movers — actions that can be postponed without
affecting the correctness of reasoning. Additionally, in the parallel compilation litera-
ture (e.g., [25] for an example), it has been observed that by identifying computations
that “commute,” one can schedule these computations for parallel evaluation without
interference.

If a partial order reduction algorithm involves a sequentializing step, it can signif-
icantly reduce available parallelism. Such a sequentializing step is present in current
partial order reduction algorithms such as the one used in SPIN [6, 17]. This is the'in-
stack check used as a sufficient condition to eliminate the ignoring problem (a problem
where some process P; may have a transition ¢ enabled everywhere in a cyclic execu-
tion path but ¢ is never executed along the path, thus causing missed, “ignored,” states —
requirement C3 of [6, Page 150]) Using the ‘in-stack’ check, if the next state generated
by moving a process P; on transition ¢ result in a state in the global DFS stack, an ample
set (a commuting set of actions) cannot be formed out of the enabled transitions of P;.
The in-stack check is involved in every step of SPIN’s partial order reduction algorithm.
In a parallel setting, this could translate into considerable communication to locate the
processes over which the stack is spread, perform the in-stack check, and resume the
search. For this reason, in past work, a “worst case” assumption is used to gain some
limited reductions. The assumption is that any successor state held outside the node is
assumed to be currently in the search stack. This insures that the ignoring problem is
dealt with, but may cause significant loss in reduction [18].

2.2 The Twophase Algorithm

We created Twophase after realizing that SPIN’s algorithm for partial order reduction
can, due to the in-stack check based proviso, miss out on reduction opportunities. There
are also added complications when realizing nested DFS based LTL-x checking [8], as
explained in [15] — essentially requiring a ‘proviso-bit’ to convey information from the
outer DFS to the inner DFS. The algorithm of Figure 1 can be suitably modified for

! “The” in-stack check is a misnomer - this check is done differently for safety-preserving and
liveness-preserving reductions. To simplify things, we ignore such variations.

61

Twophase ()
Vr, := ¢; /* Hash table */
Phase—2 (initial_state) ;
end Twophase

Phase—1 (in) Phase—2(s)
local old-s, s, list; local list;
s := in; /* Phase 1 */
list := {s}; (list,s) := Phase—1(s);
for each process P; do /* Phase 2: Classic DFS */
while (SAS 1 (P;,s)?) if s¢V, then
old-s := s; Ve :=V, + all states in list + {s};
s := t(old-s); for each enabled
if s ¢ list transition t do
list := 1list + {s}; if t(s) € V. then
else Phase—2(t(s));
break out of end if;
while loop end for each;
end if else
end while; Ve := V., + all states in 1list;
end for each; end if;
return(list,s); end Phase—2

end Phase—1

Fig. 1. The Sequential Twophase Algorithm

nested DFS based LTL-x model-checking and no proviso bit is required to convey in-
formation between outer and inner depth first searches. Full treatment of the sequential
version of the algorithm is presented in [22].

The sequential algorithm alternates between a classical depth first search Phase-2,
and a reduction step Phase-1. Phase-1 works as follows. Each process is considered in
turn. For a given system state s an ample set is formed for process P;. If the size of
this set is one then the transition is executed resulting in a new state. This is repeated
until no singleton ample set can be formed for that process. In Phase-2 ample(s) =
enabled(s). In this phase of the algorithm one process having ¢t € enabled(P;,s) is
allowed to execute ¢ i.e., all enabled moves of all processes are included in ample(s) —
no reduction is made in Phase-2. This is similar to a global state expansion in SPIN’s
algorithm.

To deal with ignoring, references to states generated in Phase-1 are placed in a local
list. We then check this list for a successor state that is a re-visitation. Note, we have
changed C3 with respect to [6]. We accomplish C3 not by the C3’ condition (the in-stack
check) but rather by checking against a local list, shown in Figure 1.

2 We define SAS_; to be a set of transitions that form an ample set such that check_C1 A
check_C2 A |enabled(P;, s)| = 1 is true as described in [6, Pages 158-159] with condi-
tion check_C'3 satisfied separately by checking against the local list. (A Singleton Ample Set
(SAS) with no check for ignoring (-I).)

62

2.3 Related Work

Work in parallel and distributed model-checking can be divided into the categories of
explicit state representation based and symbolic state representation based. Only the
explicit state survey is included in this paper. The remainder of this section can be
found in [24].

Explicit State Model-Checking

Safety: Most work on distributed model-checking focus on safety model-checking. In
[27], Stern and Dill report their study of parallelizing the Mury Verifier [10]. It orig-
inally ran on the Berkeley Network of Workstations (NOW) [1] using the Berkeley
Active Messages library. It was subsequently ported to run on the IBM SP2 processor.
Murp is a safety-only explicit state enumeration model-checker. In its parallel incarna-
tion, whenever a state on the breadth-first search queue is expanded, a uniform hashing
function is applied to each successor s to determine its “owner” — the node that records
the fact that s has been visited, and pursues the expansion of s.

We [26] have recently ported parallel Mury from Active Messages to the popular
MPI [23] library. Despite our relative inattention to performance for reasons of expedi-
ency, our speed-up figures for runs on the Testbed are very encouraging [5]. The largest
model we ran far exceeds the sizes run by Stern and Dill.

In [19], a distributed implementation of the SPIN [14] model-checker, restricted to
perform safety model-checking, and similar to [27], is described. Their first innovation
is in state distribution. They exploit the structure of SPIN’s state representation and
reduce (heuristically) the number of times a state is sent to other nodes. In addition,
they employ look-ahead computation to avoid cases where a state is sent elsewhere, but
very soon generates a successor that comes back to the original node. Their algorithm
is also compatible with partial order reduction, although the reported results to date do
not include the effects of this optimization. Their examples are standard ones such as
‘Bakery’ and ‘Philosophers’ running on up to four nodes on 300MHz machines with
64M memory. In [3], the algorithm of [27] is adapted to Uppal, a timed automaton
model-checker, and applied to many realistic industrial-scale protocols, running on 24,
333MHz Sun Enterprise machines. Several scheduling policies are studied along with
speed-up results.

In [11], parallel state space construction for labeled transition systems (LTSs) ob-
tained from languages such as LOTOS is described. They use a cluster of 450MHz
machines of up to 10 processors, each with 0.5GB of memory. They use the widely
supported Socket library. They obtain speedups on most examples (industrial bus
protocols) and perform analysis of the effects of communication buffers on overall per-
formance.

In [20], issues relating to software model-checking and state representation are dis-
cussed. A large number of load distribution policies are discussed, and preliminary ex-
perimental results are reported. Many of these ideas are adaptations of techniques from
their original work [19] to work well in the context of a software model such as Java.

63

LTL-x: Several works go beyond state space reachability and attempt the distributed
model-checking of more expressive logics. In [2], the authors build on [19] and create a
distributed LTL-x model-checker. The main drawback of their work is that the standard
[8, 6] nested depth-first search algorithm employed to detect accepting (violating) Biichi
automaton cycles tends to run sequentially in a distributed context, as the postorder
enumeration of the “seed” states is still essential. They ameliorate the situation slightly
by employing a data-structure called DepS that records how states were transported
from processor to processor, and gathering the postorder numbering of the seed states
in a distributed manner. However, the seed states still end up in a central queue, and
are processed sequentially. A small degree of pipelining parallelism appears possible
between the inner depth-first search on the “left half” of the search tree and the outer
depth-first search on the “right half” of the search tree. Their paper reports feasibility
(without actual examples) on a nine 366 MHz Pentium cluster.

In [4], Biichi acceptance is reduced to detecting negative cycles (those that have a
negative sum of edge weights) in a weighted directed graph. This reduction is achieved
by attaching an edge-weight of ‘-1’ to all outgoing edges out of an accepting state, and
a weight of ‘0’ to all other edges.

3 The Parallel PV Tool

3.1 The Parallel Twophase Algorithm

The parallel Twophase algorithm shown in Figure 2 works as follows. Basically, Phase-
2 generates all successor states for a non-commuting state. Phase-1 is then applied to
each of these successors. Only states generated for process P; since the last Phase-2
state are inserted into the list. Each thread maintains it’s own list. This is not possible in
a parallel SPIN implementation because all these threads would still check with respect
to the global DFS stack as in [18]. A uniform hashing function is applied to the resultant
non-commuting state of Phase-1 and these states are then distributed by placing a state
into the search queue of that state’s owner.

Phase-1 is the same as in the sequential version. Each node knows which transitions
commute so given any state, the next global state can be created by any node.

3.2 Implementation

The Parallel PV tool is based on the sequential DFS based PV model-checker [22]. PV
and parallel PV are written entirely in C. Parallel PV replaces the DFS based algorithm
shown in Figure 1, used in the sequential version, with the distributed BFS based algo-
rithm shown in Figure 2. It can be executed without partial order reduction to perform
exhaustive breadth first search.

By ensuring Singleton Ample Set*global successor states it becomes un-necessary
to save all of the states along the Phase-1 path. Heuristics can be applied to reduce the
number of state lookup and insertion operations along the Phase-1 path. We refer to
these heuristics as Selective State Caching.

? As in the sequential version discussed in section 2.2

64

Phase—1 (in)

local old-s, s, list;

Phase—2 (s)

V., := ¢; /* Hash table */

s := in; local list;
list := {s}; local queue;
for each process P do local s, s’;
while (SAS_7(P;,s)) 1 = owner(s);
old-s := s; enqueue [i] (8) ;
s := t(old-s); /* Phase 2: Classic BFS */
if s ¢ list while search not complete
list := 1list + {s}; s = dequeue () ;
else if s¢V, then
break out of for each enabled
while loop transition t do
end if if t(s) € V. then
end while; (list, s’) = Phase—1(t(s));
end for each; Ve, =V, + all states in list;

return(list, s); i =

end Phase—1

owner (s’);
enqueue [i] (s”) ;
end if;
end for each;
end if;
end while;
end Phase—2

Fig. 2. The Parallel Twophase Algorithm

In many cases, Phase-1 executes transitions that will cross the boundary of the state
partition. Thus at least one, and as many as all of the states entered into the list are not
owned by the node performing the computation. Those states not belonging to the com-
puting node can, at the end of Phase-1, be deleted while preserving safety properties.
These states are not sent to their owning nodes, they are simply dropped. This technique
can be used with all of the selective state caching variants described in [12].

The list used to avoid ignoring, shown in Figures 1 and 2, and the Drop States
optimization are both implemented as arrays of pointers into the hash table. A state is
marked and placed in one of these lists when that state is created in Phase-1. If that state
is revisited, a simple state look-up is necessary. At the end of Phase-1, those states that
have been placed in the list are then set to normal hash table entries. Those in the Drop
States array are removed from the hash table.

Figure 2 does not indicate termination conditions. The search is terminated in one
of two instances. It is possible that the entire reduced graph has been generated. In this
case we detect this condition using the Dijkstra-Scholten algorithm for stable condi-
tion detection in a diffused computation[9]. A description of our implementation of the
Dijkstra-Scholten algorithm can be found in [24].

The other condition for termination is the detection of a safety violation. The node
that finds the violation broadcasts a message to other nodes requesting them to wait in
assistance of reconstruction of the error trail. When a state s’ is entered into the hash
table, a memory reference to the hash table location containing the global predecessor

65

Number of Without [Save Save Save Save
Network Nodes|PO Redn |All Back Edge|All Back Edge

Save States Drop States
6 Processes in the Leader Election Model
221239| 47086 33166| 47086 33166
221239| 55694 38482 24696 18578
221239 66279 42315| 17030 14195
221239| 73967 44373 14305 12713
7 Processes in the Leader Election Model
1719197| 243704 169637| 243704 169637
1719197| 283219 195636 155063 117732
1719197| 335102 214940| 98328 79164
1719197| 383172 228279 73012 63280
8 Processes in the Leader Election Model
1 nc (1243666 857554|1243666 857554
2 nc|1426706 984844 | 789550 576799
4(13365379|1694581| 1085897| 483187 381980
8|13365379|1917546] 1166676| 310552 266735

0| || —

oo o] —

Pipelnt Model
1 nc nc 349708 nc 349708
2 nc nc 377620 nc 260848
4 nc nc 395016|1583563 184624
8 nc|3721420(407238| 679869 160936

Fig. 3. Number of states generated.

s of the new state s’ is also entered, along with a small constant amount of information
about the state s, including the rank of the node that generated s. To construct the
error trail, the hash table is traversed from the error state to the initial state, writing the
information necessary to reconstruct an error trail to a file. If it is necessary to traverse
multiple partitions of the state space the error trail that is contained locally is generated,
packed and transmitted to the next node in the trail. This continues until the initial state
is reached. We assume a shared file system for the error trail output file. An error trail
can then be simulated in a sequential setting.

3.3 Experimental Results

Three of the models used as examples here are simple variants of the Leader Election
Protocol as presented in [6, Pages 167-168]. This model does not include the never
claim as we are considering safety properties only. The variation on this model is the
number of processes that are participating in the protocol. We model-check for six,
seven, and eight processes using the same model. The other model reported is gen-
erated by the Bandera tool. It is included in the Bandera tutorial distribution and can
be recreated using their tutorial and is included in the examples directory of our tool
distribution. We report the number of states generated, memory usage, message count,

66

Number of Without [Save[Save Save[Save
Network Nodes|PO Redn|All (Back Edge|All |Back Edge
Save States Drop States

6 Processes in the Leader Election Model
1 45| 22 20| 22 20
2 70| 40 38| 37 37
4 120| 76 74| 72 71
8 219| 148 145| 142 142

7 Processes in the Leader Election Model
1 2131 42 35| 42 35
2 226| 64 55| 51 47
4 276/ 10 921 80 78
8 377 181 165| 149 148

8 Processes in the Leader Election Model
1 nc| 166 122 166 122
2 nc| 212 162| 140 116
4 1590 294 225| 157 146
8 1700{ 422 337| 240 235

Pipelnt Model

1 nc| nc 168| nc 168
2 nc| nc 205| nc 157
4 nc| nc 261| 749 175
8 nc|1730 366| 478 265

Fig. 4. Total memory used in MB.

and total runtime for each model. Figures 3, 4, 5, and 6 present the statistics for the
respective reports.

A description of the figures is as follows. The number of network nodes column
indicates how many physical machines are used in each model-checking computation.
Without PO Redn indicates the statistics of a full breadth first graph search. Save All in-
dicates a search that uses partial order reduction, but no selective state caching heuristic.
Save Back Edge indicates a search that uses both partial order reduction and a selective
state caching heuristic. Save States indicates that all states generated during Phase-1 are
placed permanently into the hash table of the computing node, regardless of ownership.
Drop States indicates that those states generated during Phase-1 which do not belong to
the computing node are deleted at the end of Phase-1.

Figure entries showing “nc” indicate the computation was Not Complete. In each
of these cases there was not enough memory to successfully generate the entire state
graph. (We have not resorted to any hash-compaction techniques yet.) Otherwise the
states and messages are integer values. The memory used is reported in megabytes.
Time is reported in seconds.

Our tool release includes these examples and a script that will recreate our results.
All verifications were performed using one Unix process per network node. The ex-
periments were performed on a computational cluster of eight workstations. Each has a
stock Red Hat Linux 7.1 operating system, 512MB memory and one 850MHz Intel Pen-

67

Number of Without [Save [Save Save [Save
Network Nodes|PO Redn |All Back Edge|All Back Edge
Save States Drop States
6 Processes in the Leader Election Model
2| 538400| 15829 18087| 20208 20208
4| 851143| 25212 27162 28737 28737
8| 945534| 30600 31934| 33040 33040
7 Processes in the Leader Election Model
2| 4281970| 80016 91325(104421 104421
4| 7446183|129721 140332(149947 149947
8| 8452930(167161 174620(181173 181173
8 Processes in the Leader Election Model
2 nc|396464| 447182|519832 519832
4/65752911|684746 748652(809919 809919
8|77583833|830234 877647912861 912861
Pipelnt Model
2 nc nc 144377 nc 145118
4 nc nc 220052449860 232929
8 nc|243402 242062344934 242743

Fig. 5. Number of messages passed.

tium IIT CPU. Each Unix process was limited to 450MB of memory. The MPICH[13]
implementation of the MPI standard is used for message passing between network
nodes. Nodes are connected on a dedicated 100Mbps hub.

3.4 Interface

A TCL/TK graphical user interface is included in the Parallel PV distribution. This
makes available sequential DFS, sequential BFS, and parallel BFS based searches.
Models can be edited and error trails can also be simulated using the graphical user
interface. Parallel PV can also be used from the command line. All output is routed via
MPI to the master node. Please see [28] for command line interaction with Parallel PV.

The Pipelnt model was generated using the Bandera[7] tool set. The subset of the
Promela language supported by PV and Parallel PV is sufficiently expressive to model-
check these models. Additionally, the Bandera user interface has been enhanced to ac-
cess both the sequential and parallel versions of PV. Thus an error that is found using
PV or Parallel PV on a Bandera generated model can be simulated within the Bandera
framework.

4 Conclusions

We have presented a distributed partial order reduction based safety verification algo-
rithm that is a variant of the sequential Twophase [22] algorithm.

68

Number of Without [Save Save Save Save
Network Nodes|PO Redn [All Back Edge|All Back Edge

Save States Drop States
Processes in the Leader Election Model
1| 54.786| 4.006 2.958| 4.342 3.256
2| 46.061| 3.783 2.671| 3.535 2.966
4 31.158| 3.422 2.847| 3.258 2.913
8| 20.270| 4.871 4.170| 4.456 4.226
Processes in the Leader Election Model

1| 569.140| 21.105 16.005| 24.998 17.947
2| 432.657| 14.080 12.134| 17.323 13.744
4
8
P
1
2
4
8

282.142| 9.548 8.529| 11.102 9.300
162.547| 8.007 7.730| 8.774 8.021
rocesses in the Leader Election Model

nc|123.522 92.921|149.020| 105.825

nc| 77.744 64.995| 97.039 75.528
2712.108| 47.009 40.765| 56.346 45.585
1522.699| 29.693 25.716| 33.266 27.820

Pipelnt Model
nc nc| 125.934 nc| 142.131
nc nc 71.203 nc 79.407

nc nc 40.135|350.378 44.018
nc| 72.904 24.268(126.410 25.753

oo || —

Fig. 6. Total run time for each model.

The parallel Twophase algorithm has several advantages. It avoids the in-stack
check allowing distributed partial order reduction. The algorithm can be used with BFS
or DFS. It allows natural task partitioning and also reduces communication. It supports
selective state caching in conjunction with a “Drop States” optimization.

The parallel Twophase algorithm is implemented in the parallel PV tool which sup-
ports selective state caching. The parallel PV tool can be used from the command line,
with the included graphical user interface, or with the Bandera tool.

We have shown some preliminary experimental results using two models that gen-
erate large state spaces. The results are encouraging for their relative short run-times
and efficient use of memory.

Our future work will include application-level check-pointing to be able to suspend
and/or rerun crashed parallel model-checks, load balancing, hash compaction, and pos-
sibly symmetry reduction. PV and Parallel PV are available from our website [28].

References

1. Thomas E. Anderson, David E. Culler, and David A. Patterson. A case for networks of
workstations: Now. IEEE Micro, February 1995.

2. Jiri Barnat, Lubos Brim, and Jitka Stribrna. Distributed 1tl model-checking in spin. In
Proceedings of the 7th International SPIN Workshop, pages 200-216, 2001. LNCS 2057.

69

10.

11.

12.

13.

14.

15.

16.
17.

18.

20.

21.

22.

G. Behrmann, T.S. Hune, and F.W. Vaandrager. Distributed timed model checking - how the
search order matters. In Computer Aided Verification (CAV), pages 216-231, 2000. LNCS
1855.

Lubos Brim, Ivana Cerna, Pavel Krcal, and Radek Pelanek. Distributed 1tl model check-
ing based on negative cycle detection. In Proceedings of the FSTTCS Conference, 2001.
Bangalore, India, December 2001. To appear.

Prosenjit Chatterjee, Hemanthkumar Sivaraj, and Ganesh Gopalakrishnan. Shared mem-
ory consistency protocol verification against weak memory models: refinement via model-
checking. To appear in CAV’02.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
2000.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. Pasareanu,
Robby, and Hongjun Zheng. Bandera: extracting finite-state models from java source code.
In International Conference on Software Engineering, pages 439-448, 2000.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms for
the verification of temporal properties. pages 233-242, June 1990.

E. Dijkstra and C.S. Scholten. Termination detection for diffusing computations. Information
Processing Letters, 11(1):1-4, August 1980.

David Dill. The murep verification system. In Computer Aided Verification (CAV), pages
390-3, 1996.

Hubert Garavel, Radu Mateescu, and Irina Smarandache. Parallel state space construction for
model-checking. In Proceedings of the 7th International SPIN Workshop, pages 217-234,
2001. LNCS 2057.

Ganesh Gopalakrishnan, Ratan Nalumasu, Robert Palmer, Prosenjit Chaterjee, and Ben
Prather. Performance studies of pv: an on-the-fly model-checker for 1tl-x featuring selective
state caching and partial order reduction. Technical Report UUCS-01-004, The University
of Utah, School of Computing, January 2001.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implemen-
tation of the MPI message passing interface standard. Parallel Computing, 22(6):789-828,
September 1996.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279-295, May 1997. Special issue on Formal Methods in Software Practice.

G. J. Holzmann and Doron Peled. An improvement in formal verification. In Proc. Formal
Description Techniques, FORTE94, pages 197-211, Berne, Switzerland, 1994. Chapman &
Hall.

Gerard Holzmann. Design and Validation of Computer Protocals. Prentice Hall, 1991.

G.J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strategies for
reachability analysis. In Proc. 12th Int. Conf on Protocol Specification, Testing, and Verifi-
cation, INWG/IFIP, Orlando, Fl., June 1992.

Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with SPIN. In Proc.
of the 5th International SPIN Workshop, volume 1680 of LNCS. Springer-Verlag, 1999.
Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with spin. In Pro-
ceedings of the 5th International SPIN Workshop, pages 22-39, 1999.

Flavio Lerda and Willem Visser. Addressing dynamic issues of program model checking. In
Proceedings of the 7th International SPIN Workshop, pages 80-102, 2001. LNCS 2057.
Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Com-
munications of the ACM, 18(12), December 1975.

Ratan Nalumasu and Ganesh Gopalakrishnan. An efficent partial order reduction algorithm
with an alternative proviso implementation. Formal Methods in System Design, 20(3):231—
247, May 2002.

70

23.

24.

25.

26.

27.

28.

Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996. ISBN 1-55860-
339-5.

Robert Palmer and Ganesh Gopalakrishnan. Partial order reduction assisted parallel model-
checking (full version). Technical report, University of Utah, August 2002.

Martin Rinard and Pedro Diniz. Commutativity analysis: A new analysis technique for paral-
lelizing compilers. ACM Transactions on Programming Languages and Systems, 19(6):1-47,
November 1997.

Hemanthkumar Sivaraj. MPI port conducted in October 2001. Personal Communication.
Ulrich Stern and David Dill. Parallelizing the Mury verifier. Formal Methods in System
Design, 18(2):117-129, 2001. (Journal version of their CAV 1997 paper).

The Utah Verifier group website. http://www.cs.utah.edu/formal_verification.

71

New Petri Net Programming Features in PEP*

Cécile Bui Thanh! and Christian Stehno?

! Université Paris 12, LACL, 61 avenue du général de Gaulle, F-94010 Créteil,
France. bui@univ-parisi2.fr
2 Department of Computing Science, Carl von Ossietzky Universitit,
D-26111 Oldenburg, Germany.

stehno@informatik.uni-oldenburg.de

Abstract. We present two new facilities of the high level Petri net editor
of the PEP tool. The latest version widens the class of supported Petri
nets by a time extension of M-nets. Additionally it features a new opera-
tor for asynchronous communication complementing the synchronization
operator. We present an example of an AR(Q protocol with enhanced
acknowledgement handling.

1 Introduction

The PEP tool [5,10] provides a development environment for a number of dif-
ferent parallel programming and specification languages. Additionally, the high
and low level Petri net levels offer another, quite unique, programming inter-
face. Especially the high level nets facilitate design of data handling algorithms
and complex programs through their extended token types and powerful set of
operators.

The latest extensions of the net editors add major new features with the
introduction of a new basic operator tie and a new class of nets, namely the
Time Petri net extension of M-nets.

This paper presents the enhancements of the specification and programming
process gained by these extensions. The example chosen for this purpose is a
simple ARQ (automatic repeat request) protocol with possibly deferred acknowl-
edgements.

The next two sections will introduce the formalisms used for the example,
i.e. (Time) M-nets and the tie operator. In Sect. 4 the example is presented, and
in Sect. 5 we give a conclusion and highlight some future work.

2 Me-nets and Time M-nets

We will only give a short introduction to M-nets and their time extension. More
details can be found in the cited papers and related articles.

* This work has been done during a two month visit of one of the authors to Oldenburg,
and has been partially supported by the Procope project PORTA (Partial Order Real
Time Semantics)

The coloured Petri nets algebra of M-nets (multi labelled nets [2]) has been
developed as a flexible semantic model for concurrent programming languages.
The annotations of net elements and a set of operations provide a framework
for the compositional creation of complex nets. Operations include sequential,
parallel and alternative composition, iteration and synchronous communication.
Unfolding into plain P/T nets provides ways for formal verification of designed
systems by means of well-known algorithms for ordinary Petri nets, e.g. with the
PEP tool.

Time M-nets (TM-nets) are a cautious, but still substantial extension of M-
nets towards real-time systems. The time extension was originally defined in [4]
for a real-time version of the specification language SDL. TM-nets had been
supported so far only in the MOBY tool [1] without a possibility to validate
the nets. The newly implemented TM-net features of the PEP tool, together
with the already presented analysis tools for timed systems [13, 3] increase the
importance of TM-nets.

The time extension is done analogously to the Time PBC extension in [8].
Transitions get an additional inscription of an interval in the natural numbers.
This interval restricts the ability of the transition to fire (cf. [9]), i.e. the lower
(upper) bound defines the earliest (latest) firing time of each transition.

To preserve the properties of M-nets with respect to unfolding into low level
nets for TM-nets, firing times are not unique to a transition, but each firing mode
(i-e. each binding, which enables the transition) counts time steps on its own,
after that mode is enabled. As such, each transition may have a large number of
clocks showing different times.

The current implementation in PEP covers just an elementary version of
TM-nets. We restrict the interval bounds to natural numbers (plus infinity for
the upper bound). This is in contrast to the original definition where arbitrary
expressions are allowed, which still have to evaluate to natural numbers according
to the chosen binding, though. As such, the restriction is not just syntactic, but
the expressiveness of the simple class is still large enough for many real world
systems.

3 Tie operator

The tie operator was introduced to M-net algebra to allow asynchronous com-
munications [7] in a compositional way. This extension allows to give a complete
semantics of the Basic Petri Net Programming Notation (B(PN)?) [6] in terms
of M-nets, and a simpler semantics for FIFO buffers [11,12].

To use asynchronous communications with M-nets, they are extended by
new transition labels called link labels. These labels indicate that a transition
can export and/or import information from an asynchronous channel.

We consider a set B of tie symbols such that each b € B has a type type(b).
An asynchronous link b%(@), where b € B, d € {+,—} and & € type(b), represents
an asynchronous communication action on (the channel represented by) b. The
direction of the communication (export or import) is given by d, and a is a set

73

of M-net value terms, representing possible information communicated on b. A
link label L is a multi-set of asynchronous links.

An example drawn with the high-level net editor of the PEP tool is given in
Fig. 1. On the left hand, we show a net N with asynchronous annotations. The
label {b+(x) } on transition T1 means that this transition can export x € type(b)
on a channel b, and {b-(1),b+(1)} on T2 means that T2 expects to import a
token labelled ”1” and to export it again via b. The result of IV tie b is given on the
right hand of the figure: The asynchronous links of N containing b were made
effective by the operation, i.e. the transitions containing these asynchronous
links now export and/or import the described informations when they are fired,
according to the directions given by the previous notation. Every exchanged
information goes through the created buffer place of b (named P6) with type(b)
as type. Note that applying tie b deletes the link labels concerning b (not the
other links) from every transition.

@ 12 some action 1
b1b1 EZ:I

X 1
an action
e oF
b1d2 E3:|
dot
N ‘ 1 N tie b ‘ 1

Fig. 1. An example of using tie with the high-level editor. On the left hand a high-level
net N containing link labels, on the right hand N after applying tie b

In the high-level editor, declarations (respectively, deletions, modifications)
of asynchronous link names and their corresponding types are made through the
window of the tie operator (cf. Fig. 2). The syntax for link types is the same
as for place types. Link labels on transitions are added the same way as action
multisets. After applying the operator once to some link b, this one is taken
into account as a brand new link and may be reused afterwards to add new
annotations on link labels and to apply tieb again. A new buffer place will be
created for b each time the operation is called.

The tie operator was also defined for PBC (see [7] for details). This is not
completely implemented yet, but after applying tie to each link, a net does not

74

| Link declarations

|fd 11,23
b 11.23
Name Type
Add Change Delets
Tie Close ;

Fig. 2. The window of the tie operator

contain asynchronous notations anymore, so there is a way to unfold and analyse
it right away.

4 Example of an ARQ protocol

As an example for the presentation of the newly introduced features we chose a
modelisation of an ARQ protocol. There is a sender and a receiver side, where
the sender communicates data packets to the receiver, who may answer with
positive or negative acknowledgements. Both parts can be found in Fig. 3, with
the sender at the top and the receiver at the bottom.

Communication is done in both directions via a buffered channel with some
delay, i.e. asynchronous. Moreover the acknowledgements may be deferred, such
that not every packet will be acknowledged, but a positive acknowledgement
includes all waiting ack’s in between. There is no buffering of correctly received
data, so negative acknowledgements also clear everything backwards up to the
negatively acknowledged packet.

If the sender receives a negative acknowledgement, it sets the next packet
pointer to the received number, such that the next packet send will be the
requested one. Positively acknowledged packets just increase the counter, with
some sanity check done at reception (only shown in Fig. 4 for channel control
due to space and readability). Sending data just incorporates the packet number,
i.e. data content is abstracted away.

At the receiver side, things are even easier. The received packets are stored
in the respective counter place, which serves as a source for generating (positive
or negative) acknowledgements. To model the removal of destroyed packets by
some negative acknowledge, the received packet counter is reset accordingly.
Thus, these packets will not be used by the send ack transition, preventing false
acknowledgements.

The two channels (C1 from receiver to sender and C2 vice versa) are simpli-
fied versions of the FIFO buffers presented in [11,12]. Unused parts have been

75

send data recv nak
c2!(x)

[1:3]

ack chan out data chan in

AC12(a,b) AC2i(a)
l:’ nr=(n),nr+(m),d—(a,b,n,1),d+(0,0,n,0) nsbf(n).nsb+(m)‘db—(O‘n,O),db+(a,n.1)
[0;inf] [0;inf]

ack chan in data chan out

AC1i(a,b) C2%(a)
l:’ ns—(n),ns+(m),d-(0,0,n,0),d+(a,b,n,1) D nrb-(n),nrb+(m),db—(a,n, 1),db+(0,n,0)
[0:inf] [0;inf]

send ack

last recv packet

last send ack

Fig. 3. ARQ model before synchronisation and tie

deleted, the data handling is simplified and the channel use has been extended
with timing restrictions. Figure 3 just shows four transitions, which create two
separate ring buffers with FIFO semantics and compatible interface after appli-
cation of the tie operation, one of them is shown in Fig. 4.

The time intervals are attached to each channel operation, specifying some
minimal and maximal delay needed for these actions. The channel transitions
themself do not contribute to the delay due to their interval of [0, co]. The delays
have been chosen arbitrarily for this example, resulting in a delay for sending a
packet between two and 8 time units, a complete round-trip with packet sending
and acknowledgement takes up to 17 time units in the case of no data loss in
between. The worst case scenario will take infinitely many time units, as we do
not take into account fairness.

5 Conclusion and future works

In this paper we have presented the latest features of the PEP tool. These allow
verification of Time M-nets and add facilities for modelisation of asynchronous
links in a compositional way. Moreover, the enhancements contribute to read-
ability and handiness of the editor. M-nets provide a very powerful specification
formalism. The ARQ system includes some interesting features, using just a

76

0.3

ack chan out

C12(a,b)
((n#3)&(m=n+1))|((n=3)&(M=0))
[0;inf]

0,0,n,0)

X0.3X0.3X0.1

(a,b,n,1)
(0,0,n,0) ack chan in

i
(m=n+1))|((n=3)&(m=0))

(a,b,n,1)

Fig. 4. FIFO channel after tie. New buffer places have been created

last ack next data

data chan out recv
[155]

ack chan in send nak
[1;3]

Fig. 5. Complete system after application of tie and scope

7

small number of net elements. The time extension presented offers a comfort-
able high-level programming interface for real-time systems.

However, the asynchronous links have not yet been integrated into every part
of the tool, which is planned for one of the next versions. This will remove some
restrictions currently imposed on the user.

Time Petri nets are still not supported the same way like ordinary Petri nets.
Most notably, a timed simulator is missing. Further work will include different
time semantics and time support in even higher specification concepts, like SDL.
Some further investigation of case studies of real-time systems, including formal
verification, is planned.

References

1. Peter Amthor, Hans Fleischhack, and Josef Tapken. MOBY - More than a tool for
the verification of SDL-specifications. Technical report, Fachbereich Informatik,
Carl von Ossietzky Universitdt Oldenburg, 1996.

2. E. Best, W. Fraczak, R. P. Hopkins, H. Klaudel and E. Pelz. M-nets: An alge-
bra of high level Petri nets, with an application to the semantics of concurrent
programming languages. Acta Informatica, 35:813-857. Springer, 1998.

3. Hans Fleischhack and Christian Stehno. Computing a Finite Prefix of a Time Petri
Net. In ICATPN, 2002. To appear.

4. Hans Fleischhack and Josef Tapken. An M-net semantics for a real-time extension
of uSDL. In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97:
Industrial Applications and Strengthened Foundations of Formal Methods (Proc.
4th Intl. Symposium of Formal Methods Europe, Graz, Austria, September 1997),
volume 1313, pages 162-181. Springer-Verlag, 1997.

5. Bernd Grahlmann. The PEP Tool. In Orna Grumberg (ed.), Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science, pp. 440-443.
Springer, 1997.

6. Hanna Klaudel. Parameterized M-ezpression Semantics of Parallel Procedures.
DAPSYS’02, pp. 105-114. Kluwer Academic Publishers, 2002.

7. Hanna Klaudel and Franck Pommereau. Asynchronous links in the PBC and M-
nets. ASTAN’99, LNCS 1742, pp. 190-200. Springer, 1999.

8. Maciej Koutny. A Compositional Model of Time Petri Nets. In M. Nielsen and
D. Simpson, editors, Application and Theory of Petri Nets 2000, volume 1825 of
LNCS, pages 303-322. Springer-Verlag, 2000.

9. P. Merlin and D. Farber. Recoverability of Communication Protocols — Implication
of a Theoretical Study. IEEE Transactions on Software Communications, 24:1036—
1043, 1976.

10. The PEP tool. http://parsys.informatik.uni-oldenburg.de/ " pep

11. Franck Pommereau. FIFO buffers in tie sauce. Proc. of DAPSYS’00, pp. 95-104.
Kluwer Academic Publishers, 2000.

12. Franck Pommereau and Christian Stehno. FIFO buffers in hot tie sauce. Technical
Report 2001-04, LACL, Université Paris 12, 61 avenue du général de Gaulle, F-
94010 Créteil, France, 2001.

13. Christian Stehno. Real-Time Systems Design with PEP. In Joost-Pieter Katoen
and Perdita Stevens, editors, TACAS, volume 2280 of Lecture Notes in Computer
Science, pages 476-480. Springer-Verlag, 2002.

78

2

A Markov Chain Model Checker

HOLGER HERMANNS®*, JOOST-PIETER KATOEN?,
JoAacHIM MEYER-KAYSER"*, AND MARKUS SIEGLE®

%Formal Methods and Tools Group, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

®Lehrstuhl fiir Informatik 7, University of Erlangen-Niirnberg
Martensstrae 3, 91058 Erlangen, Germany

Abstract. Markov chains are widely used in the context of performance
and reliability evaluation of systems of various nature. Model checking
of such chains with respect to a given (branching) temporal logic for-
mula has been proposed for both the discrete [5] and the continuous
time setting [1, 3]. In this note, we describe the prototype model checker
E — MC? for discrete and continuous-time Markov chains, where prop-
erties are expressed in appropriate extensions of CTL. We illustrate the
general benefits of this approach and discuss the structure of the tool.

Introduction

Markov chains are widely used as adequate models in many diverse areas, rang-
ing from mathematics and computer science to other disciplines such as opera-
tions research, industrial engineering, biology and demographics. Markov chains
can be used to estimate performance characteristics of various nature, for in-
stance to quantify throughput of manufacturing systems, locate bottlenecks in
communication systems, or to estimate reliability in aerospace systems.

Model checking is a very successful technique to establish the correctness
of systems from similar application domains, usually described in terms of a
non-deterministic finite-state model. If non-determinism is replaced by random-
ized, i.e. probabilistic decisions, the resulting model boils down to a finite-state
discrete-time Markov chain (DTMC). For these models, a number of qualitative
and quantitative model checking algorithms have been proposed. In a qualita-
tive setting it is checked whether a property holds with probability 0 or 1; in a
quantitative setting it is verified whether the probability for a certain property
meets a given lower or upper bound. PCTL [5] is a representative of the latter
kind. It is an extension of CTL [4], allowing one to specify and verify properties
such as “After a system failure, the probability that the system will not come up
again is at most 1076.”

Markov chains are memoryless. In the discrete-time setting this is reflected
by the fact that probabilistic decisions do not depend on the outcome of deci-
sions taken earlier, only the state currently occupied is decisive to completely

* supported by the Netherlands Organisation for Scientific Research (NWO).
** supported by the German Research Council DFG under HE 1408/6-1.

determine the probability of next transitions. For continuous-time Markov chains
(CTMCs), where time ranges over (positive) reals (instead of discrete subsets
thereof) the memoryless property further implies that the probabilities of tak-
ing next transitions do not depend on the amount of time spent in the cur-
rent state. DTMCs are mostly applied to strictly synchronous scenarios, while
CTMCs have shown to fit in well with (interleaving) asynchronous scenarios.
In particular, CTMCs are the underlying semantic model of major high-level
performance modelling formalisms such as stochastic Petri nets, stochastic au-
tomata networks, stochastic process algebras, Markovian queueing networks, and
various extensions thereof.

Recently, the logic CSL has been proposed [1, 3], an extension of both PCTL
and CTL tailored to quantitative properties of CTMCs. Apart from CTL and
PCTL properties, a selection of typical properties that can be verified using this
logic is:

— “After a system failure, there is at least a 99.99 % chance that the system
will come up again within 5 time units.”

— “On the long run, the probability of the system being unavailable is at most
10—4.»

— “The probability that signal ‘ready’ will be received within the next 4 time
units is more than 0.3.”

In this short paper we describe the Erlangen—-Twente Markov Chain Checker
(E+MC?), to our knowledge the first implementation of a model checker for
DTMCs and CTMCs. It uses numerical methods to model check PCTL and
CSL-formulas, based on [5,3,2]. Apart from standard graph algorithms, model
checking CSL involves matrix-vector multiplications, solutions of linear systems
of equations, and solutions of systems of Volterra integral equations. Linear
systems of equations are solved iteratively by standard numerical methods [12].
Two alternatives to solve systems of integral equations are implemented: One
is based on piecewise integration of discretized distribution functions, the other
is based on uniformisation [2]. Uniformisation is the default option, because it
allows the tool to a priori calculate the computational effort needed to check a
given property. This effort depends on the numerical parameters of the current
model, on the property to be checked, and on the required numerical precision
¢ (the latter is a parameter set by the user).

E+— MC? is a global model checker, i.e. it checks the validity of a formula for
all states in the model. It has been developed such that it can easily be linked to a
wide range of existing high-level modelling tools based on, for instance, stochastic
process algebras, stochastic Petri nets, or queueing networks. A whole variety of
such tools exists [6], most of them using dedicated formats to store the transition
matrix R of the Markov chain that is obtained from a high-level specification.
This matrix encodes the probabilistic behaviour of the system as time passes.
Together with a labelling function L, which associates the states of the Markov
chain with sets of atomic propositions, the matrix R constitutes the interface
between the high-level formalism at hand and the model checker. Currently,
the tool accepts DTMCs and CTMCs represented in a format generated by the

80

| ETMCC v1.1
| [=] Fite sy Run 7] options (7] Hetp

Current Properties

j ‘P(>D.2)[]T_ U<=3p] _v‘ Il Verify All

RuntimeManager: Creating RuntimeTask.
RuntimeTask: Checking formula P{=0.2)[TT U==3 h]
erfier: CheckingTrue TT skipped.
erfler: CheckingAP b
erfier: CheckingProbTimedUntil P=0.2[TT U==3.0 k] |

Recursivelntegration: Running with M | C5L PIODEIW I\-1anagm

Recursivelntegration: Loops: 3

erifier. Time consurnption: 0.096 sec P==1)1a Lkl [=]
FuntimeTask: Time consurmption for fo 02T U==3b]
RuntimeTask: Verification terminated. ||| | S0<0-2)(@ &&]
Cutput written to example log S(=0.43[a && P{=0.67)[TT U==1.9c]]
Vi@l by && Pi=0)xc]

|| Status:IDLE Stat Qhace:‘.'#‘s\il

Add

‘ Delete || Edit ||

oR ” NOT || IMPL || T || F

=0.67)[TT Us=1.9] |

Maximum loop Count 1000000 |PX PU PU<= [1

Convergence precision 1.0E-8 <= » 5= ()

Number of interpolation points |512

| Ok H Apply || Cancel

o | amy | comn

Fig. 1. User interface of E — MC?

stochastic process algebra tool TIPPTOOL [11], but the tool is designed in such
a way that it can easily bridge to various other input formats.

Tool architecture

The tool has been written entirely in JAvA (version 1.2), in order to provide
platform independence and to enable fast and efficient program development.
Furthermore, support for the development of graphical user interfaces as well
as grammar parsers is at hand. For the sake of simplicity, flexibility and ex-
tensibility we abstained from low-level optimizations, such as minimization of
object invocations. The design and implementation took approximately 15 man-
months, with about 10000 lines of code for the kernel and 1500 lines of code for
the GUI implementation, using the SWING library. The tool architecture consists
of five components:

Graphical User Interface (cf. Fig. 1) enables the user to load, modify and
save verification projects. Each project consists of a model R, a labelling

81

L, and the properties to be checked. The GUI contains the ‘CSL Property
Manager’ which allows the user to construct and edit CSL-formulas. The
GUI also prints results and additional logging information on screen or writes
them into file. Several verification parameters for the numerical analysis, such
as solution method, precision &, and number of interpolation points for the
piecewise integration, can be set by the user.

Tool Driver controls the model checking procedure. It generates the parse tree
corresponding to a given CSL property. Subsequent evaluation of the parse
tree issues calls to the respective verification objects that encapsulate the
verification sub-algorithms. These objects, in turn, use the analysis and/or
numerical engine.

Analysis Engine is the engine that supports standard model checking algo-
rithms for CTL-style until-formulas, as well as graph algorithms, for instance
to compute the bottom strongly connected components of a Markov chain.
The former algorithms are very useful in a pre-processing phase during the
checking of probabilistic until-formulas (they may help to avoid many nu-
merical calculations), while the latter is needed when calculating long-run
average properties.

Numerical Engine is the numerical analysis engine of the tool. It provides
several methods for the numerical solution of linear systems, for numerical
integration, and for uniformisation. These are used to solve sytems of linear
or integral equations on the basis of parameters provided by the user via the
GUL

State Space Manager represents DTMCs and CTMCs in a uniform way. In
fact, it provides an interface between the various checking and analysis com-
ponents and the way in which DTMCs and CTMCs are actually repre-
sented. This eases the use of different, possibly even symbolic (i.e. BDD-
based) state space representations. It is designed to support input formats
of various kinds, by means of a simple plug-in-functionality (using JAVA’s
dynamic class loading capability). It maintains information about the valid-
ity of atomic propositions and of sub-formulas for each state, encapsulated
in a ‘Sat’ sub-component. After checking a sub-formula, this sub-component
stores the results, to be used later. In the current version of the tool, the
state space is represented as a sparse matrix [12]. All real values are stored
in the IEEE 754 floating point format with double precision (64 bit).

Conclusion

In this short paper we have described the Markov chain model checker E — MC?.
Even though the tool is still a prototype, it has already been used in a number
of nontrivial case studies, including

— validation and performance analysis of a cyclic server polling system [7],
reliability estimation of the Hubble space telescope [8],

— dependability analysis of a workstationclusters [9], and

performance and availability assessment of a distributed database server [10].

82

For more information about E— MC?, the reader is invited to consult [7], or
http://www7.informatik.uni-erlangen.de/etmcc/.

References

1.

10.

11.

12.

A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Verifying continuous time Markov
chains. In Computer Aided Verification, CAV 96, Springer LNCS 1102: 269-276,
1996.

. C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model checking

continuous-time Markov chains by transient analysis. In Computer Aided Veri-
fication, CAV 2000, Springer LNCS 1855: 358-372, 2000.

. C. Baier, J.-P. Katoen and H. Hermanns. Approximate symbolic model checking of

continuous-time Markov chains. In CONCUR 99, Springer LNCS 1664: 146-162,
1999.

. E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Tr. on Progr. Lang.
and Sys., 8(2): 244-263, 1986.

. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Form.

Asp. of Comp., 6(5): 512-535, 1994.

. B.R. Haverkort and I.G. Niemegeers. Performability modelling tools and tech-

niques. Performance Evaluation 25: 17-40, 1996.

. H. Hermanns, J.P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model

checker. In TACAS 2000, Springer LNCS 1785: 347-362, 2000.

. H. Hermanns. Performance and reliability model checking and model construction.

In Formal Methods for Industrial Critical Systems, FMICS 2000, GMD Report 91,
pages 11-28, Berlin, April 2000.

. B. Haverkort, H. Hermanns, and J.P. Katoen. The Use of Model Checking Tech-

niques for Quantitative Dependability Evaluation.In IEEE Symposium on Reliable
Distributed Systems, SRDS 2000, IEEE CS Press, October 2000.

H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards Model Check-
ing Stochastic Process Algebra. In IFM 2000, Springer LNCS 1945: 420439,
November 2000.

H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis and M. Siegle. Compo-
sitional performance modelling with the TIPPTOOL. Performance Evaluation,
39(1-4): 5-35, 2000.

W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
Univ. Press, 1994.

83

RAPTURE:
A tool for verifying Markov Decision Processes

Bertrand Jeannet!, Pedro R. D’Argenio?, and Kim G. Larsen®

1 IRISA - INRIA, Campus de Beaulieu. F-35042 Rennes Cedex. France
Bertrand. Jeannet@irisa.fr
2 FaMAF - UNC, Ciudad Universitaria. 5000 - Cérdoba. Argentina
dargenio@mate.uncor.edu
3 BRICS - Aalborg University, Frederik Bajers vej 7-E. DK-9220 Aalborg. Denmark
kgl@cs.auc.dk

Abstract. We present a tool that performs verification of quantified
reachability properties over Markov decision processes (or probabilistic
transition system). The originality of the tool is to provide two reduc-
tion techniques that limit the state space explosion problem: automatic
abstraction and refinement algorithms, and a so-called essential states
reduction. We present several case-studies to illustrate the usefulness of
these techniques.

1 Introduction

Fully automatic verification of a specified transition system with respect to a
given temporal logic property is known as model checking [22,5]. For such sys-
tems model checkers allow to verify properties such as “the system will never
reach an erroneous situation”, and the property can be stated true or false. In
many cases however, the absolute validity of a formula cannot be determined as
wished, because of the nature of the system. For instance, consider a protocol
that attempts to access to a lossy medium a bounded number of times after
which it aborts. A property like “access will be granted” is obviously false. Nev-
ertheless, to assess quality of service one would like the protocol grants access
to the medium “often enough”. Therefore, we would like, instead, to verify a
quantified property like “access will be granted with probability at least 99%”.
In this paper, we present RAPTURE', a tool that performs verification of
quantified reachability properties over Markov decision processes (or probabilis-
tic transition system). The system to be analysed is described as a parallel com-
position of finite probabilistic automata extended with finite-state variables. The
automata communicate & la CSP [17] via synchronisation on a set of channels.
Other tools that verify quantified properties on (discrete time) Markov
decision processes have been developed. For instance, PROBVERUS [13] and

! RAPTURE is a loose acronym of “Reachability Analysis of Probabilistic Transition
systems based on REduction strategies”. RAPTURE can be freely downloaded from
http://www.irisa.fr/prive/bjeannet/prob/prob.html.

PrIsM [20] can check the validity of properties specified in the logic PCTL [12]
(PROBVERUS is however restricted to Markov chains). The originality of RAP-
TURE is to provide two reduction techniques that limit the state space explosion
problem: automatic abstraction and refinement algorithms, and the so-called es-
sential states reduction [6,7]. The use of these techniques considerably reduces
the high cost of the numerical analysis involved in the computation of the mini-
mum and maximum reachability probabilities for PTSs. The price to pay is that
RAPTURE cannot do verification of the full PCTL. Like PROBVERUS and PRISM,
RAPTURE uses BDDs and MTBDDs [10, 1] to efficiently store the state space and
the transition relation, but unlike them, RAPTURE uses these data structures to
perform abstractions and process the refinement steps rather than to perform
numerical analysis. Numerical analysis in RAPTURE is indeed performed by two
different linear programming solvers: the first one uses sparse matrix on floating
point numbers, the second uses dense matrix on exact rational numbers, which
enables eract computations.

The paper is organized as follows: Section 2 shortly describes RAPTURE mod-
elling language and Section 3, the properties it checks. Section 4 explains the
machinery inside RAPTURE. Section 5 reports the performance of the tool on
several case studies.

2 The model of systems: probabilistic transition systems

Probabilistic transition systems (PTS for short) generalize the well-known tran-
sition systems with probabilistic information. In a PTS, a transition does not
lead to a single state but to a distribution over a set of states. The model we
define is widely used (see, e.g. [23,3,18]) and is also known as Markov decision
processes [21].

Fig. 1 depicts three PTSs and the result of their parallel composition. The
Sender process sends a number N of messages. There is a probability 0.2 that it
sends again the same message (here modelled by the absense of an increment of
n). The Line process represents the transmission process. There is a probability
0.1 that the message is not transmitted to the Receiver process. The Receiver
process just counts the number of received messages up to M > N. If M messages
have been counted, the counter can be undermistically be reseted or maintained
at this maximum value. In a “normal” execution, we should have n = m at the
end of the execution. The parallel composition operator uses synchronization
over channels with a semantic & la CSP [17].

Such processes can be defined in RAPTURE with a textual language describing
automata extended with finite-state variables, as shown on Fig. 1, where we have
N=M-="1.

3 RAPTURE verification through reachability properties

Informally, the properties RAPTURE verifies are of the type: “the probability to
reach a set of final states from a given initial state is lower (or greater) than a

85

| sync: mSg,SeIlt,lOSt |
sync: sen

m < M,sent :
m:=m-+1

08;n:=n+1 19t

'm = M ,sent :

m = M ,sent m:=0
(b) Line (c) Receiver
channel msg,sent,lost; @
process Sender {
sync msg;
var m : u1nt(3z; n< N m< M
init #run and n=0;
loc run: lost msg sent m=
when n<7 sync msg goto n+ +’ + - m+ + sent
{ run 0.8 assign { n:=n+1 }; /// " \\\ m=M
run 0.2 } /072 ;0\ 002~ sent
} / VRN \ m:=0
process Receiver { 0.18 / \ 0.08 V
sync sent; // \\
var m : uint(3); n++ >
init #run and m=0;
loc run:

when m<7 sync sent goto run assign { m:=m+1 };
when m=7 sync sent goto run;
when m=7 sync sent goto run assign { m:=0 }; (d) Parallel composition
}
process Line {
sync msg,lost,sent;
init #idle;

loc idle:

when true sync msg goto { lost 0.1 ; sent 0.9 };
loc lost:

when true sync lost goto idle;
loc sent:

when true sync sent goto idle;

}

system Sender,Receiver,Line;

Fig. 1. Example PTS

86

given bound, for any execution of the system”. For instance, in the PTS described
in Fig. 1, provided that the system has reached a state with n =5 and m =7,
is the probability to reach a state with n = 7,m = 1 for any execution greater
(or lower) than 0.5?7 The important point is that this probability depends on
the considered execution, as soon as the system exhibits non-determinism. For
instance, if the PTS is in the state sent with m = 7, it can nondeterministically
reset m or leave it unchanged.

We specify the set of initial and final states of our reachability property by
adding to the textual description of fig 1 the lines

initial Sender.n=5 and Receiver.m=7;

final Sender.n=7 and Receiver.m=1;

The probability of the property is specified on the control line of our tool. The
property in quote can be checked with the command ‘rapture -ratio 200
-goal i10.5 ex.pts’. Flag ‘-goal i0.5’ indicates that we would like to check
that the minimum probability of the reachability property is above 0.5. RAPTURE
returns the report given in Fig. 2: the minimum probability to reach the final
set is 0, and it was proven by discrete fixpoint computation only. Indeed, if m is
never reset, it is not possible to ever reach a final state. Therefore the property
is false. Alternatively, we can check whether the probability of reaching a final
state is always lower than 0.9 using, for instance, the command ‘rapture -goal
s0.9 ex.pts’. RAPTURE returns the report given in Fig. 3, which states that
the property is true.

*% computing processes and expressions idem

*x Boolean composition

*% Boolean analysis ** computing global probabilistic transition function
Initially: 10 state variables, 1024 states
relation: 101 nodes

Reordering. ..

** size of the transition function: 119 nodes, 619 paths, 6 leaves
System build and analysed (Boolean analysis) in 0.06 seconds

Reachability analysis from init: 192 states, 5 nodes
Reachability analysis from initial: 72 states, 8 nodes
psup0: 20 states, 12 nodes
Extending final states
Second reachability analysis from initial:

64 states, 10 nodes
Non-sink state space: 48 states, 9 nodes
Pinf=0: 51 states
All initial states are in pinfO; pinf = 0.0

Building initial partition in O seconds

Step 1, automaton has 6 locations and 10 nails, 5684 bytes
essential automaton has 5 locations and 9 nails

Step 3, automaton has 28 locations and 33 nails, 195562 bytes
essential automaton has 15 locations and 20 nails

Computing psup: 13 variables, 20 constraints, 6 equalities;
pinf=-inf psup=0.828196810136 diff=inf

analysis in 0 seconds
Example: (Sender.loc=run)(Receiver.loc=run) ** Success **
(Line.loc=sent,lost)

(Sender.n=5) (Receiver.m=7)

After 3 steps and 5 divisions, final automaton has 28 locations
pinf=_inf psup=0.828196810136 diff=inf
Times in seconds:

building: 0.06

analysis: 0.03 (numerical computations: 0; refinement: 0.03)

Fig. 2. Infimum prob. > 0.5 Fig. 3. Supremum prob. < 0.9

4 Verification method

The standard verification method for verifying reachability properties is to com-
pute the minimum and/or the mazimum probability of reaching a final state
from an initial state, and to use it to deduce the truth of the property. The
computation of those extremum probabilities is done by solving a system of fix-
point equations involving min and max operators over sets of linear expressions.

87

CUDD CddLib / LP_ Solve

BDDs library Linear Programming
i '~ \
4 J \ ~N
(\ .
Input Compilation \
Language | T |Into MTBDDs| ' \
) \

Processes N : \
‘ . '-' Q . .

| - P
Propert, i i ; o
Boolean | _| Abstraction/ |, [Essential states| | Numerical i

— Analysis Refinement Reduction Analysis
Initial
Abstraction Refinement
N RAPTURE tool Strategies Inconclusive
S J

Fig. 4. Architecture of the RAPTURE tool

The two solving methods are the wvalue iteration method, used together with a
symbolic representation in [20], or the linear programming method. In both case,
the number of unknowns is the number of the states of the analysed PTS. The
aim of our tool is to reduce as much as possible the number of unknowns to be
considered to compute extremum probabilities as efficiently as possible, possibly
in an approximate way. The architecture of RAPTURE is depicted in Fig. 4.

Representation of Probabilistic Transition Systems. — Following [16,
8], we use BDDs (Binary Decision Diagrams [4]) to represent sets of states.
Transition relations are represented with MTBDDs (Multi-Terminal Decision
Diagrams), with real numbers as terminal nodes. We refer the reader to [6] for
more details about the encoding and the chosen variable ordering in diagrams.

The reduction techniques implemented in the tool. — The purpose
of the reduction techniques which have been implemented is to overcome the
strong limitation in the size of the systems that can be verified. Three reduction
techniques are implemented.

Discrete precomputations. — We use a standard precomputation of certain sets
of system states in order to simplify the system before applying linear program-
ming techniques. These sets are: the set of all reachable states Reach, and for
each p € {0,1} the set of states with infimum (resp. supremum) probability p
of reaching F'. These latter sets of states are denoted Pi;‘(f), pinf, PP, and PP,
respectively. All of the above sets can be computed using discrete fixpoint anal-
ysis [9] on a Boolean abstraction of the system. In our case these analysis are
implemented using BDDs. As we restrict our attention to simple reachability
properties, we can use these analysis to reduce the state space under consider-
ation, unlike tools that handle more complex probabilistic properties involving
nested fixpoints [13, 8, 15].

The Abstraction and successive refinement method. — The main principle of
our method is founded on abstraction and successive refinements of the initial
abstract model. The idea is to try the verification of the property on a (rough)
abstraction of the model, induced by a partition of the state space, and in case of

88

~. e
1/4~91/8 “ 44 }]4\@,1«/8’ by "y
S ‘-@ \

(a) Initial situation (b) After reduction

Fig. 5. Example of essential reduction

failure of the verification to refine this abstract model into a finer abstraction, on
which better approximations of extremum probabilities can be computed. This
process is stopped as soon as a verdict (true or false) to the property can be
deduced from the computations.

The initial partition (or abstraction) should at least separate initial states,
final states, and others, for correctness reasons [6]. The user can also specify a set
of PTSs and of variables that should not be abstracted in the initial partition.
This choice usually depends on the property to check, but due to the refinement
process a bad choice of these parameters will only slow down the verification of
the property. By using a suitable variable ordering in BDDs, the computation
of an abstract PTS from a concrete PTS and a partition of the state space of
size k can be performed in O(k) BDD operations, which are in turn linear or
quadratic in the number of nodes of the involved BDDs/MTBDDs [6].

If a partition is not detailed enough to deliver a good approximation of the
extremum probabilities involved in the property, heuristic strategies are used to
refine it into a more detailed partition. They are all based on the stabilization
of the partition w.r.t. a transition relation ([7]). Several heuristics are offered to
the user, who chooses them when he launches the verification. These strategies
do not necessarily stabilize each class w.r.t. the current partition in one step, but
to proceed in a more incremental and guided way. They differ on the abstract
transition that is used as a basis for the split of a class. The user can also tune
the ratio between the refinement and the analysis steps.

Essential states reduction. — We developed an additional reduction technique,
the essential state reduction [7]. This abstraction, which preserves extremum
probabilities, is based on the observation that most transitions in a PTS are
non-probabilistic, i.e. they have a unique successor state. To give the intuition
of this reduction, suppose that a fragment of a PTS looks like the one depicted
in Fig. 5(a). All executions starting from s1, 82, 83,54 are leading to the state
se with probability 1. If we are only interested in probabilities, we can reduce
the system by representing all of the above states via the single state s., and in
addition merge (add) the probabilities for any distribution to enter the states
represented by s., as shown on Fig. 5(b).

This essential state reduction is applied on the abstract model, just before
the generation of the LP problem.

&9

Numerical methods available in the tool. — The previously described
reduction techniques are independent from the chosen method for solving the
numerical equations. The tool is currently connected to two different LP solver.
The first one, LP_SOLVE [2], uses sparse matrix over floating point numbers as
its internal representation. Sparse matrices are very useful for our purpose, as
the size of the support of the distributions (i.e., the number of successor states of
the distributions) is generally very small in our models. However we encountered
numerical precision problems with our first case studies, the Bounded Retrans-
mission Protocol [14, 6]. This was not due to proper numerical instability, but to
the fact that with IEEE floating point numbers, 1 — 1e20 = 1!! Very small prob-
abilities indeed appear in this case study, if a great number of retransmissions
is allowed. The second one, which is part of the polyhedra library CppLIB [11],
uses dense matrices of rational numbers. It is useful when the above-mentioned
problem arises, or in cases where numerical instability is observed and exact re-
sults are wanted. However, in other case LPSOLVE performs much better: floating
point arithmetic is cheap compared to multi-precision rational (integer) arith-
metic.

5 Experiments

We have conducted several experiments in order to evaluate our reduction and
refinement strategies as well as our implementation.

Bounded Retransmission Protocol. — This protocol, originally studied in [14],
is based on the well-known alternating bit protocol but allows for a bounded
number of retransmissions of a chunk, i.e., part of a file, only. So, eventual de-
livery is not guaranteed and the protocol may abort the file transfer. We use
the version presented in [6], where probabilities model the possible failures of
the two channels used for sending chunks and acknowledgments, respectively. In
Table 1 we check the maximum probabilities that the sender does not report a
successful transmission. We consider a file composed of either 16 or 64 chunks,
and N is the number of allowed retransmissions. We use here the dense ma-
trix based solver with exact arithmetic, because probabilities of very different
magnitude order appear in LP problems, which makes the usual floating point
arithmetic unstable. The initial partitioning is here performed w.r.t. the explicit
control structure of the specification: only variables are abstracted.

The meaning of row labels in the table is the following: #reach is the number
of states reachable from root states, #rel is the number of relevant states after
Boolean preprocessing, and time is the time needed to build and preprocess the
PTS. The three next sets of rows details the refinement process for different upper
bounds for PSUP. #refin is the number of refinement steps, #abst the number
of states of the most refined abstract PTS, #ess the number of its essential
states, psup the computed probability, verd is the verdict (true or false), and
time (a+r) gives the time spent in numerical analysis and in refinement process.
When the verdict is false, the refinement has gone to the stable partitioning of
the PTS and gives the actual PP of the concrete PTS.

90

Table 1. Results in BRP

file length 16 file length 64
MAX B 2 B i5 15
Freach. 3908 6060 10364 17896 58024
#relev. 1014 1790 3342 6058 26362
time 0.94 1.10 1.59 1.75 5.20

| #refin. P 5 6 6 3

| |#abst. 52 89 161 161 161

© |#ess. 24 42 85 85 85

vi [psup 3.09¢-04 | 4.27¢-06 | 7.89¢-06 7.89¢-06 7.89¢-06
verd. T T T T T
time(a+r)||0.0740.88|0.7240.83| 2.96+1.68 | 2.9541.72 2.97+42.62

S |#refin. 9 10 7 7 7

T |#abst. 375 675 242 247 247

o |#ess. 152 272 108 115 115

~ |psup 2.65e-05 | 2.35e-08 | 7.0le-12 7.0le-12 7.0le-12

VI verd. F ¥ T T T
time(a+r)||0.56842.56|3.30+5.42| 8.1542.07 | 3.54+2.33 3.51+3.55

S |#refin. 9 10 i1 12 16

S |#abst. 375 675 1275 2325 9765

o |#ess. 152 272 512 932 3908

~ |psup 2.65¢-05 | 2.35e-08 | 1.85e-14 3.87e-25 3.87e-25

VI |verd. F F F F F
time(a+r)||0.5842.56|3.3045.42|15.87+11.00|186.58+22.06||1209.724165.3

Observe the efficiency of Boolean preprocessing and essential states reduc-
tion, which gives both a reduction of one third in average. Notice also that it
is nearly as easy to prove PS"P < 103 for big instances of BRP than for small
ones: that means that the refinement strategy works well and will not perform
too many useless splits. It can also be observed that checking smaller upper
bounds can still be performed on very small abstract PTSs, compared to the
concrete one, even reduced by preprocessing, and also compared to the stable
partitioning (row PSP < 1079).

The probabilistic dinning philosophers. — In this example, which originates from
[19] and has been analysed using PRISM [20], N philosophers are trying to eat.
We want to prove a lower bound on the probability for some process to eat after
a number of time units specified by value of deadline, with the aditional require-
ment that a philosopher cannot stay idle for more than K steps. Table 2 shows
results for N = 3 and different values of K. The chosen deadline corresponds to
the smallest one for which the property holds with a probability more than 0.

Here we give in the table not only the number of abstract and essential states,
but also in each case the number of abstract distributions. We use the sparse
matrix based solver with ordinary floating point arithmetic. The initial partition
is chosen to be obtained by abstracting everything but the counter used for the
deadline, as it is clear the value of the deadline is of fundamental importance for
the studied property. Most of the encouraging observations made for the BRP are
still true. The only exception is that essential state reduction does not perform
as good as in the BRP. Execution times are much higher, because MTBDDs are
much bigger, and the abstract PTSs are much more complex, which results in
very big LP problems. Still, refinement remains much cheaper than analysis, and
state space reduction between the concrete PTS and the abstract one allowing
to prove the property is impressive.

Table 3 compares various refinement options and initial control structures on
a particular instance of the system. The first column corresponds to the options
that work best and that were used in the previous table: the initial partition de-
tail only the counter for the deadline, and we use n-ary division, giving priority

91

Table 2. Results in Dining Philosophers with N =3

K 1 5 6
deadline 23 27 31
Freach. 1.00206 T.97e06 3.40e06
#relev. 121041 271287 488859
time 14.4 23.6 34
Frefin. 5 7 3

| #abst. 3064/11536 [16903/52435 | 35780/111084
#ess. 2778/11250 [14442/49974 |30361/105665

Al | pinf 0.0625 0.0625 0.0625
verd. T T T
time(a+r)|| 49.6+79.5 | 21204590 | 10353+1462
Frefin. 7 8 9

o | #abst. 8512/22757 [21011/59866 | 37542/114703
#ess. 6668/20913 [16996/55851 |31656/108817

Al | pinf 0.125 0.125 0.125
verd. T T T
time(a+r)|| 200+220 | 3683+712 | 20335+1575

Table 3. Results in Dining Philosophers with N = K = 3 and deadline = 19

control deadline | deadline | deadline | deadline |ctrl. struct.
option narytosl | bintosl | narytlso | maryta | mary-tosl
#reach. 208397
#relev. 30018
time 6.14
Frehin. p) P 2 P 1
| #abst. 51/87 | 35/122 | 882/2880 | 140/680 |5861/12072
fress. 51/87 | 35/122 | 827/2825 | 140/680 |4109/11196
AU pint 0.25 0.25 0.25 0.25 0.25
verd. T T T T T
time(a+r)|[0.03+3.85/0.02+3.48|5.16+16.79|0.19+5.09| 53.6+44.8

to different types of probabilistic transitions. Using binary divisions gives simi-
lar results (second column). Column 3 shows that inverting the priority of the
different types of split in column 1 gives very bad results: a much more refined
system is needed to prove the property. Last column illustrates the importance
of a good initial partition. Here, we generated it according to the explicit control
structure of the philosopher, and it produces very bad result.

Binary Exponential Backoff Algorithm in the IEEE 802.8. — This protocol is
part of the CSMA /CD protocol and is used to state the policy in which machines
retry to access the medium after a collision was detected. The protocol works
as follows. After a collision the time is divided into slots. Each of the colliding
hosts waits 0 or 1 slots (each with probability 1/2) before retrying to access the
medium. If collision happens again each host will wait 0, 1, 2, or 3 slots with
probability 1/4. Collision may repeat several times. In its ith collision, a host
must choose a waiting time between 0 and 2¢ — 1 with probability 1/2¢ each.
After the Kth collision, it will only choose between 0 and 2% — 1, and after the
Nth unsuccessful attempt (N > K), the host will gave up. When no collision
happens, the only transmitting host seize the line and its message is transmitted.
The appendix shows details on the modelling of the binary exponential backoff
method and the property under study using the RAPTURE modelling language.

The property we study is whether one given host gives up with probabil-
ity less than or equal to p. Results are reported in Table 4 where 3 hosts are
considered, the number of attempts to access the channel before giving up is
N =5, and the exponential variable grows until K = 2. The check probability
p varies and is specified in the table. We have done three types of run: selecting
two types of initial partition (see the appendix) and using the default initial
partition which ammounts to distinguishing states if they belong to different

92

Table 4. Results in the Binary Exponential Backoff N =5, K =2

#reach. 752170 #relev. 752170 time 33.14

Technique nary tosl nary Jlsofinit] | narylsofinitg | nary fosltinitg | naryfatinitg

~ [[verd. T T T T T

IO #refin. 8 7 8 8 7

= ||#abst. 28237 6678 10099 7720 9994

o ||#ess. 23326 5616 8409 6535 8391
psup 0.0299973 0.0161254 0.021849 0.0491828 0.0204969

VI'||time(a+r)|2418.4741265.01| 96.34555.57 235.67+942.24 124+4788.51 212.44804.83

a |[verd. T T T T T

IC> #refin. 9 8 9 10 8

= || #abst. 56840 13637 20819 30701 20111

|| #ess. 47548 11395 17705 25580 17077

|| psup 0.00388816 0.00745022 0.00471054 0.000386098 0.00470079

VI{|time(a+r)|10169.742023.94| 477.85+980.62 [1293.17+1599.61| 2423.8+2111.9 |1137.99+1432.39

® ||verd. T T T T T

| #refin. 9 9 9 10 8

2 || #abst. 56840 28143 20819 30701 20111

o || #ess. 47548 24147 17705 25580 17077
psup 0.00388816 0.00143866 0.00471054 0.000386098 0.00470079

VI |time(a+r)|10455.742140.99 | 2892.53+1748.86| 1296.38+1622 [2228.21+2017.41]1244.52+1435.45

® ||verd. T T T T T

| #refin. 10 10 10 10 9

2 |[#abst. 97642 39209 30701 30701 30701

- || #ess. 79655 33449 25580 25580 25580

' ||psup 0.000386098 0.000386098 0.000386098 0.000386098 0.000386098

VI ||time(atr)|29182.844006.43 | 5745.0042464.28 | 2033.94+2349.45]2288.85+2084.56| 2767.8+2177.3

< |[verd. T T T T T

| #refin. 10 10 10 10 9

2 || #abst. 97642 39209 30701 30701 30701

o || #ess- 79655 33449 25580 25580 25580
psup 0.000386098 0.000386098 0.000386098 0.000386098 0.000386098

VI ||time(a+r)|28484.943922.24| 5755.40+42469.5 |3005.25+2330.12] 2036.3+1865.65 |2987.38+2348.35

B verd. F F F F F

[3 #refin. 10 10 10 10 9

= ||#abst. 97642 39209 30701 30701 30701

- || #ess. 79655 33449 25580 25580 25580

~ || psup — — — — —

VI |time(a+r)|28297.543931.48 | 5762.32+2470.58 | 2753.41+2345.52]2241.72+2049.34]2835.37+2240.27

control structure. Again, the importance of selecting a good initial partition is
evident. We mention that combinations “Iso” and “osl-+init;” (not shown on the
table) showed instability problems?. Table 5 shows the same exercise but with
K = 3. Both in Table 4 and Table 5 we have highlighted the techniques with
best performance. Clearly the refinement priority order “lso” has done worst, but
the other two techniques have shown rather incomparable results. The case “a”,
in which refinement is done w.r.t. all transitions, is faster on refining and spends
more time per iteration than the case “osl”. On average, this last technique seems
to do better.

We carried out the experiments using the sparse matrix based solver with
ordinary floating point arithmetic. We tried larger settings, but unfortunately
many of them suffered the numerical instability problem. When running the
dense matrix based solver with exact arithmetic it required a much larger use of
memory which could not be allocated on the machine it was running. It would
be very useful for such cases to have a solver using both sparse matrices and
exact arithmetic. However, such a solver is still to be implemented!

% Refinement can be guided by defining a priority order on the type of transition that
should be selected first to partition an equivalence class. The types are: “I” for looping,
i.e. non-probabilistic transitions that loops on the same abstract state; “s” for single,
i.e. non-probabilistic transitions leading to a different abstract state; “o” for others,
namely, the probabilistic transitions.

93

Table 5. Results in the Binary Exponential Backoff N =5, K
#reach. 3.40796 - 106 #relev. 3.40796 - 106 time 111.04
Technique nary | lsofinitg Tary Josl]initg Tary falinitg
™ verd. T T T
| #trefin. 8 9 6
2 || #abst. 14877 30657 13509
- || #ess. 14088 27191 12939
° |l psup 0.0168896 0.00637896 0.0190634
VI |time(atr) 816.03+1957.2 | 2893.04+4459.17 | 563.85+1680.64
o verd. T T T
IO #refin. 9 9 7
= || #abst. 32313 30657 27740
|| #ess. 27727 27191 23769
= ||psup 0.00499646 0.00637896 0.00601642
VI |time(atr) 3693.23+4046.84 | 3051.12+4397.42 | 2687.23+3279.83
] verd. T T T
\O #trefin. 9 10 8
2 || #abst. 32313 61970 55703
- || #ess. 27727 53858 48628
|l psup 0.00499646 0.00067507 0.00104156
VI |time(atr) 3069.24+3585.62 | 10013.646426.98 | 12976.6+6077.6
2] verd. T T T
||| #refin. 10 10 9
2 || #abst. 66635 61970 97831
- || #ess. 58173 53858 85099
= ||psup 0.000636677 0.00067507 9.60093e-05
VI |[time(a+r) 27220.8+6555.4 | 10111.1+6754.95 | 34694.14+10976.3
< verd. T T T
| #refin. 11 11 9
2 ||#abst. 07831 97831 97831
- || #ess. 85099 85099 85099
|l psup 9.60093e-05 9.60093e-05 9.60093e-05
VI |time(atr) 46629.2+10074 | 27261.4+9426.13 | 34293.2+10615.6
< verd. T T T
Io #refin. 11 11 9
S || #abst. 97831 97831 97831
- || #ess. 85099 85099 85099
= ||psup 9.60093e-05 9.60093e-05 9.60093e-05
VI |time(atr) 4533240899.48 | 27216+9408.45 | 34021.5+10672.9

6 Conclusion

We presented in this paper the probabilistic verification tool RAPTURE. We de-
scribed its functionalities and the principles of its verification method. We gave
also a set of experimental results that illustrates the behaviour of the imple-

mented techniques and their efficiency.

Acknowledgments We thank the cooperation of Henrik E. Jensen in previous
works, helping to develop the foundations of the current tool RAPTURE.

References

1. R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications. Formal Methods in System

Design, 10(2/3):171-206, April 1997.

2. M. Berkelaar.

LP_SoLvE:

Mixed

ftp://ftp.ics.ele.tue.nl/pub/lp_solve.

3. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

integer

linear

systems. In Proceedings of FSTTCS’95, LNCS 1026, 1995.

4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-692, 1986.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM TOPLAS, 8(2),

1986.

94

program

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

P.R. D’Argenio, B. Jeannet, H.E. Jensen, and K.G. Larsen. Reachability analy-
sis of probabilistic systems by successive refinements. In Proceedings of PAPM-
PROBMIV 2001, LNCS 2165, Aachen (Germany), September 2001.

P.R. D’Argenio, B. Jeannet, H.E. Jensen, and K.G. Larsen. Reduction and re-
finement strategies for probabilistic analysis. In Proceedings of PAPM-PROBMIV
2002, LNCS, Copenhagen (Denmark), July 2002.

L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the Kro-
necker representation. In Proceedings of TACAS’00, LNCS 1785, 2000.

Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

M. Fujita, P.C. McGeer, and J.C.-Y. Yang. Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation. Formal Methods in
System Design, 10(2/3):149-169, April 1997.

K. Fukuda. CppLIB. ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd.

H.A. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6:512-535, 1994.

V. Hartonas-Garmhausen and S. Campos. ProbVerus: Probabilistic symbolic
model checking. In Proceedings of ARTS’99, LNCS 1601, 1999.

L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link protocol.
In Proc. International Workshop TYPES’98, LNCS 806, 1994.

H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In Proceedings of TACAS’00, LNCS 1785, 2000.

H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision
diagrams to represent and analyse continuous time Markov chains. In Procs. of
Int. Workshop on the Numerical Solution of Markov Chains. Prensas Universitarias
de Zaragoza, 1999.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

B. Jonsson, K.G. Larsen, and W. Yi. Probabilistic extensions in process algebras.
In J.A. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebras.
Elsevier, 2001.

D. Lehmann and M. Rabin. On the advantages of free choice: A symmetric fully
distributed solution to the dining philosophers problem. In Proc. 8th Symposium
on Principles of Programming Languages, 1981.

PRISM Web Page. http://www.cs.bham.ac.uk/~dxp/prism/.

M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 1994.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CAESAR. In International Symposium on Programming. LNCS 137, Springer
Verlag, April 1982.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, 1995.

M. Stoelinga and F. Vaandrager. Root contention in IEEE 1394. In Proceedings
of ARTS’99, LNCS 1601, 1999.

Appendix: Details on the Binary Exponential Backoff
Method

In the following, we report the RAPTURE model of the binary exponential backoff
algorithm. This algorithm assumes the time is divided in slots. Process Clock

95

controls such division. In order to proceed in an orderly fashion, each slot is
divided in three sections marked by actions Tick, Tack, and Tock. In the first
section (previous to Tick), hosts attempt to seize the line. Each host (modelled
by process Host_i) indicates its will to access the line by incrementing the global
variable chan_req. The second section (between Tick and Tack) is the middle of
the slot and is used for each attempting host to check if there was a collision (i.e.
if chan_req>1) and proceed according to the algorithm explained in Section 5.
The last section (between Tack and Tock) is only used to reset variable chan_req
in order to restart the process.

channel
Tick, Tack, Tock ;

var
chan_req : uint (DIM_HOST) ;
line_seized_flag : bool ; // These two flags are used to
gave_up_flag : bool ; // analyse some properties

// not reported in this article.
process Clock {

sync
Tick, Tack, Tock ;

init (#start and (chan_req = 0)
and not line_seized_flag and mnot gave_up_flag) ;

loc start:
when true goto begin_slot ;
loc begin_slot :
when true sync Tick goto mid_slot ;
loc mid_slot :
when true sync Tack goto reset ;
loc reset :
when true goto end_slot assign { chan_req := 0 } ;
loc end_slot :
when true sync Tock goto begin_slot B

Process Host_i uses two constants: MAX_NR_ATTEMPTS, that represents the
maximum number of attempts to access the line (IV in Section 5), and MAX_EXP
that is the maximum exponential value allowed (MAX_EXP = 2% where K is as
in Section 5). Variables nr_attempts and exp_val are used to save the cur-
rent number of attempts and the current exponential value (from which the
random value will be chosen) respectively. Variable slots_to_wait contains
the slots to wait before attempting to seize the line. Originally, slots_to_wait
takes a random value uniformly distributed between 0 and exp_val — 1. This
random choice is not straightforward since the RAPTURE modelling language
does not allow probabilities to depend on variables. Therefore it is coded in

96

a loop with the help of an auxiliary variable aux_exp. The random setting of
slots_to_wait takes place in location process_collision, where the host will
iterate (log, exp_val) times. In each iteration i, variable slots_to_wait will be
incremented by 2¢ with probability 0.5. Variable aux_exp carries the appropriate
2* value.

process Host_i {

sync
Tick, Tack, Tock ;

var
// Be aware that dimensions depend on constants MAX_NR_ATTEMPTS

// and MAX_EXP

nr_attempts : uint (DIM_TRI) ;
exp_val : uint (DIM_EXP) ;
aux_exp : uint (DIM_EXP) ;

slots_to_wait : uint (DIM_EXP) ;

init (#wait_tick and (nr_attempts = 0) and (exp_val = 1)
and (aux_exp = 1) and (slots_to_wait = 0)) ;

// Begining of the slot: try to seize the line or just wait.
loc wait_tick :
when (slots_to_wait > 0) sync Tick
// Wait these slot
goto wait_tack
assign { slots_to_wait := slots_to_wait - 1 } ;
when (slots_to_wait = 0)
// Do not wait any longer and try to seize the line
goto init_cycle assign { chan_req := chan_req + 1 };
loc init_cycle
when true sync Tick goto check_collision ;
loc check_collision :
when (chan_req = 1)
// The attempt was succesful. Line seized
goto line_seized
assign { line_seized_flag := true } ;
when ((chan_req > 1) and (nr_attempts >= MAX_NR_ATTEMPTS))
// There was collision and maximum number of attepmts exceeded.
// Give up.
goto gave_up
assign { gave_up_flag := true } ;
when ((chan_req > 1) and (nr_attempts < MAX_NR_ATTEMPTS))
// The attempt was unsuccesful. A collision occurred.
// Set values for next attempt.
goto process_collision
assign { nr_attempts := nr_attempts + 1 ;
aux_exp := 1 ;
slots_to_wait := 0 } ;

97

// Choose a random value to wait until next attempt.
loc process_collision :
when ((aux_exp > exp_val) and (exp_val >= MAX_EXP))
goto wait_tack ;
when ((aux_exp > exp_val) and (exp_val < MAX_EXP))
goto wait_tack
assign { exp_val := 2 * exp_val } ;
when (aux_exp <= exp_val)

goto {
process_collision .5
assign { aux_exp := 2 * aux_exp } ;
process_collision .5
assign { slots_to_wait := slots_to_wait + aux_exp ;
aux_exp := 2 * aux_exp }

}

// Wait until the middle section of the slot is finished.
loc wait_tack :

when true sync Tack goto wait_tock ;
// Wait until the last section of the slot is finished.
loc wait_tock :

when true sync Tock goto wait_tick ;
loc line_seized :

when true goto line_seized ;
loc gave_up :

when true goto gave_up ;

The property under study checks the probability of reaching a state in which
Host_0 gives up. The probability of such final condition must be calculated from
the beginning of the process, namely when the Clock is about to start and no
host attempted yet to seize the line (i.e., chan_req = 0). The property is stated
in RAPTURE by the following specification lines:

initial (#Clock.start and (chan_req =0)) ;
final #Host_O.gave_up ;

The initial partition init; is specified in RAPTURE by the sentence
control #Host_0.aux_val, #Host_0.exp_val ;

which states that states with different values for variables aux_val and exp_val
must be distinguished in the initial partition. The initial partition inits is given
by

control #Host_O.exp_val ;

In this case, only states with different values for variable exp_val must be dis-
tinguished.

98

YAHODA: verification tools database*

J. Crhové, P. Kréal, J. Strejéek, D. Safranek, P. Simecek

Faculty of Informatics, Masaryk University Brno,
Czech Republic

{xcrhova ,xkrcal,strejcek,xsafrani, xsimecei}@fi .muni.cz

Abstract. We present a web server YAHODA [9], which is designed to
provide unified information about currently available verification tools.
The server software allows the tools developers to insert and maintain
the information about their tools by their own. In the paper we describe
the organization of the database, its main features, and the maintenance
of the repository.

1 Introduction

The need of a comprehensive information resource on verification tools
has been already reflected by several public sources [4,5,3]. There are
specialized databases concerning Petri Nets [7,6] or HOL-related tools
[8]. See also the CONCUR project [10] that includes comparison of verifi-
cation tools. However, most of those sources aimed at verification tools in
general, are not well-structured and difficult to maintain. These databases
often do not support the user in choosing the best tool according to the
user’s needs (the only exception is [6]). One must browse through all the
tools and carefully read the info about each of them. Moreover, some of
the databases, like [1, 2], are rather behind the times. It goes with the fact
that the development in this area is very fast and therefore it is difficult
to keep the information up-to-date.

YAHODA [9] is a project that aims at overcoming at least some of
the problems mentioned above. YAHODA is a web application based on
a relational database. It is the tool developer, not the YAHODA admin-
istrator, who maintains the information about the tool via an authorized
web access. We hope this is the most effective way of fighting the inaccu-
racy. The information in the database is structured and thus allows the
YAHODA user more flexible search for desired information. At the same
time, YAHODA provides some basic taxonomy.

* This work has been partially supported by the Grant Agency of Czech Republic,
grant No. 201/00/1023.

2 Information in YAHODA

In this section, we describe the structure of database records.

The amount of information to be stored is set up to be general enough
on one hand (e.g., for searching and comparing tools), on the other hand
we tried to include all the necessary details.

Every tool record includes the following information:

Purpose of the tool — the purpose of the tool is basically character-
ized as (combination of) model checking (linear or branching time),
equivalence checking, or theorem proving.

Specific features — the distinguished specific features are real-time ver-
ification, probabilistic verification or verification of the hybrid systems.

Graphical interface — recognized graphical features are graphical user
interface, graphical specification of the system, graphical simulation.

Description — a word description of the tool.

Modelling languages — languages for specification of systems.

Logics — logics used by the tool (only for model checkers).

Equivalences — equivalences checked by the tool (only for equivalence
checkers).

Counterexample — distinguished features are generation and possible
visualization of the counterexample.

Availability — the basic categories are free, commercial, or free under
specific conditions. In the last case, the conditions can be explicitly
added. Awailability of the source code can be checked and developing
languages can be specified.

Platforms — platforms for which the tool is available. The basic cate-
gories are Uniz and Windows.

Last release — number and date of release of last available version are
specified.

References — homepage and email of the tool are specified. Other rele-
vant links can be added.

Moreover, supplementary information about logics, equivalences, and
modelling languages used by the tools can be added. Whenever, it consists
of a brief description and references to the literature.

The Fig. 1 shows the presentation of the tool record in YAHODA.

3 Searching in YAHODA

The most important feature for the users of YAHODA is the support for
quick and transparent search in the database.

100

-ﬁ. YAHOOR Intreduction) Toals Table) Login
e —tp Supplemants) Registration)

«

Short name / Abbreviation: S PIN
Full name: Simple Promeda Inberpr

LAST RELEASE:
Last version: 34.14 Date of last version: 2002/04/06

PURPOSE:
Supported meined's of verificalion
« Model checking

Limngar Time: Branching Time: X
® Equivalence checking X
& Thearem praving: X
SPECIFIC FEATURES:

Speciic properties of the targel syslem Foman:
Real-time: X Probabilistic: x Hyhrid: X

DESCRIPTION:
Spinis a widely distributed sofhware package that supports the formal verification of distributed
systems. The software was developed af Bell Labs in the formal methods and verification group
starding in 1960

Fig. 1. Detailed information about a tool

All tools and their main features are displayed in graphical table, so
called tools table (Fig. 2). The user can set some requirements on the
tools concerning purpose of the tool, specific features (real-time verifica-
tion, probabilistic verification or verification of the hybrid systems), in-
formation about the graphical interface, availability of the tool, and the
platforms for which the tools are available. Requirement (called filtering
query) consists of the column names of the tools table connected by the
Boolean operators (Fig. 2). The user can choose them by clicking on the
corresponding hypertextual column names and symbols of the Boolean
operators. Tools table consists of tools satisfying the requirement only.

Users can get the detailed information about tool by clicking on the
tool name in the tools table.

4 Maintaining records in YAHODA

To cope with the inaccuracy and the obsoleteness of the information we
decided to open the database to the authors of the tools. Authors can
add their tools into the database and maintain their records on their own
(via the authorized access). Thus, after any modification of the tool, the
author does not need to wait for the database administrator to update
the tool’s record.

101

HYAHODA | e — _imase) e
I Tt ek) _supesen

Fitteting guery: ((Model Checking {Lingar Time . Branch. Tima)]) < (L (Uni< & related)
Found § maiching records.
; Spacific Graphical
Pu&t:sa Featires [ﬂvdll.a.,ul'r,l Phi'.t_l'rll CI:_I"I;I:I&I:(
LAMD: AL ol 31,0 1= -1 2ND:
i P |
CWB - NC [K [[# [| » LY
Mushty | & * * L LA N w
EEP Fle [# | s | » wile
SFIN * L * * » N w
Inki & | & - L * L]
Truth L L * LK)

Fig. 2. Tools table

T oaTaaase —t) Sigiemeni)

Tool Information Form
First Part - Brief Info {Used In the Tools Table)

Shart Name { Abbreviation |
PURPOSE:
Specily supported meihod's of venicahion.
& Model Checking:
Othwars:
Linear Time: [Branching Time: [.
» Equivalence Checking [
® Theorem Proving: [
SPECIFIC FEATURES:
Check Wiich systems car the 601 veniy.
Real Time: [Probabilistic: [Hybrid: [~
GRAPHICAL INTERFACE:
Check supported Jraphical inferschion faums.
G Graphical Specification. [Graphical Simulation 7 Tracing: [
AVAILABILITY:
Chaose the most agpropriate cathegory and specily detaiis if reeded.
CFree © Free under conditions ¢ Commercial

Fig. 3. Adding new tool

102

To obtain an authorized access, authors of tools should register to
YAHODA. This can be done by filling authors’ name and email address
into the registration form. The server automatically creates authors’ ac-
counts and will send them a login and password immediately. Now the
authors can insert new records of the tools by filling the form (Fig. 3).
Moreover they can update this information any time in the future.

5 Conclusion and future plans

We described the database of verification tools YAHODA and showed how
it is organized. Further, we described the main features of this database.

We intend to start YAHODA with the information about the tools
presented at the Tools Day. After this, we will challenge all other tools’
authors to add their tools to YAHODA.

Moreover, we are prepared to modify the database design, according
either to external requests or to the development in the verification tools
area. In general, we are asking all the users to send us their comments
and suggestions how to improve the server.

Our objective is to make YAHODA a comprehensive source containing
up-to-date information about verification tools.

Acknowledgments: We want to thank our colleagues who participated
in the work on YAHODA, especially Lubo§ Brim, Ivana Cernd, Jan
Obdrzélek, and Radek Peldnek.

References

1. BRICS tools home page.
http://www.brics.dk//users/btools/index.html.

2. Database of existing mechanized reasoning systems.
http://www.calculemus.org/MathUniversalis/3/listsoft.html.

3. Formal methods.
http://www.afm.sbu.ac.uk/.

4. Formal methods education resources, tool pages.
http://www.cs.indiana.edu/formal-methods-education/Tools/.

5. Formal methods europe.
http://www.fmeurope.org/.

6. The petri net tools survey.
http://home.arcor-online.de/wolf.garbe.petrisoft.hml.

7. Petri Nets tool database.
http://www.daimi.au.dk/PetriNets/tools/db.html.

8. Systems related to HOL.
http://www.cl.cam.ac.uk/Research/HVG/HOL/HOL.html#related.

9. YAHODA.
http://www.fi.muni.cz/yahoda/.

10. Eric Madelaine. Verification tools from the CONCUR project. FATCS Bulletin,

47:110-120, 1992.

103

Copyright (© 2002, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting;:

Faculty of Informatics
Masaryk University
Botanicka 68a

602 00 Brno

Czech Republic

